Articles | Volume 15, issue 7
https://doi.org/10.5194/se-15-807-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-15-807-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Rift and plume: a discussion on active and passive rifting mechanisms in the Afro-Arabian rift based on synthesis of geophysical data
Ran Issachar
CORRESPONDING AUTHOR
Institute for Geosciences, Geophysics, Kiel University, Kiel, Germany
Geological Survey of Israel, Jerusalem, Israel
Peter Haas
Institute for Geosciences, Geophysics, Kiel University, Kiel, Germany
GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
Nico Augustin
GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
Jörg Ebbing
Institute for Geosciences, Geophysics, Kiel University, Kiel, Germany
Related authors
No articles found.
Björn H. Heincke, Wolfgang Szwillus, Judith Freienstein, Jörg Ebbing, Carmen Gaina, Antonia Ruppel, Yixiati Dilixiati, and Agnes Wansing
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-448, https://doi.org/10.5194/essd-2025-448, 2025
Preprint under review for ESSD
Short summary
Short summary
With over three-quarters of Greenland hidden beneath ice, direct geological observation is nearly impossible. Magnetic mapping provides now a passive and efficient geophysical method to image hidden subsurface features, offering a powerful tool for tectonic analysis and geological modeling in otherwise inaccessible regions. We have now developed a new magnetic anomaly map of Greenland using state-of-the-art technology providing new insight into Greenland’s buried geology.
Jonas Liebsch, Jörg Ebbing, and Kenichi Matsuoka
EGUsphere, https://doi.org/10.5194/egusphere-2025-1905, https://doi.org/10.5194/egusphere-2025-1905, 2025
Short summary
Short summary
The evolution of the Antarctic ice sheets depends, in addition to factors representing the warming climate, on the earth structure beneath the ice. What’s beneath the ice is largely inaccessible for direct sampling, but can be interpreted with the use of satellite or airborne measurements. We apply an unsupervised machine learning method to such data in East Antarctica to test whether this can ease interpretation and hence our understanding of what rocks are beneath the ice.
Peter Haas, Myron F. H. Thomas, Christian Heine, Jörg Ebbing, Andrey Seregin, and Jimmy van Itterbeeck
Solid Earth, 15, 1419–1443, https://doi.org/10.5194/se-15-1419-2024, https://doi.org/10.5194/se-15-1419-2024, 2024
Short summary
Short summary
Transform faults are conservative plate boundaries where no material is added or destroyed. Oceanic fracture zones are their inactive remnants and record tectonic processes that formed oceanic crust. In this study, we combine high-resolution data sets along fracture zones in the Gulf of Guinea to demonstrate that their formation is characterized by increased metamorphic conditions. This is in line with previous studies that describe the non-conservative character of transform faults.
Judith Freienstein, Wolfgang Szwillus, Agnes Wansing, and Jörg Ebbing
Solid Earth, 15, 513–533, https://doi.org/10.5194/se-15-513-2024, https://doi.org/10.5194/se-15-513-2024, 2024
Short summary
Short summary
Geothermal heat flow influences ice sheet dynamics, making its investigation important for ice-covered regions. Here we evaluate the sparse measurements for their agreement with regional solid Earth models, as well as with a statistical approach. This shows that some points should be excluded from regional studies. In particular, the NGRIP point, which strongly influences heat flow maps and the distribution of high basal melts, should be statistically considered an outlier.
Angelika Graiff, Matthias Braun, Amelie Driemel, Jörg Ebbing, Hans-Peter Grossart, Tilmann Harder, Joseph I. Hoffman, Boris Koch, Florian Leese, Judith Piontek, Mirko Scheinert, Petra Quillfeldt, Jonas Zimmermann, and Ulf Karsten
Polarforschung, 91, 45–57, https://doi.org/10.5194/polf-91-45-2023, https://doi.org/10.5194/polf-91-45-2023, 2023
Short summary
Short summary
There are many approaches to better understanding Antarctic processes that generate very large data sets (
Antarctic big data). For these large data sets there is a pressing need for improved data acquisition, curation, integration, service, and application to support fundamental scientific research, and this article describes and evaluates the current status of big data in various Antarctic scientific disciplines, identifies current gaps, and provides solutions to fill these gaps.
William Colgan, Agnes Wansing, Kenneth Mankoff, Mareen Lösing, John Hopper, Keith Louden, Jörg Ebbing, Flemming G. Christiansen, Thomas Ingeman-Nielsen, Lillemor Claesson Liljedahl, Joseph A. MacGregor, Árni Hjartarson, Stefan Bernstein, Nanna B. Karlsson, Sven Fuchs, Juha Hartikainen, Johan Liakka, Robert S. Fausto, Dorthe Dahl-Jensen, Anders Bjørk, Jens-Ove Naslund, Finn Mørk, Yasmina Martos, Niels Balling, Thomas Funck, Kristian K. Kjeldsen, Dorthe Petersen, Ulrik Gregersen, Gregers Dam, Tove Nielsen, Shfaqat A. Khan, and Anja Løkkegaard
Earth Syst. Sci. Data, 14, 2209–2238, https://doi.org/10.5194/essd-14-2209-2022, https://doi.org/10.5194/essd-14-2209-2022, 2022
Short summary
Short summary
We assemble all available geothermal heat flow measurements collected in and around Greenland into a new database. We use this database of point measurements, in combination with other geophysical datasets, to model geothermal heat flow in and around Greenland. Our geothermal heat flow model is generally cooler than previous models of Greenland, especially in southern Greenland. It does not suggest any high geothermal heat flows resulting from Icelandic plume activity over 50 million years ago.
Igor Ognev, Jörg Ebbing, and Peter Haas
Solid Earth, 13, 431–448, https://doi.org/10.5194/se-13-431-2022, https://doi.org/10.5194/se-13-431-2022, 2022
Short summary
Short summary
We present a new 3D crustal model of Volgo–Uralia, an eastern segment of the East European craton. We built this model by processing the satellite gravity data and using prior crustal thickness estimation from regional seismic studies to constrain the results. The modelling revealed a high-density body on the top of the mantle and otherwise reflected the main known features of the Volgo–Uralian crustal architecture. We plan to use the obtained model for further geothermal analysis of the region.
Pavol Zahorec, Juraj Papčo, Roman Pašteka, Miroslav Bielik, Sylvain Bonvalot, Carla Braitenberg, Jörg Ebbing, Gerald Gabriel, Andrej Gosar, Adam Grand, Hans-Jürgen Götze, György Hetényi, Nils Holzrichter, Edi Kissling, Urs Marti, Bruno Meurers, Jan Mrlina, Ema Nogová, Alberto Pastorutti, Corinne Salaun, Matteo Scarponi, Josef Sebera, Lucia Seoane, Peter Skiba, Eszter Szűcs, and Matej Varga
Earth Syst. Sci. Data, 13, 2165–2209, https://doi.org/10.5194/essd-13-2165-2021, https://doi.org/10.5194/essd-13-2165-2021, 2021
Short summary
Short summary
The gravity field of the Earth expresses the overall effect of the distribution of different rocks at depth with their distinguishing densities. Our work is the first to present the high-resolution gravity map of the entire Alpine orogen, for which high-quality land and sea data were reprocessed with the exact same calculation procedures. The results reflect the local and regional structure of the Alpine lithosphere in great detail. The database is hereby openly shared to serve further research.
Maximilian Lowe, Jörg Ebbing, Amr El-Sharkawy, and Thomas Meier
Solid Earth, 12, 691–711, https://doi.org/10.5194/se-12-691-2021, https://doi.org/10.5194/se-12-691-2021, 2021
Short summary
Short summary
This study estimates the gravitational contribution from subcrustal density heterogeneities interpreted as subducting lithosphere beneath the Alps to the gravity field. We showed that those heterogeneities contribute up to 40 mGal of gravitational signal. Such density variations are often not accounted for in Alpine lithospheric models. We demonstrate that future studies should account for subcrustal density variations to provide a meaningful representation of the complex geodynamic Alpine area.
Cited articles
Abebe, T., Balestrieri, M. L., and Bigazzi, G.: The Central Main Ethiopian Rift is younger than 8 Ma: confirmation through apatite fission-track thermochronology, Terra Nova, 22, 470–476, https://doi.org/10.1111/j.1365-3121.2010.00968.x, 2010.
Akram, F., Garcia, M. A., and Puig, D.: Active contours driven by difference of Gaussians, Sci. Rep., 7, 1–15, https://doi.org/10.1038/s41598-017-14502-w, 2017.
Anderson, D. L.: The sublithospheric mantle as the source of continental flood basalts; the case against the continental lithosphere and plume head reservoirs, Earth Planet. Sc. Lett., 123, 269–280, https://doi.org/10.1016/0012-821X(94)90273-9, 1994.
Anderson, D. L.: Large Igneous Provinces, Delamination, and Fertile Mantle, Elements, 1, 271–275, https://doi.org/10.2113/gselements.1.5.271, 2005.
Augustin, N., van der Zwan, F. M., Devey, C. W., and Brandsdóttir, B.: 13 million years of seafloor spreading throughout the Red Sea Basin, Nat. Commun., 12, 1–10, https://doi.org/10.1038/s41467-021-22586-2, 2021.
Audin, L., Quidelleur, X., Coulié, E., Courtillot, V., Gilder, S., Manighetti, I., Gillot, P.‐Y., Tapponnier, P., and Kidane, T.: Palaeomagnetism and K‐-Ar and 40Ar/39Ar ages in the Ali Sabieh area (Republic of Djibouti and Ethiopia): constraints on the mechanism of Aden ridge propagation into southeastern Afar during the last 10 Myr, Geophys. J. Int., 158, 327–345, https://doi.org/10.1111/j.1365-246X.2004.02286.x, 2004.
Autin, J., Bellahsen, N., Leroy, S., Husson, L., Beslier, M. O., and d'Acremont, E.: The role of structural inheritance in oblique rifting: Insights from analogue models and application to the Gulf of Aden, Tectonophysics, 607, 51–64, https://doi.org/10.1016/j.tecto.2013.05.041, 2013.
Barberi, F. and Varet, J.: Volcanism of Afar: Small-scale plate tectonics implications, GSA Bull., 88, 1251–1266, https://doi.org/10.1130/0016-7606(1977)88<1251:VOASPT>2.0.CO;2, 1977.
Bellahsen, N., Faccenna, C., Funiciello, F., Daniel, J. M., and Jolivet, L.: Why did Arabia separate from Africa? Insights from 3-D laboratory experiments, Earth Planet. Sc. Lett., 216, 365–381, https://doi.org/10.1016/S0012-821X(03)00516-8, 2003.
Bellahsen, N., Husson, L., Autin, J., Leroy, S., and D'Acremont, E.: The effect of thermal weakening and buoyancy forces on rift localization: Field evidences from the Gulf of Aden oblique rifting, Tectonophysics, 607, 80–97, https://doi.org/10.1016/j.tecto.2013.05.042, 2013.
Bellieni, G., Visentin, E.J., Zanettin, B., Piccirillo, E. M., Radicati di Brozolo, F., and Rita, F.: Oligocene transitional tholeiitic magmatism in Northern turkana (Kenya): Comparison with the Coeval Ethiopian volcanism, Bull. Volcanol., 44, 411–427, https://doi.org/10.1007/BF02600573, 1981.
Beyene, A. and Abdelsalam, M. G.: Tectonics of the Afar Depression: A review and synthesis, J. Afr. Earth Sci., 41, 41–59, https://doi.org/10.1016/j.jafrearsci.2005.03.003, 2005.
Bonini, M., Corti, G., Innocenti, F., Manetti, P., Mazzarini, F., Abebe, T., and Pecskay, Z.: Evolution of the Main Ethiopian Rift in the frame of Afar and Kenya rifts propagation, Tectonics, 24, TC1007, https://doi.org/10.1029/2004TC001680, 2005.
Bosworth, W.: Geological evolution of the Red Sea: historical background, review, and synthesis, in: In The Red Sea, Springer, Berlin, Heidelberg, 45–78, https://doi.org/10.1007/978-3-662-45201-1, 2015.
Bosworth, W. and Stockli, D. F.: Early magmatism in the greater Red Sea rift: Timing and significance, Can. J. Earth Sci., 53, 1158–1176, https://doi.org/10.1139/cjes-2016-0019, 2016.
Bosworth, W., Huchon, P., and McClay, K.: The Red Sea and Gulf of Aden Basins, J. Afr. Earth Sci., 43, 334–378, https://doi.org/10.1016/j.jafrearsci.2005.07.020, 2005.
Bridges, D. L., Mickus, K., Gao, S. S., Abdelsalam, M. G., and Alemu, A.: Magnetic stripes of a transitional continental rift in Afar, Geology, 40, 203–206, https://doi.org/10.1130/G32697.1, 2012.
Bryan, S. E. and Ferrari, L.: Large igneous provinces and silicic large igneous provinces: Progress in our understanding over the last 25 years, GSA Bull., 125, 1053–1078, https://doi.org/10.1130/B30820.1, 2013.
Buiter, S. J. H. and Torsvik, T. H.: A review of Wilson Cycle plate margins: A role for mantle plumes in continental break-up along sutures?, Gondwana Res., 26, 627–653, https://doi.org/10.1016/J.GR.2014.02.007, 2014.
Burke, K.: The African Plate, S. Afr. J. Geol., 99, 341–409, https://hdl.handle.net/10520/EJC-942801f20 (last access: 26 June 2024), 1996.
Burke, K. and Dewey, J. F.: Plume-generated triple junctions: key indicators in applying plate tectonics to old rocks, J. Geol., 81, 406–433, https://doi.org/10.1086/627882, 1973.
Campbell, I. H. and Griffiths, R. W.: Implications of mantle plume structure for the evolution of flood basalts, Earth Planet. Sc. Lett., 99, 79–93, https://doi.org/10.1016/0012-821X(90)90072-6, 1990.
Cande, S. C. and Stegman, D. R.: Indian and African plate motions driven by the push force of the Réunion plume head, Nature, 475, 47–52, https://doi.org/10.1038/nature10174, 2011.
Carbotte, S. M., Smith, D. K., Cannat, M., and Klein, E. M.: Tectonic and magmatic segmentation of the Global Ocean Ridge System: A synthesis of observations, Geol. Soc. Spec. Publ., 420, 249–295, https://doi.org/10.1144/SP420.5, 2016.
Chatterjee, S., Goswami, A., and Scotese, C. R.: The longest voyage: Tectonic, magmatic, and paleoclimatic evolution of the Indian plate during its northward flight from Gondwana to Asia, Gondwana Res., 23, 238–267, https://doi.org/10.1016/j.gr.2012.07.001, 2013.
Chorowicz, J.: The East African rift system, J. Afr. Earth Sci., 43, 379–410, https://doi.org/10.1016/j.jafrearsci.2005.07.019, 2005.
Collet, B., Taud, H., Parrot, J. F., Bonavia, F., and Chorowicz, J.: A new kinematic approach for the Danakil block using a Digital Elevation Model representation, Tectonophysics, 316, 343–357, https://doi.org/10.1016/S0040-1951(99)00263-2, 2000.
Corti, G.: Continental rift evolution: From rift initiation to incipient break-up in the Main Ethiopian Rift, East Africa, Earth-Sci. Rev., 96, 1–53, https://doi.org/10.1016/j.earscirev.2009.06.005, 2009.
Coulié, E., Quidelleur, X., Courtillot, V., Lefèvre, J. C., and Chiesa, S.: Comparative K-Ar and Ar/Ar dating of Ethiopian and Yemenite Oligocene volcanism: Implications for timing and duration of the Ethiopian traps, Earth Planet. Sc. Lett., 206, 477–492, https://doi.org/10.1016/S0012-821X(02)01089-0, 2003.
Courtillot, V., Jaupart, C., Manighetti, I., Tapponnier, P., and Besse, J.: On causal links between flood basalts and continental breakup, Earth Planet. Sc. Lett., 166, 177–195, https://doi.org/10.1016/S0012-821X(98)00282-9, 1999.
DeMets, C. and Merkouriev, S.: High-resolution estimates of Nubia-Somalia plate motion since 20 Ma from reconstructions of the Southwest Indian Ridge, Red Sea and Gulf of Aden, Geophys. J. Int., 207, 317–332, https://doi.org/10.1093/gji/ggw276, 2016.
Doubre, C., Deprez, A., Masson, F., Socquet, A., Lewi, E., Grandin, R., Nercessian, A., Ulrich, P., De Chabalier, J. B., Saad, I. and Abayazid, A.: Current deformation in Central Afar and triple junction kinematics deduced from GPS and InSAR measurements, Geophys. J. Int., 208, 936–953, https://doi.org/10.1093/gji/ggw434, 2017.
Duclaux, G., Huismans, R. S., and May, D. A.: Rotation, narrowing, and preferential reactivation of brittle structures during oblique rifting, Earth Planet. Sc. Lett., 531, 115952, https://doi.org/10.1016/j.epsl.2019.115952, 2020.
Dyer, R.: Using joint interactions to estimate paleostress ratios, J. Struct. Geol., 10, 685–699, https://doi.org/10.1016/0191-8141(88)90076-4, 1988.
Ebinger, C. J., Keir, D., Bastow, I. D., Whaler, K., Hammond, J. O. S., Ayele, A., Miller, M. S., Tiberi, C., and Hautot, S.: Crustal Structure of Active Deformation Zones in Africa: Implications for Global Crustal Processes, Tectonics, 36, 3298–3332, https://doi.org/10.1002/2017TC004526, 2017.
Ernst, R. E.: Large igneous provinces, Cambridge Univ. Press, ISBN 0521871778, 2014.
Eyles, J. H. W., Illsley-Kemp, F., Keir, D., Ruch, J., and Jónsson, S.: Seismicity Associated With the Formation of a New Island in the Southern Red Sea, Front. Earth Sci., 6, 1–10, https://doi.org/10.3389/feart.2018.00141, 2018.
Faccenna, C., Becker, T. W., Jolivet, L., and Keskin, M.: Mantle convection in the Middle East: Reconciling Afar upwelling, Arabia indentation and Aegean trench rollback, Earth Planet. Sc. Lett., 375, 254–269, https://doi.org/10.1016/J.EPSL.2013.05.043, 2013.
Faccenna, C., Glišović, P., Forte, A., Becker, T. W., Garzanti, E., Sembroni, A., and Gvirtzman, Z.: Role of dynamic topography in sustaining the Nile River over 30 million years, Nat. Geosci., 12, 1012–1017, https://doi.org/10.1038/s41561-019-0472-x, 2019.
Forsyth, D. and Uyeda, S.: On the relative importance of the driving forces of plate motion, Geophys. J. Int., 43, 163–200, 1975.
Fournier, M., Chamot‐Rooke, N., Petit, C., Huchon, P., Al‐Kathiri, A., Audin, L., Beslier, M. O., d'Acremont, E., Fabbri, O., Fleury, J. M., and Khanbari, K.: Arabia-Somalia plate kinematics, evolution of the Aden-OwenCarlsberg triple junction, and opening of the Gulf of Aden, J. Geophys. Res.-Solid, 115, 1–24, https://doi.org/10.1029/2008JB006257, 2010.
François, T., Koptev, A., Cloetingh, S., Burov, E., and Gerya, T.: Plume-lithosphere interactions in rifted margin tectonic settings: Inferences from thermo-mechanical modelling, Tectonophysics, 746, 138–154, https://doi.org/10.1016/j.tecto.2017.11.027, 2018.
Frizon De Lamotte, D., Fourdan, B., Leleu, S., Leparmentier, F., and De Clarens, P.: Style of rifting and the stages of Pangea breakup, Tectonics, 34, 1009–1029, https://doi.org/10.1002/2014TC003760, 2015.
Fromm, T., Planert, L., Jokat, W., Ryberg, T., Behrmann, J. H., Weber, M. H., and Haberland, C.: South Atlantic opening: A plume-induced breakup?, Geology, 43, 931–934, https://doi.org/10.1130/G36936.1, 2015.
Garfunkel, Z.: Tectonic setting of phanerozoic magmatism in Israel, Isr. J. Earth Sci., 38, 51–74, 1989.
Garfunkel, Z. and Beyth, M.: Constraints on the structural development of Afar imposed by the kinematics of the major surrounding plates, Geol. Soc. Spec. Publ., 259, 23–42, https://doi.org/10.1144/GSL.SP.2006.259.01.04, 2006.
Gass, I. G., Mallick, D. I. J., and Cos, K. G.: Volcanic islands of the Red Sea, J. Geol. Soc., 129, 275–309, https://doi.org/10.1144/gsjgs.129.3.0275, 1973.
GEBCO Compilation Group: The GEBCO_2019 Grid: a continuous terrain model of the global oceans and land, GEBCO Compilation Group GEBCO 2021 Grid [data set], https://doi.org/10.5285/c6612cbe-50b3-0cff-e053-6c86abc09f8f, 2021.
Geoffroy, L.: Volcanic passive margins, C. R. Geosci., 337, 1395–1408, https://doi.org/10.1016/J.CRTE.2005.10.006, 2005.
George, R., Rogers, N., and Kelley, S.: Earliest magmatism in Ethiopia: Evidence for two mantle plumes in one flood basalt province, Geology, 26, 923–926, https://doi.org/10.1130/0091-7613(1998)026<0923:EMIEEF>2.3.CO;2, 1998.
Giannerini, G., Campredon, R., Feraud, G., and Abou Zakhem, B.: Deformations intraplaques et volcanisme associe; exemple de la bordure NW de la plaque Arabique au Cenozoique, Bull. Soc. Geol. Fr., IV, 937–947, https://doi.org/10.2113/gssgfbull.IV.6.937, 1988.
Gillard, M., Leroy, S., Cannat, M., and Sloan, H.: Margin-to-Margin Seafloor Spreading in the Eastern Gulf of Aden: A 16 Ma-Long History of Deformation and Magmatism from Seismic Reflection, Gravity and Magnetic Data, Front. Earth Sci., 9, 628, https://doi.org/10.3389/feart.2021.707721, 2021.
Girdler, R. W., and Styles, P.: Two stage Red Sea floor spreading, Nature, 247, 7–11, https://doi.org/10.1038/247007a0, 1974.
Global Volcanism Program: Volcanoes of the World, v. 5.2.0, Smithsonian Institution [data set], https://doi.org/10.5479/si.GVP.VOTW5-2024.5.2, 2024.
Gvirtzman, Z., Faccenna, C., and Becker, T. W.: Isostasy, flexure, and dynamic topography, Tectonophysics, 683, 255–271, https://doi.org/10.1016/j.tecto.2016.05.041, 2016.
Hill, R. I.: Starting plumes and continental break-up, Earth Planet. Sc. Lett., 104, 398–416, https://doi.org/10.1016/0012-821X(91)90218-7, 1991.
Hofstetter, R. and Beyth, M.: The afar depression: Interpretation of the 1960–2000 earthquakes, Geophys. J. Int., 155, 715–732, https://doi.org/10.1046/j.1365-246X.2003.02080.x, 2003.
Hughes, G. W., Varol, O., and Beydoun, Z. R.: Evidence for Middle Oligocene rifting of the Gulf of Aden and for Late Oligocene rifting of the southern Red Sea, Mar. Petrol. Geol., 8, 354–358, https://doi.org/10.1016/0264-8172(91)90088-I, 1991.
Huismans, R. S., Podladchikov, Y. Y., and Cloetingh, S.: Transition from passive to active rifting: Relative importance of asthenospheric doming and passive extension of the lithosphere, J. Geophys. Res.-Solid, 106, 11271–11291, https://doi.org/10.1029/2000JB900424, 2001.
Ilani, S., Harlavan, Y., Tarawneh, K., Rabba, I., Weinberger, R., Ibrahim, K., Peltz, S., and Steinitz, G.: New K-Ar ages of basalts from the Harrat Ash Shaam volcanic field in Jordan: Implications for the span and duration of the upper-mantle upwelling beneath the western Arabian plate, Geology, 29, 171–174, https://doi.org/10.1130/0091-7613(2001)029<0171:NKAAOB>2.0.CO;2, 2001.
Ince, E. S., Barthelmes, F., Reißland, S., Elger, K., Förste, C., Flechtner, F., and Schuh, H.: ICGEM – 15 years of successful collection and distribution of global gravitational models, associated services, and future plans, Earth Syst. Sci. Data, 11, 647–674, https://doi.org/10.5194/essd-11-647-2019, 2019.
International Seismological Centre: On-line Bulletin, International Seismological Centre [data set], https://doi.org/10.31905/D808B830, 2020.
Issachar, R., Ebbing, J., and Dilixiati, Y.: New magnetic anomaly map for the Red Sea reveals transtensional structures associated with rotational rifting, Sci. Rep., 12, 1–13, https://doi.org/10.1038/s41598-022-09770-0, 2022 (data available at: https://figshare.com/articles/dataset/Transcurrent_Regimes_During_Rotational_Rifting_New_Insights_from_Magnetic_Anomalies_in_the_Red_Sea/14743272, last access: 9 July 2024).
Ivanov, A. V., Demonterova, E. I., He, H., Perepelov, A. B., Travin, A. V., and Lebedev, V. A.: Volcanism in the Baikal rift: 40 years of active-versus-passive model discussion, Earth-Sci. Rev., 148, 18–43, https://doi.org/10.1016/j.earscirev.2015.05.011, 2015.
Joffe, S. and Garfunkel, Z.: Plate kinematics of the Red Sea – a re-evaluation, Tectonophysics, 141, 5–22, 1987.
Jolivet, L. and Faccenna, C.: Meditterranean extension and the Africa-Eurasia collision, Tectonics, 19, 1095–1106, https://doi.org/10.1029/2000TC900018, 2000.
Keen, C. E.: The dynamics of rifting: deformation of the lithosphere by active and passive driving forces, Geophys. J. R. Astr. Soc., 80, 95–120, 1985.
Keir, D., Pagli, C., Bastow, I. D., and Ayele, A.: The magma-assisted removal of Arabia in Afar: Evidence from dike injection in the Ethiopian rift captured using InSAR and seismicity, Tectonics, 30, TC2008, https://doi.org/10.1029/2010TC002785, 2011.
Keir, D., Bastow, I. D., Pagli, C., and Chambers, E. L.: The development of extension and magmatism in the Red Sea rift of Afar, Tectonophysics, 607, 98–114, https://doi.org/10.1016/j.tecto.2012.10.015, 2013.
Keranen, K. and Klemperer, S. L.: Discontinuous and diachronous evolution of the Main Ethiopian Rift: Implications for development of continental rifts, Earth Planet. Sc. Lett., 265, 96–111, https://doi.org/10.1016/j.epsl.2007.09.038, 2008.
Kidane, T.: Strong clockwise block rotation of the Ali-Sabieh/Aïsha Block: Evidence for opening of the Afar Depression by a “saloon-door” mechanism, Geol. Soc. Spec. Publ., 420, 209–219, https://doi.org/10.1144/SP420.10, 2016.
Koppers, A. A., Becker, T. W., Jackson, M. G., Konrad, K., Müller, R. D., Romanowicz, B., Steinberger, B., and Whittaker, J. M.: Mantle plumes and their role in Earth processes, Nat. Rev. Earth Environ., 2, 382–401, https://doi.org/10.1038/s43017-021-00168-6, 2021.
Koptev, A., Gerya, T., Calais, E., Leroy, S., and Burov, E.: Afar triple junction triggered by plume-assisted bi-directional continental break-up, Sci. Rep., 8, 1–7, https://doi.org/10.1038/s41598-018-33117-3, 2018.
Le Pichon, X. and Gaulier, J.-M.: The rotation of Arabia and the Levant fault system, Tectonophysics, 153, 271–294, https://doi.org/10.1016/0040-1951(88)90020-0, 1988.
Leroy, S., Razin, P., Autin, J., Bache, F., d’Acremont, E., Watremez, L., Robinet, J., Baurion, C., Denèle, Y., Bellahsen, N., and Lucazeau, F.: From rifting to oceanic spreading in the Gulf of Aden: A synthesis, Front. Earth Sci., 5, 385–427, https://doi.org/10.1007/978-3-642-30609-9_20, 2013.
Lithgow-Bertelloni, C. and Silver, P. G.: Dynamic topography, plate driving forces and the African superswell, Nature, 395, 269–272, https://doi.org/10.1038/26212, 1998.
Macdonald, K., Sempere, J. C., and Fox, P. J.: East Pacific Rise from Siqueiros to Orozco fracture zones: along-strike continuity of axial neovolcanic zone and structure and evolution of overlapping spreading centers, J. Geophys. Res., 89, 6049–6069, https://doi.org/10.1029/JB089iB07p06049, 1984.
Maestrelli, D., Brune, S., Corti, G., Keir, D., Muluneh, A. A., and Sani, F.: Analog and Numerical Modeling of Rift-Rift-Rift Triple Junctions, Tectonics, 41, e2022TC007491, https://doi.org/10.1029/2022TC007491, 2022.
Manighetti, I., Tapponnier, P., Courtillot, V., Gallet, Y., Jacques, E., and Gillot, P. Y.: Strain transfer between disconnected, propagating rifts in Afar, J. Geophys. Res.-Solid, 106, 13613–13665, https://doi.org/10.1029/2000jb900454, 2001.
Mattash, M. A., Pinarelli, L., Vaselli, O., Minissale, A., Al-Kadasi, M., Shawki, M. N., and Tassi, F.: Continental Flood Basalts and Rifting: Geochemistry of Cenozoic Yemen Volcanic Province, Int. J. Geosci., 4, 1459–1466, https://doi.org/10.4236/ijg.2013.410143, 2013.
McConnell, R. and Baker, B.: The Structural Pattern of the Afro-Arabian Rift System in Relation to Plate Tectonics: Discussion, Philos. T. Roy. Soc. Lond. A, 267, 390–391, 1970.
McDougall, I. and Brown, F. H.: Timing of volcanism and evolution of the northern Kenya Rift, Geol. Mag., 146, 34–47, https://doi.org/10.1017/S0016756808005347, 2009.
Meshesha, D. and Shinjo, R.: Rethinking geochemical feature of the Afar and Kenya mantle plumes and geodynamics implications, J. Geophys. Res.-Solid, 113, 9209, https://doi.org/10.1029/2007JB005549, 2008.
Mitchell, N. C. and Sofianos, S. S.: Origin of submarine channel north of hanish sill, red sea, in: Geological Setting, Palaeoenvironment and Archaeology of the Red Sea, Springer International Publishing, 259–273, https://doi.org/10.1007/978-3-319-99408-6_12, 2018.
Mitchell, N. C., and Bosworth, W.: The tectonic stability of Arabia, In Rifting and sediments in the Red Sea and Arabian Gulf regions, CRC Press, 75–94, https://doi.org/10.1201/9781003321415-6, 2023.
Mitra, S., Mitra, K., Gupta, S., Bhattacharya, S., Chauhan, P., and Jain, N.: Alteration and submergence of basalts in Kachchh, Gujarat, India: implications for the role of the Deccan Traps in the India–Seychelles break-up, Geol. Soc. Lond. Spec. Publ., 445, 47–67, https://doi.org/10.1144/SP445.9, 2017.
Morag, N., Haviv, I., Eyal, M., Kohn, B. P., and Feinstein, S.: Early flank uplift along the Suez Rift: Implications for the role of mantle plumes and the onset of the Dead Sea Transform, Earth Planet. Sc. Lett., 516, 56–65, https://doi.org/10.1016/j.epsl.2019.03.002, 2019.
Moretti, I. and Froidevaux, C.: Thermomechanical models of active rifting, Tectonics, 5, 501–511, https://doi.org/10.1029/TC005I004P00501, 1986.
Morgan, W. J.: Convection plumes in the lower mantle, Nature, 230, 42–43, https://doi.org/10.1038/230042a0, 1971.
Okwokwo, O. I., Mitchell, N. C., Shi, W., Stewart, I. C. F., and Izzeldin, A. Y.: How have thick evaporites affected early seafloor spreading magnetic anomalies in the Central Red Sea?, Geophys. J. Int., 229, 1550–1566, https://doi.org/10.1093/gji/ggac012, 2022.
Pagli, C., Wang, H., Wright, T. J., Calais, E., and Lewi, E.: Current plate boundary deformation of the Afar rift from a 3-D velocity field inversion of InSAR and GPS, J. Geophys. Res.-Solid, 119, 8562–8575, https://doi.org/10.1002/2014JB011391, 2014.
Pagli, C., Yun, S.-H., Ebinger, C., Keir, D., and Wang, H.: Strike-slip tectonics during rift linkage, Geology, 47, 31–34, https://doi.org/10.1130/G45345.1, 2018.
Peate, I. U., Baker, J. A., Al-Kadasi, M., Al-Subbary, A., Knight, K. B., Riisager, P., Thirlwall, M. F., Peate, D. W., Renne, P. R., and Menzies, M. A.: Volcanic stratigraphy of large-volume silicic pyroclastic eruptions during Oligocene Afro-Arabian flood volcanism in Yemen, Bull. Volcanol., 68, 135–156, https://doi.org/10.1007/s00445-005-0428-4, 2005.
Plaziat, J.-C., Baltzer, F., Choukri, A., Conchon, O., Freytet, P., Orszag-Sperber, F., Raguideau, A., and Reyss, J.-L.: Quaternary marine and continental sedimentation in the northern Red Sea and Gulf of Suez (Egyptian coast): influences of rift tectonics, climatic changes and sea-level fluctuations, in: Sedimentation and Tectonics in Rift Basins Red Sea: Gulf of Aden, Springer Netherlands, 537–573, https://doi.org/10.1007/978-94-011-4930-3_29, 1998.
Prave, A. R., Bates, C. R., Donaldson, C. H., Toland, H., Condon, D. J., Mark, D., and Raub, T. D.: Geology and geochronology of the Tana Basin, Ethiopia: LIP volcanism, Super eruptions and Eocene-Oligocene environmental change, Earth Planet. Sc. Lett., 443, 1–8, https://doi.org/10.1016/j.epsl.2016.03.009, 2016.
Pusok, A. E. and Stegman, D. R.: The convergence history of India-Eurasia records multiple subduction dynamics processes, Sci. Adv., 6, eaaz8681, https://doi.org/10.1126/sciadv.aaz8681, 2020.
Qaysi, S., Liu, K. H., and Gao, S. S.: A Database of Shear-Wave Splitting Measurements for the Arabian Plate, Seismol. Res. Lett., 89, 2294–2298, https://doi.org/10.1785/0220180144, 2018.
Reilinger, R. and McClusky, S.: Nubia-Arabia-Eurasia plate motions and the dynamics of Mediterranean and Middle East tectonics, Geophys. J. Int., 186, 971–979, https://doi.org/10.1111/j.1365-246X.2011.05133.x, 2011.
Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., Ozener, H., Kadirov, F., Guliev, I., Stepanyan, R., and Nadariya, M.: GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions, J. Geophys. Res.-Solid, 111, B05411, https://doi.org/10.1029/2005JB004051, 2006.
Richards, M. A., Duncan, R. A., and Courtillot, V. E.: Flood basalts and hot-spot tracks: Plume heads and tails, Science, 246, 103–107, https://doi.org/10.1126/science.246.4926.103, 1989.
Rime, V., Foubert, A., Ruch, J., and Kidane, T.: Tectonostratigraphic evolution and significance of the Afar Depression, Earth-Sci. Rev., 244, 104519, https://doi.org/10.1016/j.earscirev.2023.104519, 2023.
Roger, J., Platel, J. P., Cavelier, C., and Bourdillon-de-Grissac, C.: Données nouvelles sur la stratigraphie et l'histoire géologique du Dhofar (Sultanat d'Oman), Bull. Soc. Géol. Fr., 2, 256–277, 1989.
Rooney, T. O.: The Cenozoic magmatism of East-Africa: Part I – Flood basalts and pulsed magmatism, Lithos, 286–287, 264–301, https://doi.org/10.1016/j.lithos.2017.05.014, 2017.
Ruch, J., Keir, D., Passarelli, L., Di Giacomo, D., Ogubazghi, G., and Jónsson, S.: Revealing 60 years of Earthquake Swarms in the Southern Red Sea, Afar and the Gulf of Aden, Front. Earth Sci., 9, 690, https://doi.org/10.3389/feart.2021.664673, 2021.
Sandwell, D. T., Müller, R. D., Smith, W. H.F ., Garcia, E., and Francis, R.: New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure, Science, 346, 65–67, https://doi.org/10.1126/SCIENCE.1258213, 2014 (data available at: https://topex.ucsd.edu/grav_outreach/, last access: 9 July 2024).
Schettino, A., Macchiavelli, C., Pierantoni, P. P., Zanoni, D., and Rasul, N.: Recent kinematics of the tectonic plates surrounding the Red Sea and Gulf of Aden, Geophys. J. Int., 207, 457–480, https://doi.org/10.1093/gji/ggw280, 2016.
Schettino, A., Macchiavelli, C., and Rasul, N. M. A.: Plate motions around the red sea since the early oligocene, in: Geological Setting, Palaeoenvironment and Archaeology of the Red Sea, Springer International Publishing, 203–220, https://doi.org/10.1007/978-3-319-99408-6_9, 2018.
Schult, A.: Palaeomagnetism of tertiary volcanic rocks from the Ethiopian southern plateau and the Danakil block, J. Geophys., 40, 203–212, 1974.
Sembroni, A., Faccenna, C., Becker, T. W., Molin, P., and Abebe, B.: Long-term, deep-mantle support of the Ethiopia-Yemen Plateau, Tectonics, 35, 469–488, https://doi.org/10.1002/2015TC004000, 2016.
Sengör, A. M. C. and Burke, K.: Relative timing of rifting and volcanism on Earth and its tectonic implications, Geophys. Res. Lett., 5, 419–421, https://doi.org/10.1029/GL005I006P00419, 1978.
Sobolev, S. V., Sobolev, A. V., Kuzmin, D. V., Krivolutskaya, N. A., Petrunin, A. G., Arndt, N. T., Radko, V. A., and Vasiliev, Y. R.: Linking mantle plumes, large igneous provinces and environmental catastrophes, Nature, 477, 312–316, https://doi.org/10.1038/nature10385, 2011.
Stamps, D. S., Flesch, L. M., Calais, E., and Ghosh, A.: Current kinematics and dynamics of Africa and the East African Rift System, J. Geophys. Res.-Solid, 119, 5161–5186, https://doi.org/10.1002/2013JB010717, 2014.
Stockli, D. F. and Bosworth, W. B.: Timing of extensional faulting along the magma-poor central and northern red sea rift margin-transition from regional extension to necking along a hyperextended rifted margin, in: Geological Setting, Palaeoenvironment and Archaeology of the Red Sea, Springer International Publishing, 81–111, https://doi.org/10.1007/978-3-319-99408-6_5, 2018.
Su, H. and Zhou, J.: Timing of Arabia-Eurasia collision: Constraints from restoration of crustal-scale cross-sections, J. Struct. Geol., 135, 104041, https://doi.org/10.1016/j.jsg.2020.104041, 2020.
Szymanski, E., Stockli, D. F., Johnson, P. R., and Hager, C.: Thermochronometric evidence for diffuse extension and two-phase rifting within the Central Arabian Margin of the Red Sea Rift, Tectonics, 35, 2863–2895, https://doi.org/10.1002/2016TC004336, 2016.
Tazieff, H. T., Varet, J., Barberi, F., and Giglia, G.: Tectonic significance of the Afar (or Danakil) depression, Nature, 235, 144–147, 1972.
Tesfaye, S., Harding, D. J., and Kusky, T. M.: Early continental breakup boundary and migration of the Afar triple junction, Ethiopia, Bull. Geol. Soc. Am., 115, 1053–1067, https://doi.org/10.1130/B25149.1, 2003.
van Hinsbergen, D. J. J., Steinberger, B., Doubrovine, P. V., and Gassmöller, R.: Acceleration and deceleration of India-Asia convergence since the Cretaceous: Roles of mantle plumes and continental collision, J. Geophys. Res.-Solid, 116, 6101, https://doi.org/10.1029/2010JB008051, 2011.
van Hinsbergen, D. J., Steinberger, B., Guilmette, C., Maffione, M., Gürer, D., Peters, K., Plunder, A., McPhee, P. J., Gaina, C., Advokaat, E. L., and Vissers, R. L.: A record of plume-induced plate rotation triggering subduction initiation, Nat. Geosci., 14, 626–630, https://doi.org/10.1038/s41561-021-00780-7, 2021.
Varet, J.: Geological map of Central and Southern Afar – (Ethiopia and djibouti republic), https://geocatalogue.africamuseum.be/geonetwork/srv/api/records/BE-RMCA-EARTHS-000649 (last access: 18 June 2024), 1975.
Varet, J.: Geology of Afar (East Africa), Springer, 1–249, ISBN 9783319608631, 2018.
Viltres, R., Jónsson, S., Ruch, J., Doubre, C., Reilinger, R., Floyd, M., and Ogubazghi, G.: Kinematics and deformation of the southern Red Sea region from GPS observations, Geophys. J. Int., 221, 2143–2154, https://doi.org/10.1093/gji/ggaa109, 2020.
Viltres, R., Jónsson, S., Alothman, A. O., Liu, S., Leroy, S., Masson, F., Doubre, C., and Reilinger, R.: Present-Day Motion of the Arabian Plate, Tectonics, 41, e2021TC007013, https://doi.org/10.1029/2021TC007013, 2022.
Watchorn, F., Nichols, G. J., and Bosence, D. W. J.: Rift-related sedimentation and stratigraphy, southern Yemen (Gulf of Aden), in: Sedimentation and Tectonics in Rift Basins Red Sea: Gulf of Aden, Springer Netherlands, 165–189, https://doi.org/10.1007/978-94-011-4930-3_11, 1998.
Wescott, W. A., Wigger, S. T., Stone, D. M., and Morley, C. K.: Geology and Geophysics of the Lotikipi Plain, in: Geoscience of Rift Systems – Evolution of East Africa, AAPG Stud. Geol., 44, 55–65, https://doi.org/10.1306/St44623C3, 1999.
White, R. and McKenzie, D.: Magmatism at rift zones: the generation of volcanic continental margins and flood basalts, J. Geophys. Res., 94, 7685–7729, https://doi.org/10.1029/JB094iB06p07685, 1989.
White, R. S. and McKenzie, D.: Mantle plumes and flood basalts, J. Geophys. Res., 100, 543–560, https://doi.org/10.1029/95jb01585, 1995.
Will, T. M. and Frimmel, H. E.: Where does a continent prefer to break up? Some lessons from the South Atlantic margins, Gondwana Res., 53, 9–19, https://doi.org/10.1016/j.gr.2017.04.014, 2018.
Wilson, J. T.: A possible origin of the Hawaiian Islands, Can. J. Phys., 41, 863–870, https://doi.org/10.1139/P63-094, 1963.
Wolfenden, E., Ebinger, C., Yirgu, G., Deino, A., and Ayalew, D.: Evolution of the northern Main Ethiopian rift: Birth of a triple junction, Earth Planet. Sc. Lett., 224, 213–228, https://doi.org/10.1016/j.epsl.2004.04.022, 2004.
Zingerle, P., Pail, R., Gruber, T., and Oikonomidou, X.: The experimental gravity field model XGM2019e, GFZ Data Serv. [data set], https://doi.org/10.5880/ICGEM.2019.007, 2019.
Zingerle, P., Pail, R., Gruber, T., and Oikonomidou, X.: The combined global gravity field model XGM2019e, J. Geod., 94, 66, https://doi.org/10.1007/S00190-020-01398-0, 2020.
Zwaan, F., Corti, G., Keir, D., and Sani, F.: A review of tectonic models for the rifted margin of Afar: Implications for continental break-up and passive margin formation, J. Afr. Earth Sci., 164, 103649, https://doi.org/10.1016/j.jafrearsci.2019.103649, 2020a.
Zwaan, F., Corti, G., Sani, F., Keir, D., Muluneh, A. A., Illsley-Kemp, F., and Papini, M.: Structural Analysis of the Western Afar Margin, East Africa: Evidence for Multiphase Rotational Rifting, Tectonics, 39, e2019TC006043, https://doi.org/10.1029/2019TC006043, 2020b.
Short summary
In this contribution, we explore the causal relationship between the arrival of the Afar plume and the initiation of the Afro-Arabian rift. We mapped the rift architecture in the triple-junction region using geophysical data and reviewed the available geological data. We interpret a progressive development of the plume–rift system and suggest an interaction between active and passive mechanisms in which the plume provided a push force that changed the kinematics of the associated plates.
In this contribution, we explore the causal relationship between the arrival of the Afar plume...