Articles | Volume 16, issue 6
https://doi.org/10.5194/se-16-477-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-16-477-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
About the trustworthiness of physics-based machine learning – considerations for geomechanical applications
Denise Degen
CORRESPONDING AUTHOR
Computational Geoscience, Geothermics and Reservoir Geophysics (CG3), RWTH Aachen University, 52074 Aachen, Germany
GFZ Helmholtz Centre for Geosciences, 14473 Potsdam, Germany
Institute of Applied Geosciences, TU Darmstadt, 64287 Darmstadt, Germany
Moritz Ziegler
Professorship of Geothermal Technologies, TU Munich, Arcisstr. 21, 80333 Munich, Germany
GFZ Helmholtz Centre for Geosciences, 14473 Potsdam, Germany
Oliver Heidbach
GFZ Helmholtz Centre for Geosciences, 14473 Potsdam, Germany
Institute of Applied Geosciences, TU Berlin, 10587 Berlin, Germany
Andreas Henk
Institute of Applied Geosciences, TU Darmstadt, 64287 Darmstadt, Germany
Karsten Reiter
Institute of Applied Geosciences, TU Darmstadt, 64287 Darmstadt, Germany
Florian Wellmann
Computational Geoscience, Geothermics and Reservoir Geophysics (CG3), RWTH Aachen University, 52074 Aachen, Germany
Fraunhofer Research Institution for Energy Infrastructures and Geotechnologies IEG, 44801 Bochum, Germany
Related authors
Denise Degen, Ajay Kumar, Magdalena Scheck-Wenderoth, and Mauro Cacace
EGUsphere, https://doi.org/10.5194/egusphere-2025-1925, https://doi.org/10.5194/egusphere-2025-1925, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Geodynamical simulations cover a wide spatial and temporal range and are crucial to understand and assess the evolution of the Earth system. To enable computationally efficient modeling approaches that can account for potentially unknown subsurface properties, we present a surrogate modeling technique. This technique combines physics-based and machine-learning techniques to enable reliable predictions of geodynamical applications, as we illustrate for the case study of the Alpine Region.
Denise Degen, Daniel Caviedes Voullième, Susanne Buiter, Harrie-Jan Hendricks Franssen, Harry Vereecken, Ana González-Nicolás, and Florian Wellmann
Geosci. Model Dev., 16, 7375–7409, https://doi.org/10.5194/gmd-16-7375-2023, https://doi.org/10.5194/gmd-16-7375-2023, 2023
Short summary
Short summary
In geosciences, we often use simulations based on physical laws. These simulations can be computationally expensive, which is a problem if simulations must be performed many times (e.g., to add error bounds). We show how a novel machine learning method helps to reduce simulation time. In comparison to other approaches, which typically only look at the output of a simulation, the method considers physical laws in the simulation itself. The method provides reliable results faster than standard.
Denise Degen, Cameron Spooner, Magdalena Scheck-Wenderoth, and Mauro Cacace
Geosci. Model Dev., 14, 7133–7153, https://doi.org/10.5194/gmd-14-7133-2021, https://doi.org/10.5194/gmd-14-7133-2021, 2021
Short summary
Short summary
In times of worldwide energy transitions, an understanding of the subsurface is increasingly important to provide renewable energy sources such as geothermal energy. To validate our understanding of the subsurface we require data. However, the data are usually not distributed equally and introduce a potential misinterpretation of the subsurface. Therefore, in this study we investigate the influence of measurements on temperature distribution in the European Alps.
Denise Degen and Mauro Cacace
Geosci. Model Dev., 14, 1699–1719, https://doi.org/10.5194/gmd-14-1699-2021, https://doi.org/10.5194/gmd-14-1699-2021, 2021
Short summary
Short summary
In this work, we focus on improving the understanding of subsurface processes with respect to interactions with climate dynamics. We present advanced, open-source mathematical methods that enable us to investigate the influence of various model properties on the final outcomes. By relying on our approach, we have been able to showcase their importance in improving our understanding of the subsurface and highlighting the current shortcomings of currently adopted models.
Denise Degen, Ajay Kumar, Magdalena Scheck-Wenderoth, and Mauro Cacace
EGUsphere, https://doi.org/10.5194/egusphere-2025-1925, https://doi.org/10.5194/egusphere-2025-1925, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Geodynamical simulations cover a wide spatial and temporal range and are crucial to understand and assess the evolution of the Earth system. To enable computationally efficient modeling approaches that can account for potentially unknown subsurface properties, we present a surrogate modeling technique. This technique combines physics-based and machine-learning techniques to enable reliable predictions of geodynamical applications, as we illustrate for the case study of the Alpine Region.
Sarah Diekmeier, Karsten Reiter, Andreas Henk, and Colin Friebe
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-489, https://doi.org/10.5194/essd-2024-489, 2025
Preprint under review for ESSD
Short summary
Short summary
The study explores the potential for storing carbon-rich products in Germany to support climate goals. Using geological data, we identified old mining sites suitable for storing products like graphite and oxalate from negative emissions technologies. Results show significant storage potential, both above and below ground, offering a sustainable solution. By reusing existing mining areas, Germany can advance towards carbon neutrality, reducing costs and environmental impact.
Antonio J. Olaiz, José A. Álvarez Gómez, Gerardo de Vicente, Alfonso Muñoz-Martín, Juan V. Cantavella, Susana Custódio, Dina Vales, and Oliver Heidbach
EGUsphere, https://doi.org/10.5194/egusphere-2024-4126, https://doi.org/10.5194/egusphere-2024-4126, 2025
Short summary
Short summary
Understanding the stress and strain conditions in the Earth crust is crucial for various activities, such as oil and gas exploration and assessing seismic hazards. In this article, we have updated the database of moment tensor focal mechanisms for the Greater Iberia. We conducted kinematic and dynamic analyses on the selected populations, determining the average focal mechanism, strain and stress orientations, and tectonic regime. The orientation for horizontal compression is primarily N154° E.
Moritz O. Ziegler, Robin Seithel, Thomas Niederhuber, Oliver Heidbach, Thomas Kohl, Birgit Müller, Mojtaba Rajabi, Karsten Reiter, and Luisa Röckel
Solid Earth, 15, 1047–1063, https://doi.org/10.5194/se-15-1047-2024, https://doi.org/10.5194/se-15-1047-2024, 2024
Short summary
Short summary
The rotation of the principal stress axes in a fault structure because of a rock stiffness contrast has been investigated for the impact of the ratio of principal stresses, the angle between principal stress axes and fault strike, and the ratio of the rock stiffness contrast. A generic 2D geomechanical model is employed for the systematic investigation of the parameter space.
Karsten Reiter, Oliver Heidbach, and Moritz O. Ziegler
Solid Earth, 15, 305–327, https://doi.org/10.5194/se-15-305-2024, https://doi.org/10.5194/se-15-305-2024, 2024
Short summary
Short summary
It is generally assumed that faults have an influence on the stress state of the Earth’s crust. It is questionable whether this influence is still present far away from a fault. Simple numerical models were used to investigate the extent of the influence of faults on the stress state. Several models with different fault representations were investigated. The stress fluctuations further away from the fault (> 1 km) are very small.
Denise Degen, Daniel Caviedes Voullième, Susanne Buiter, Harrie-Jan Hendricks Franssen, Harry Vereecken, Ana González-Nicolás, and Florian Wellmann
Geosci. Model Dev., 16, 7375–7409, https://doi.org/10.5194/gmd-16-7375-2023, https://doi.org/10.5194/gmd-16-7375-2023, 2023
Short summary
Short summary
In geosciences, we often use simulations based on physical laws. These simulations can be computationally expensive, which is a problem if simulations must be performed many times (e.g., to add error bounds). We show how a novel machine learning method helps to reduce simulation time. In comparison to other approaches, which typically only look at the output of a simulation, the method considers physical laws in the simulation itself. The method provides reliable results faster than standard.
Michael Hillier, Florian Wellmann, Eric A. de Kemp, Boyan Brodaric, Ernst Schetselaar, and Karine Bédard
Geosci. Model Dev., 16, 6987–7012, https://doi.org/10.5194/gmd-16-6987-2023, https://doi.org/10.5194/gmd-16-6987-2023, 2023
Short summary
Short summary
Neural networks can be used effectively to model three-dimensional geological structures from point data, sampling geological interfaces, units, and structural orientations. Existing neural network approaches for this type of modelling are advanced by the efficient incorporation of unconformities, new knowledge inputs, and improved data fitting techniques. These advances permit the modelling of more complex geology in diverse geological settings, different-sized areas, and various data regimes.
Oliver Heidbach, Karsten Reiter, Moritz O. Ziegler, and Birgit Müller
Saf. Nucl. Waste Disposal, 2, 185–185, https://doi.org/10.5194/sand-2-185-2023, https://doi.org/10.5194/sand-2-185-2023, 2023
Short summary
Short summary
When stresses yield a critical value, rock breaks and generate pathways for fluid migration. Thus, the contemporary undisturbed stress state is a key parameter for assessing the stability of deep geological repositories. In this workshop you can ask everything you always wanted to know about stress (but were afraid to ask), and this is divided into three parts. 1) How do we formally describe the stress field? 2) How do we to actually measure stress? 3) How do we go from points to 3D description?
Moritz O. Ziegler, Oliver Heidbach, and Mojtaba Rajabi
Saf. Nucl. Waste Disposal, 2, 79–80, https://doi.org/10.5194/sand-2-79-2023, https://doi.org/10.5194/sand-2-79-2023, 2023
Short summary
Short summary
The subsurface is subject to constant stress. With increasing depth, more rock overlies an area, thereby increasing the stress. There is also constant stress from the sides. Knowledge of this stress is fundamental to build lasting and safe underground structures. Very few data on the stress state are available; thus, computer models are used to predict this parameter. We present a method to improve the quality of the computer models, even if no direct data on the stress state are available.
Karsten Reiter, Oliver Heidbach, Moritz Ziegler, Silvio Giger, Rodney Garrard, and Jean Desroches
Saf. Nucl. Waste Disposal, 2, 71–72, https://doi.org/10.5194/sand-2-71-2023, https://doi.org/10.5194/sand-2-71-2023, 2023
Short summary
Short summary
Numerical methods can be used to estimate the stress state in the Earth’s upper crust. Measured stress data are needed for model calibration. High-quality stress data are available for the calibration of models for possible radioactive waste repositories in Switzerland. A best-fit model predicts the stress state for each point within the model volume. In this study, variable rock properties are used to predict the potential stress variations due to inhomogeneous rock properties.
Luisa Röckel, Steffen Ahlers, Sophia Morawietz, Birgit Müller, Tobias Hergert, Karsten Reiter, Andreas Henk, Moritz Ziegler, Oliver Heidbach, and Frank Schilling
Saf. Nucl. Waste Disposal, 2, 73–73, https://doi.org/10.5194/sand-2-73-2023, https://doi.org/10.5194/sand-2-73-2023, 2023
Short summary
Short summary
Stress data predicted by a geomechanical–numerical model are mapped onto 3D fault geometries. Then the slip tendency of these faults is calculated as a measure of their reactivation potential. Characteristics of the faults and the state of stress are identified that lead to a high fault reactivation potential. An overall high reactivation potential is observed in the Upper Rhine Graben area, whereas the reactivation potential is quite low in the Molasse Basin.
Tobias Hergert, Steffen Ahlers, Luisa Röckel, Sophia Morawietz, Karsten Reiter, Moritz Ziegler, Birgit Müller, Oliver Heidbach, Frank Schilling, and Andreas Henk
Saf. Nucl. Waste Disposal, 2, 65–65, https://doi.org/10.5194/sand-2-65-2023, https://doi.org/10.5194/sand-2-65-2023, 2023
Short summary
Short summary
In numerical geomechanical models, an initial stress state is established before displacement boundary conditions are applied in order to match calibration data. We present generic models to show that the choice of initial stress and boundary conditions affects the final state of stress in areas of the model domain where no stress data for calibration are available. These deviations are largest in the vicinity of lithological interfaces, and they can be reduced if more stress data exist.
Steffen Ahlers, Karsten Reiter, Tobias Hergert, Andreas Henk, Luisa Röckel, Sophia Morawietz, Oliver Heidbach, Moritz Ziegler, and Birgit Müller
Saf. Nucl. Waste Disposal, 2, 59–59, https://doi.org/10.5194/sand-2-59-2023, https://doi.org/10.5194/sand-2-59-2023, 2023
Short summary
Short summary
The recent crustal stress state is a crucial parameter in the search for a high-level nuclear waste repository. We present results of a 3D geomechanical numerical model that improves the state of knowledge by providing a continuum-mechanics-based prediction of the recent crustal stress field in Germany. The model results can be used, for example, for the calculation of fracture potential, for slip tendency analyses or as boundary conditions for smaller local models.
Michal Kruszewski, Alessandro Verdecchia, Oliver Heidbach, Rebecca M. Harrington, and David Healy
EGUsphere, https://doi.org/10.5194/egusphere-2023-1889, https://doi.org/10.5194/egusphere-2023-1889, 2023
Preprint archived
Short summary
Short summary
In this study, we investigate the evolution of fault reactivation potential in the greater Ruhr region (Germany) in respect to a future utilization of deep geothermal resources. We use analytical and numerical approaches to understand the initial stress conditions on faults as well as their evolution in space and time during geothermal fluid production. Using results from our analyses, we can localize areas more favorable for geothermal energy use based on fault reactivation potential.
Mohammad Moulaeifard, Simon Bernard, and Florian Wellmann
Geosci. Model Dev., 16, 3565–3579, https://doi.org/10.5194/gmd-16-3565-2023, https://doi.org/10.5194/gmd-16-3565-2023, 2023
Short summary
Short summary
In this work, we propose a flexible framework to generate and interact with geological models using explicit surface representations. The essence of the work lies in the determination of the flexible control mesh, topologically similar to the main geological structure, watertight and controllable with few control points, to manage the geological structures. We exploited the subdivision surface method in our work, which is commonly used in the animation and gaming industry.
Michal Kruszewski, Gerd Klee, Thomas Niederhuber, and Oliver Heidbach
Earth Syst. Sci. Data, 14, 5367–5385, https://doi.org/10.5194/essd-14-5367-2022, https://doi.org/10.5194/essd-14-5367-2022, 2022
Short summary
Short summary
The authors assemble an in situ stress magnitude and orientation database based on 429 hydrofracturing tests that were carried out in six coal mines and two coal bed methane boreholes between 1986 and 1995 within the greater Ruhr region (Germany). Our study summarises the results of the extensive in situ stress test campaign and assigns quality to each data record using the established quality ranking schemes of the World Stress Map project.
Michał P. Michalak, Lesław Teper, Florian Wellmann, Jerzy Żaba, Krzysztof Gaidzik, Marcin Kostur, Yuriy P. Maystrenko, and Paulina Leonowicz
Solid Earth, 13, 1697–1720, https://doi.org/10.5194/se-13-1697-2022, https://doi.org/10.5194/se-13-1697-2022, 2022
Short summary
Short summary
When characterizing geological/geophysical surfaces, various geometric attributes are calculated, such as dip angle (1D) or dip direction (2D). However, the boundaries between specific values may be subjective and without optimization significance, resulting from using default color palletes. This study proposes minimizing cosine distance among within-cluster observations to detect 3D anomalies. Our results suggest that the method holds promise for identification of megacylinders or megacones.
Luisa Röckel, Steffen Ahlers, Birgit Müller, Karsten Reiter, Oliver Heidbach, Andreas Henk, Tobias Hergert, and Frank Schilling
Solid Earth, 13, 1087–1105, https://doi.org/10.5194/se-13-1087-2022, https://doi.org/10.5194/se-13-1087-2022, 2022
Short summary
Short summary
Reactivation of tectonic faults can lead to earthquakes and jeopardize underground operations. The reactivation potential is linked to fault properties and the tectonic stress field. We create 3D geometries for major faults in Germany and use stress data from a 3D geomechanical–numerical model to calculate their reactivation potential and compare it to seismic events. The reactivation potential in general is highest for NNE–SSW- and NW–SE-striking faults and strongly depends on the fault dip.
Denise Degen, Cameron Spooner, Magdalena Scheck-Wenderoth, and Mauro Cacace
Geosci. Model Dev., 14, 7133–7153, https://doi.org/10.5194/gmd-14-7133-2021, https://doi.org/10.5194/gmd-14-7133-2021, 2021
Short summary
Short summary
In times of worldwide energy transitions, an understanding of the subsurface is increasingly important to provide renewable energy sources such as geothermal energy. To validate our understanding of the subsurface we require data. However, the data are usually not distributed equally and introduce a potential misinterpretation of the subsurface. Therefore, in this study we investigate the influence of measurements on temperature distribution in the European Alps.
Moritz Ziegler and Oliver Heidbach
Saf. Nucl. Waste Disposal, 1, 187–188, https://doi.org/10.5194/sand-1-187-2021, https://doi.org/10.5194/sand-1-187-2021, 2021
Short summary
Short summary
The Earth's crust is subject to constant stress which is manifested by earthquakes at plate boundaries. This stress is not only at plate boundaries but everywhere in the crust. A profound knowledge of the magnitude and orientation of the stress is important to select and build a safe deep geological repository for nuclear waste. We demonstrate how to build computer models of the stress state and show how to deal with the associated uncertainties.
Luisa Röckel, Steffen Ahlers, Sophia Morawietz, Birgit Müller, Karsten Reiter, Oliver Heidbach, Andreas Henk, Tobias Hergert, and Frank Schilling
Saf. Nucl. Waste Disposal, 1, 77–78, https://doi.org/10.5194/sand-1-77-2021, https://doi.org/10.5194/sand-1-77-2021, 2021
Karsten Reiter, Steffen Ahlers, Sophia Morawietz, Luisa Röckel, Tobias Hergert, Andreas Henk, Birgit Müller, and Oliver Heidbach
Saf. Nucl. Waste Disposal, 1, 75–76, https://doi.org/10.5194/sand-1-75-2021, https://doi.org/10.5194/sand-1-75-2021, 2021
Steffen Ahlers, Andreas Henk, Tobias Hergert, Karsten Reiter, Birgit Müller, Luisa Röckel, Oliver Heidbach, Sophia Morawietz, Magdalena Scheck-Wenderoth, and Denis Anikiev
Saf. Nucl. Waste Disposal, 1, 163–164, https://doi.org/10.5194/sand-1-163-2021, https://doi.org/10.5194/sand-1-163-2021, 2021
Sophia Morawietz, Moritz Ziegler, Karsten Reiter, and the SpannEnD Project Team
Saf. Nucl. Waste Disposal, 1, 71–72, https://doi.org/10.5194/sand-1-71-2021, https://doi.org/10.5194/sand-1-71-2021, 2021
Short summary
Short summary
Knowledge of the crustal stress state is important for the assessment of subsurface stability. In particular, stress magnitudes are essential for the calibration of geomechanical models that estimate a continuous description of the 3-D stress field from pointwise and incomplete stress data. We present the first comprehensive and open-access stress magnitude database for Germany, consisting of 568 data records. We introduce a quality ranking scheme for stress magnitude data for the first time.
Steffen Ahlers, Andreas Henk, Tobias Hergert, Karsten Reiter, Birgit Müller, Luisa Röckel, Oliver Heidbach, Sophia Morawietz, Magdalena Scheck-Wenderoth, and Denis Anikiev
Solid Earth, 12, 1777–1799, https://doi.org/10.5194/se-12-1777-2021, https://doi.org/10.5194/se-12-1777-2021, 2021
Short summary
Short summary
Knowledge about the stress state in the upper crust is of great importance for many economic and scientific questions. However, our knowledge in Germany is limited since available datasets only provide pointwise, incomplete and heterogeneous information. We present the first 3D geomechanical model that provides a continuous description of the contemporary crustal stress state for Germany. The model is calibrated by the orientation of the maximum horizontal stress and stress magnitudes.
Alexander Schaaf, Miguel de la Varga, Florian Wellmann, and Clare E. Bond
Geosci. Model Dev., 14, 3899–3913, https://doi.org/10.5194/gmd-14-3899-2021, https://doi.org/10.5194/gmd-14-3899-2021, 2021
Short summary
Short summary
Uncertainty is an inherent property of any model of the subsurface. We show how geological topology information – how different regions of rocks in the subsurface are connected – can be used to train uncertain geological models to reduce uncertainty. More widely, the method demonstrates the use of probabilistic machine learning (Bayesian inference) to train structural geological models on auxiliary geological knowledge that can be encoded in graph structures.
Karsten Reiter
Solid Earth, 12, 1287–1307, https://doi.org/10.5194/se-12-1287-2021, https://doi.org/10.5194/se-12-1287-2021, 2021
Short summary
Short summary
The influence and interaction of elastic material properties (Young's modulus, Poisson's ratio), density and low-friction faults on the resulting far-field stress pattern in the Earth's crust is tested with generic models. A Young's modulus contrast can lead to a significant stress rotation. Discontinuities with low friction in homogeneous models change the stress pattern only slightly, away from the fault. In addition, active discontinuities are able to compensate stress rotation.
Denise Degen and Mauro Cacace
Geosci. Model Dev., 14, 1699–1719, https://doi.org/10.5194/gmd-14-1699-2021, https://doi.org/10.5194/gmd-14-1699-2021, 2021
Short summary
Short summary
In this work, we focus on improving the understanding of subsurface processes with respect to interactions with climate dynamics. We present advanced, open-source mathematical methods that enable us to investigate the influence of various model properties on the final outcomes. By relying on our approach, we have been able to showcase their importance in improving our understanding of the subsurface and highlighting the current shortcomings of currently adopted models.
Stephanie Thiesen, Diego M. Vieira, Mirko Mälicke, Ralf Loritz, J. Florian Wellmann, and Uwe Ehret
Hydrol. Earth Syst. Sci., 24, 4523–4540, https://doi.org/10.5194/hess-24-4523-2020, https://doi.org/10.5194/hess-24-4523-2020, 2020
Short summary
Short summary
A spatial interpolator has been proposed for exploring the information content of the data in the light of geostatistics and information theory. It showed comparable results to traditional interpolators, with the advantage of presenting generalization properties. We discussed three different ways of combining distributions and their implications for the probabilistic results. By its construction, the method provides a suitable and flexible framework for uncertainty analysis and decision-making.
Fabian Antonio Stamm, Miguel de la Varga, and Florian Wellmann
Solid Earth, 10, 2015–2043, https://doi.org/10.5194/se-10-2015-2019, https://doi.org/10.5194/se-10-2015-2019, 2019
Ershad Gholamrezaie, Magdalena Scheck-Wenderoth, Judith Bott, Oliver Heidbach, and Manfred R. Strecker
Solid Earth, 10, 785–807, https://doi.org/10.5194/se-10-785-2019, https://doi.org/10.5194/se-10-785-2019, 2019
Short summary
Short summary
Based on geophysical data integration and 3-D gravity modeling, we show that significant density heterogeneities are expressed as two large high-density bodies in the crust below the Sea of Marmara. The location of these bodies correlates spatially with the bends of the main Marmara fault, indicating that rheological contrasts in the crust may influence the fault kinematics. Our findings may have implications for seismic hazard and risk assessments in the Marmara region.
Miguel de la Varga, Alexander Schaaf, and Florian Wellmann
Geosci. Model Dev., 12, 1–32, https://doi.org/10.5194/gmd-12-1-2019, https://doi.org/10.5194/gmd-12-1-2019, 2019
Short summary
Short summary
GemPy is an open-source Python-based 3-D structural geological modeling software, which allows the implicit (i.e. automatic) creation of complex geological models from interface and orientation data. GemPy is implemented in the programming language Python, making use of a highly efficient underlying library, Theano, for efficient code generation that performs automatic differentiation. This enables the link to probabilistic machine-learning and Bayesian inference frameworks.
Raphael Schneeberger, Miguel de La Varga, Daniel Egli, Alfons Berger, Florian Kober, Florian Wellmann, and Marco Herwegh
Solid Earth, 8, 987–1002, https://doi.org/10.5194/se-8-987-2017, https://doi.org/10.5194/se-8-987-2017, 2017
Short summary
Short summary
Structural 3-D modelling has become a widely used technique within applied projects. We performed a typical modelling workflow for a study site with the occurrence of an underground facility. This exceptional setting enabled us to test the surface-based extrapolation of faults with the mapped faults underground. We estimated the extrapolation-related uncertainty with probabilistic 2-D interpolation. This research was conducted to improve structural 3-D modelling in less-constrained areas.
Moritz O. Ziegler, Oliver Heidbach, John Reinecker, Anna M. Przybycin, and Magdalena Scheck-Wenderoth
Solid Earth, 7, 1365–1382, https://doi.org/10.5194/se-7-1365-2016, https://doi.org/10.5194/se-7-1365-2016, 2016
Short summary
Short summary
Subsurface engineering relies on sparsely distributed data points of the stress state of the earth's crust. 3D geomechanical--numerical modelling is applied to estimate the stress state in the entire volume of a large area. We present a multi-stage approach of differently sized models which provide the stress state in an area of interest derived from few and widely scattered data records. Furthermore we demonstrate the changes in reliability of the model depending on different input parameters.
J. Florian Wellmann, Sam T. Thiele, Mark D. Lindsay, and Mark W. Jessell
Geosci. Model Dev., 9, 1019–1035, https://doi.org/10.5194/gmd-9-1019-2016, https://doi.org/10.5194/gmd-9-1019-2016, 2016
Short summary
Short summary
We often obtain knowledge about the subsurface in the form of structural geological models, as a basis for subsurface usage or resource extraction. Here, we provide a modelling code to construct such models on the basis of significant deformational events in geological history, encapsulated in kinematic equations. Our methods simplify complex dynamic processes, but enable us to evaluate how events interact, and finally how certain we are about predictions of structures in the subsurface.
T. Hergert, O. Heidbach, K. Reiter, S. B. Giger, and P. Marschall
Solid Earth, 6, 533–552, https://doi.org/10.5194/se-6-533-2015, https://doi.org/10.5194/se-6-533-2015, 2015
Short summary
Short summary
A numerical model integrating the structure and mechanical properties of a sedimentary sequence in the Alpine foreland is presented to show that topography, tectonic faults and, most of all, spatialy variable rock properties affect the state of stress at depth. The tectonic forces acting on the sequence are primarily taken up by the stiff rock units leaving the weaker units in a stress shadow.
K. Reiter and O. Heidbach
Solid Earth, 5, 1123–1149, https://doi.org/10.5194/se-5-1123-2014, https://doi.org/10.5194/se-5-1123-2014, 2014
K. Fischer and A. Henk
Solid Earth, 4, 347–355, https://doi.org/10.5194/se-4-347-2013, https://doi.org/10.5194/se-4-347-2013, 2013
Related subject area
Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Structural geology and tectonics, paleoseismology, rock physics, experimental deformation | Discipline: Tectonics
Relict landscape evolution and fault reactivation in the eastern Tian Shan: insights from the Harlik Mountains
Switching extensional and contractional tectonics in the West Kunlun Mountains during the Jurassic period: responses to the Neo-Tethyan geodynamics along the Eurasian margin
Influence of lateral heterogeneities on strike-slip fault behaviour: insights from analogue models
Importance of basement faulting and salt decoupling for the structural evolution of the Fars Arc (Zagros fold-and-thrust belt): a numerical modeling approach
Topographic stresses affect stress changes caused by megathrust earthquakes and condition aftershock seismicity in forearcs: Insights from mechanical models and the Tohoku-Oki and Maule earthquakes
On the role of trans-lithospheric faults in the long-term seismotectonic segmentation of active margins: a case study in the Andes
Along-strike variation in volcanic addition controlling post-breakup sedimentary infill: Pelotas margin, austral South Atlantic
Stress state at faults: the influence of rock stiffness contrast, stress orientation, and ratio
Interseismic and long-term deformation of southeastern Sicily driven by the Ionian slab roll-back
Rift and plume: a discussion on active and passive rifting mechanisms in the Afro-Arabian rift based on synthesis of geophysical data
Propagating rifts: the roles of crustal damage and ascending mantle fluids
Cretaceous–Paleocene extension at the southwestern continental margin of India and opening of the Laccadive basin: constraints from geophysical data
Transpressional tectonics during the Variscan-Alpine cycle transition: supporting a multi-rifting model, evidence from the European western Southern Alps
Extensional exhumation of cratons: insights from the Early Cretaceous Rio Negro–Juruena belt (Amazonian Craton, Colombia)
Hydrogen solubility of stishovite provides insights into water transportation to the deep Earth
Networks of geometrically coherent faults accommodate Alpine tectonic inversion offshore southwestern Iberia
Melt-enhanced strain localization and phase mixing in a large-scale mantle shear zone (Ronda peridotite, Spain)
Selective inversion of rift basins in lithospheric-scale analogue experiments
The link between Somalian Plate rotation and the East African Rift System: an analogue modelling study
Inversion of extensional basins parallel and oblique to their boundaries: inferences from analogue models and field observations from the Dolomites Indenter, European eastern Southern Alps
Magnetic fabric analyses of basin inversion: a sandbox modelling approach
The influence of crustal strength on rift geometry and development – insights from 3D numerical modelling
Construction of the Ukrainian Carpathian wedge from low-temperature thermochronology and tectono-stratigraphic analysis
Analogue modelling of basin inversion: a review and future perspectives
Insights into the interaction of a shale with CO2
Tectonostratigraphic evolution of the Slyne Basin
Control of crustal strength, tectonic inheritance, and stretching/ shortening rates on crustal deformation and basin reactivation: insights from laboratory models
Late Cretaceous–early Palaeogene inversion-related tectonic structures at the northeastern margin of the Bohemian Massif (southwestern Poland and northern Czechia)
The analysis of slip tendency of major tectonic faults in Germany
Earthquake ruptures and topography of the Chilean margin controlled by plate interface deformation
Late Quaternary faulting in the southern Matese (Italy): implications for earthquake potential and slip rate variability in the southern Apennines
Rare earth elements associated with carbonatite–alkaline complexes in western Rajasthan, India: exploration targeting at regional scale
Structural complexities and tectonic barriers controlling recent seismic activity in the Pollino area (Calabria–Lucania, southern Italy) – constraints from stress inversion and 3D fault model building
The Mid Atlantic Appalachian Orogen Traverse: a comparison of virtual and on-location field-based capstone experiences
Chronology of thrust propagation from an updated tectono-sedimentary framework of the Miocene molasse (western Alps)
Orogenic lithosphere and slabs in the greater Alpine area – interpretations based on teleseismic P-wave tomography
Ground-penetrating radar signature of Quaternary faulting: a study from the Mt. Pollino region, southern Apennines, Italy
U–Pb dating of middle Eocene–Pliocene multiple tectonic pulses in the Alpine foreland
Detrital zircon provenance record of the Zagros mountain building from the Neotethys obduction to the Arabia–Eurasia collision, NW Zagros fold–thrust belt, Kurdistan region of Iraq
The Subhercynian Basin: an example of an intraplate foreland basin due to a broken plate
Late to post-Variscan basement segmentation and differential exhumation along the SW Bohemian Massif, central Europe
Holocene surface-rupturing earthquakes on the Dinaric Fault System, western Slovenia
Contribution of gravity gliding in salt-bearing rift basins – a new experimental setup for simulating salt tectonics under the influence of sub-salt extension and tilting
Thick- and thin-skinned basin inversion in the Danish Central Graben, North Sea – the role of deep evaporites and basement kinematics
Complex rift patterns, a result of interacting crustal and mantle weaknesses, or multiphase rifting? Insights from analogue models
Interactions of plutons and detachments: a comparison of Aegean and Tyrrhenian granitoids
Insights from elastic thermobarometry into exhumation of high-pressure metamorphic rocks from Syros, Greece
Stress rotation – impact and interaction of rock stiffness and faults
Late Cretaceous to Paleogene exhumation in central Europe – localized inversion vs. large-scale domal uplift
Kinematics and extent of the Piemont–Liguria Basin – implications for subduction processes in the Alps
Zihao Zhao, Tianyi Shen, Guocan Wang, Peter van der Beek, Yabo Zhou, and Cheng Ma
Solid Earth, 16, 503–530, https://doi.org/10.5194/se-16-503-2025, https://doi.org/10.5194/se-16-503-2025, 2025
Short summary
Short summary
This study examines the evolution of the Harlik Mountains in the eastern Tian Shan. Low-relief surfaces were formed by the Early Cretaceous erosion and subsequent tectonic stability. Later fault activity segmented these surfaces, with uplift and tilting in the Cenozoic driven by tectonic reactivation. These findings provide insights into how landscapes evolve in response to geological and environmental changes over millions of years.
Hong-Xiang Wu, Han-Lin Chen, Andrew V. Zuza, Yildirim Dilek, Du-Wei Qiu, Qi-Ye Lu, Feng-Qi Zhang, Xiao-Gan Cheng, and Xiu-Bin Lin
Solid Earth, 16, 155–177, https://doi.org/10.5194/se-16-155-2025, https://doi.org/10.5194/se-16-155-2025, 2025
Short summary
Short summary
The Tethyan orogenic belt records an extensive history of subduction along the southern margin of Eurasia. We examine the magmatism, stratigraphy, and sedimentary provenance of the Jurassic basin in the West Kunlun Mountains, highlighting the switching extensional and contractional tectonic episodes in central Asia. The complex evolution was related to the subduction of the Neo-Tethys Ocean, transitioning from southward retreat to northward flat-slab advancement.
Sandra González-Muñoz, Guido Schreurs, Timothy C. Schmid, and Fidel Martín-González
Solid Earth, 15, 1509–1523, https://doi.org/10.5194/se-15-1509-2024, https://doi.org/10.5194/se-15-1509-2024, 2024
Short summary
Short summary
This work investigates how strike-slip faults propagate across domains with lateral contrasting brittle strength using analogue models. The introduction of brittle vertical domains was achieved using quartz microbead sand. The reference vertical domains influence synthetic fault propagation, segmentation, and linkage, as well as the antithetic faults which rotate about a vertical axis due to the applied simple shear. The results aligned with the faults in the NW of the Iberian Peninsula.
Fatemeh Gomar, Jonas B. Ruh, Mahdi Najafi, and Farhad Sobouti
Solid Earth, 15, 1479–1507, https://doi.org/10.5194/se-15-1479-2024, https://doi.org/10.5194/se-15-1479-2024, 2024
Short summary
Short summary
Our study investigates the structural evolution of the Fars Arc in the Zagros Mountains through numerical modeling. We focus on the effects of the interaction between basement faults and salt décollement levels during tectonic inversion, including a rifting and a convergence phase. In conclusion, our results emphasize the importance of considering fault geometry, salt rheology, and basement involvement in understanding the resistance to deformation and the seismic behavior of fold–thrust belts.
Armin Dielforder, Gian Maria Bocchini, and Andrea Hampel
EGUsphere, https://doi.org/10.5194/egusphere-2024-3592, https://doi.org/10.5194/egusphere-2024-3592, 2024
Short summary
Short summary
Subduction zones feature a large elevation difference between the deep oceanic trench and the high mountains on land, which causes stresses in the upper plate. We investigate how these topographic stresses affect the aftershock seismicity of large subduction earthquakes using analytical and numerical stress models. We show that topographic stresses have a large influence on aftershock seismicity and promoted most of the seismicity after the Tohoku-Oki (Japan) and Maule (Chile) earthquakes.
Gonzalo Yanez C., Jose Piquer R., and Orlando Rivera H.
Solid Earth, 15, 1319–1342, https://doi.org/10.5194/se-15-1319-2024, https://doi.org/10.5194/se-15-1319-2024, 2024
Short summary
Short summary
We postulate that the observed spatial distribution of large earthquakes in active convergence zones, organised in segments where large events are repeated every 100–300 years, depends on large-scale continental faults and fluid release from the subducting slab. In order to support this model, we use proxies at different spatial and temporal scales (historic seismicity, megathrust slip solutions, inter-seismic cumulative seismicity, GPS/viscous plate coupling, and coastline morphology).
Marlise C. Cassel, Nick Kusznir, Gianreto Manatschal, and Daniel Sauter
Solid Earth, 15, 1265–1279, https://doi.org/10.5194/se-15-1265-2024, https://doi.org/10.5194/se-15-1265-2024, 2024
Short summary
Short summary
We investigate the along-strike variation in volcanics on the Pelotas segment of the Brazilian margin created during continental breakup and formation of the southern South Atlantic. We show that the volume of volcanics strongly controls the amount of space available for post-breakup sedimentation. We also show that breakup varies along-strike from very magma-rich to magma-normal within a relatively short distance of less than 300 km. This is not as expected from a simple mantle plume model.
Moritz O. Ziegler, Robin Seithel, Thomas Niederhuber, Oliver Heidbach, Thomas Kohl, Birgit Müller, Mojtaba Rajabi, Karsten Reiter, and Luisa Röckel
Solid Earth, 15, 1047–1063, https://doi.org/10.5194/se-15-1047-2024, https://doi.org/10.5194/se-15-1047-2024, 2024
Short summary
Short summary
The rotation of the principal stress axes in a fault structure because of a rock stiffness contrast has been investigated for the impact of the ratio of principal stresses, the angle between principal stress axes and fault strike, and the ratio of the rock stiffness contrast. A generic 2D geomechanical model is employed for the systematic investigation of the parameter space.
Amélie Viger, Stéphane Dominguez, Stéphane Mazzotti, Michel Peyret, Maxime Henriquet, Giovanni Barreca, Carmelo Monaco, and Adrien Damon
Solid Earth, 15, 965–988, https://doi.org/10.5194/se-15-965-2024, https://doi.org/10.5194/se-15-965-2024, 2024
Short summary
Short summary
New satellite geodetic data (PS-InSAR) evidence a generalized subsidence and an eastward tilting of southeastern Sicily combined with a local relative uplift along its eastern coast. We perform flexural and elastic modeling and show that the slab pull force induced by the Ionian slab roll-back and extrado deformation reproduce the measured surface deformation. Finally, we propose an original seismic cycle model that is mainly driven by the southward migration of the Ionian slab roll-back.
Ran Issachar, Peter Haas, Nico Augustin, and Jörg Ebbing
Solid Earth, 15, 807–826, https://doi.org/10.5194/se-15-807-2024, https://doi.org/10.5194/se-15-807-2024, 2024
Short summary
Short summary
In this contribution, we explore the causal relationship between the arrival of the Afar plume and the initiation of the Afro-Arabian rift. We mapped the rift architecture in the triple-junction region using geophysical data and reviewed the available geological data. We interpret a progressive development of the plume–rift system and suggest an interaction between active and passive mechanisms in which the plume provided a push force that changed the kinematics of the associated plates.
Folarin Kolawole and Rasheed Ajala
Solid Earth, 15, 747–762, https://doi.org/10.5194/se-15-747-2024, https://doi.org/10.5194/se-15-747-2024, 2024
Short summary
Short summary
We investigate the upper-crustal structure of the Rukwa–Tanganyika rift zone in East Africa, where the Tanganyika rift interacts with the Rukwa and Mweru-Wantipa rifts, coinciding with abundant seismicity at the rift tips. Seismic velocity structure and patterns of seismicity clustering reveal zones around 10 km deep with anomalously high Vp / Vs ratios at the rift tips, indicative of a localized mechanically weakened crust caused by mantle volatiles and damage associated with bending strain.
Mathews George Gilbert, Parakkal Unnikrishnan, and Munukutla Radhakrishna
Solid Earth, 15, 671–682, https://doi.org/10.5194/se-15-671-2024, https://doi.org/10.5194/se-15-671-2024, 2024
Short summary
Short summary
The study identifies evidence for extension south of Tellicherry Arch along the southwestern continental margin of India through the integrated analysis of multichannel seismic and gravity data. The sediment deposition pattern indicates that this extension occurred after the Eocene. We further propose that the anticlockwise rotation of India and the passage of the Réunion plume have facilitated the opening of the Laccadive basin.
Emanuele Scaramuzzo, Franz A. Livio, Maria Giuditta Fellin, and Colin Maden
EGUsphere, https://doi.org/10.5194/egusphere-2024-1135, https://doi.org/10.5194/egusphere-2024-1135, 2024
Short summary
Short summary
The theory of plate tectonics postulates that the opening and closure of an ocean are tied together into a cycle, namely the Wilson cycle. The rocks exposed in the western Southern Alps preserve the geologic record of two Wilson cycles: an earlier one, which led to the formation of the Variscan orogen, and the recent one, which led to the formation of the European Alps. We delved into this transition, and we found that it did not occur smoothly but through several abrupt changes.
Ana Fonseca, Simon Nachtergaele, Amed Bonilla, Stijn Dewaele, and Johan De Grave
Solid Earth, 15, 329–352, https://doi.org/10.5194/se-15-329-2024, https://doi.org/10.5194/se-15-329-2024, 2024
Short summary
Short summary
This study explores the erosion and exhumation processes and history of early continental crust hidden within the Amazonian Rainforest. This crust forms part of the Amazonian Craton, an ancient continental fragment. Our surprising findings reveal the area underwent rapid early Cretaceous exhumation triggered by tectonic forces. This discovery challenges the traditional perception that cratons are stable and long-lived entities and shows they can deform readily under specific geological contexts.
Mengdan Chen, Changxin Yin, Danling Chen, Long Tian, Liang Liu, and Lei Kang
Solid Earth, 15, 215–227, https://doi.org/10.5194/se-15-215-2024, https://doi.org/10.5194/se-15-215-2024, 2024
Short summary
Short summary
Stishovite remains stable under mantle conditions and can incorporate various amounts of water in its crystal structure. We provide a systematic review of previous studies on water in stishovite and propose a new model for water solubility of Al-bearing stishovite. Calculation results based on this model suggest that stishovite may effectively accommodate water from the breakdown of hydrous minerals and could make an important contribution to water enrichment in the mantle transition zone.
Tiago M. Alves
Solid Earth, 15, 39–62, https://doi.org/10.5194/se-15-39-2024, https://doi.org/10.5194/se-15-39-2024, 2024
Short summary
Short summary
Alpine tectonic inversion is reviewed for southwestern Iberia, known for its historical earthquakes and tsunamis. High-quality 2D seismic data image 26 faults mapped to a depth exceeding 10 km. Normal faults accommodated important vertical uplift and shortening. They are 100–250 km long and may generate earthquakes with Mw > 8.0. Regions of Late Mesozoic magmatism comprise thickened, harder crust, forming lateral buttresses to compression and promoting the development of fold-and-thrust belts.
Sören Tholen, Jolien Linckens, and Gernold Zulauf
Solid Earth, 14, 1123–1154, https://doi.org/10.5194/se-14-1123-2023, https://doi.org/10.5194/se-14-1123-2023, 2023
Short summary
Short summary
Intense phase mixing with homogeneously distributed secondary phases and irregular grain boundaries and shapes indicates that metasomatism formed the microstructures predominant in the shear zone of the NW Ronda peridotite. Amphibole presence, olivine crystal orientations, and the consistency to the Beni Bousera peridotite (Morocco) point to OH-bearing metasomatism by small fractions of evolved melts. Results confirm a strong link between reactions and localized deformation in the upper mantle.
Anindita Samsu, Weronika Gorczyk, Timothy Chris Schmid, Peter Graham Betts, Alexander Ramsay Cruden, Eleanor Morton, and Fatemeh Amirpoorsaeed
Solid Earth, 14, 909–936, https://doi.org/10.5194/se-14-909-2023, https://doi.org/10.5194/se-14-909-2023, 2023
Short summary
Short summary
When a continent is pulled apart, it breaks and forms a series of depressions called rift basins. These basins lie above weakened crust that is then subject to intense deformation during subsequent tectonic compression. Our analogue experiments show that when a system of basins is squeezed in a direction perpendicular to the main trend of the basins, some basins rise up to form mountains while others do not.
Frank Zwaan and Guido Schreurs
Solid Earth, 14, 823–845, https://doi.org/10.5194/se-14-823-2023, https://doi.org/10.5194/se-14-823-2023, 2023
Short summary
Short summary
The East African Rift System (EARS) is a major plate tectonic feature splitting the African continent apart. Understanding the tectonic processes involved is of great importance for societal and economic reasons (natural hazards, resources). Laboratory experiments allow us to simulate these large-scale processes, highlighting the links between rotational plate motion and the overall development of the EARS. These insights are relevant when studying other rift systems around the globe as well.
Anna-Katharina Sieberer, Ernst Willingshofer, Thomas Klotz, Hugo Ortner, and Hannah Pomella
Solid Earth, 14, 647–681, https://doi.org/10.5194/se-14-647-2023, https://doi.org/10.5194/se-14-647-2023, 2023
Short summary
Short summary
Through analogue models and field observations, we investigate how inherited platform–basin geometries control strain localisation, style, and orientation of reactivated and new structures during inversion. Our study shows that the style of evolving thrusts and their changes along-strike are controlled by pre-existing rheological discontinuities. The results of this study are relevant for understanding inversion structures in general and for the European eastern Southern Alps in particular.
Thorben Schöfisch, Hemin Koyi, and Bjarne Almqvist
Solid Earth, 14, 447–461, https://doi.org/10.5194/se-14-447-2023, https://doi.org/10.5194/se-14-447-2023, 2023
Short summary
Short summary
A magnetic fabric analysis provides information about the reorientation of magnetic grains and is applied to three sandbox models that simulate different stages of basin inversion. The analysed magnetic fabrics reflect the different developed structures and provide insights into the different deformed stages of basin inversion. It is a first attempt of applying magnetic fabric analyses to basin inversion sandbox models but shows the possibility of applying it to such models.
Thomas B. Phillips, John B. Naliboff, Ken J. W. McCaffrey, Sophie Pan, Jeroen van Hunen, and Malte Froemchen
Solid Earth, 14, 369–388, https://doi.org/10.5194/se-14-369-2023, https://doi.org/10.5194/se-14-369-2023, 2023
Short summary
Short summary
Continental crust comprises bodies of varying strength, formed through numerous tectonic events. When subject to extension, these areas produce distinct rift and fault systems. We use 3D models to examine how rifts form above
strongand
weakareas of crust. We find that faults become more developed in weak areas. Faults are initially stopped at the boundaries with stronger areas before eventually breaking through. We relate our model observations to rift systems globally.
Marion Roger, Arjan de Leeuw, Peter van der Beek, Laurent Husson, Edward R. Sobel, Johannes Glodny, and Matthias Bernet
Solid Earth, 14, 153–179, https://doi.org/10.5194/se-14-153-2023, https://doi.org/10.5194/se-14-153-2023, 2023
Short summary
Short summary
We study the construction of the Ukrainian Carpathians with LT thermochronology (AFT, AHe, and ZHe) and stratigraphic analysis. QTQt thermal models are combined with burial diagrams to retrieve the timing and magnitude of sedimentary burial, tectonic burial, and subsequent exhumation of the wedge's nappes from 34 to ∼12 Ma. Out-of-sequence thrusting and sediment recycling during wedge building are also identified. This elucidates the evolution of a typical wedge in a roll-back subduction zone.
Frank Zwaan, Guido Schreurs, Susanne J. H. Buiter, Oriol Ferrer, Riccardo Reitano, Michael Rudolf, and Ernst Willingshofer
Solid Earth, 13, 1859–1905, https://doi.org/10.5194/se-13-1859-2022, https://doi.org/10.5194/se-13-1859-2022, 2022
Short summary
Short summary
When a sedimentary basin is subjected to compressional tectonic forces after its formation, it may be inverted. A thorough understanding of such
basin inversionis of great importance for scientific, societal, and economic reasons, and analogue tectonic models form a key part of our efforts to study these processes. We review the advances in the field of basin inversion modelling, showing how the modelling results can be applied, and we identify promising venues for future research.
Eleni Stavropoulou and Lyesse Laloui
Solid Earth, 13, 1823–1841, https://doi.org/10.5194/se-13-1823-2022, https://doi.org/10.5194/se-13-1823-2022, 2022
Short summary
Short summary
Shales are identified as suitable caprock formations for geolocigal CO2 storage thanks to their low permeability. Here, small-sized shale samples are studied under field-representative conditions with X-ray tomography. The geochemical impact of CO2 on calcite-rich zones is for the first time visualised, the role of pre-existing micro-fissures in the CO2 invasion trapping in the matererial is highlighted, and the initiation of micro-cracks when in contact with anhydrous CO2 is demonstrated.
Conor M. O'Sullivan, Conrad J. Childs, Muhammad M. Saqab, John J. Walsh, and Patrick M. Shannon
Solid Earth, 13, 1649–1671, https://doi.org/10.5194/se-13-1649-2022, https://doi.org/10.5194/se-13-1649-2022, 2022
Short summary
Short summary
The Slyne Basin is a sedimentary basin located offshore north-western Ireland. It formed through a long and complex evolution involving distinct periods of extension. The basin is subdivided into smaller basins, separated by deep structures related to the ancient Caledonian mountain-building event. These deep structures influence the shape of the basin as it evolves in a relatively unique way, where early faults follow these deep structures, but later faults do not.
Benjamin Guillaume, Guido M. Gianni, Jean-Jacques Kermarrec, and Khaled Bock
Solid Earth, 13, 1393–1414, https://doi.org/10.5194/se-13-1393-2022, https://doi.org/10.5194/se-13-1393-2022, 2022
Short summary
Short summary
Under tectonic forces, the upper part of the crust can break along different types of faults, depending on the orientation of the applied stresses. Using scaled analogue models, we show that the relative magnitude of compressional and extensional forces as well as the presence of inherited structures resulting from previous stages of deformation control the location and type of faults. Our results gives insights into the tectonic evolution of areas showing complex patterns of deformation.
Andrzej Głuszyński and Paweł Aleksandrowski
Solid Earth, 13, 1219–1242, https://doi.org/10.5194/se-13-1219-2022, https://doi.org/10.5194/se-13-1219-2022, 2022
Short summary
Short summary
Old seismic data recently reprocessed with modern software allowed us to study at depth the Late Cretaceous tectonic structures in the Permo-Mesozoic rock sequences in the Sudetes. The structures formed in response to Iberia collision with continental Europe. The NE–SW compression undulated the crystalline basement top and produced folds, faults and joints in the sedimentary cover. Our results are of importance for regional geology and in prospecting for deep thermal waters.
Luisa Röckel, Steffen Ahlers, Birgit Müller, Karsten Reiter, Oliver Heidbach, Andreas Henk, Tobias Hergert, and Frank Schilling
Solid Earth, 13, 1087–1105, https://doi.org/10.5194/se-13-1087-2022, https://doi.org/10.5194/se-13-1087-2022, 2022
Short summary
Short summary
Reactivation of tectonic faults can lead to earthquakes and jeopardize underground operations. The reactivation potential is linked to fault properties and the tectonic stress field. We create 3D geometries for major faults in Germany and use stress data from a 3D geomechanical–numerical model to calculate their reactivation potential and compare it to seismic events. The reactivation potential in general is highest for NNE–SSW- and NW–SE-striking faults and strongly depends on the fault dip.
Nadaya Cubas, Philippe Agard, and Roxane Tissandier
Solid Earth, 13, 779–792, https://doi.org/10.5194/se-13-779-2022, https://doi.org/10.5194/se-13-779-2022, 2022
Short summary
Short summary
Earthquake extent prediction is limited by our poor understanding of slip deficit patterns. From a mechanical analysis applied along the Chilean margin, we show that earthquakes are bounded by extensive plate interface deformation. This deformation promotes stress build-up, leading to earthquake nucleation; earthquakes then propagate along smoothed fault planes and are stopped by heterogeneously distributed deformation. Slip deficit patterns reflect the spatial distribution of this deformation.
Paolo Boncio, Eugenio Auciello, Vincenzo Amato, Pietro Aucelli, Paola Petrosino, Anna C. Tangari, and Brian R. Jicha
Solid Earth, 13, 553–582, https://doi.org/10.5194/se-13-553-2022, https://doi.org/10.5194/se-13-553-2022, 2022
Short summary
Short summary
We studied the Gioia Sannitica normal fault (GF) within the southern Matese fault system (SMF) in southern Apennines (Italy). It is a fault with a long slip history that has experienced recent reactivation or acceleration. Present activity has resulted in late Quaternary fault scarps and Holocene surface faulting. The maximum slip rate is ~ 0.5 mm/yr. Activation of the 11.5 km GF or the entire 30 km SMF can produce up to M 6.2 or M 6.8 earthquakes, respectively.
Malcolm Aranha, Alok Porwal, Manikandan Sundaralingam, Ignacio González-Álvarez, Amber Markan, and Karunakar Rao
Solid Earth, 13, 497–518, https://doi.org/10.5194/se-13-497-2022, https://doi.org/10.5194/se-13-497-2022, 2022
Short summary
Short summary
Rare earth elements (REEs) are considered critical mineral resources for future industrial growth due to their short supply and rising demand. This study applied an artificial-intelligence-based technique to target potential REE-deposit hosting areas in western Rajasthan, India. Uncertainties associated with the prospective targets were also estimated to aid decision-making. The presented workflow can be applied to similar regions elsewhere to locate potential zones of REE mineralisation.
Daniele Cirillo, Cristina Totaro, Giusy Lavecchia, Barbara Orecchio, Rita de Nardis, Debora Presti, Federica Ferrarini, Simone Bello, and Francesco Brozzetti
Solid Earth, 13, 205–228, https://doi.org/10.5194/se-13-205-2022, https://doi.org/10.5194/se-13-205-2022, 2022
Short summary
Short summary
The Pollino region is a highly seismic area of Italy. Increasing the geological knowledge on areas like this contributes to reducing risk and saving lives. We reconstruct the 3D model of the faults which generated the 2010–2014 seismicity integrating geological and seismological data. Appropriate relationships based on the dimensions of the activated faults suggest that they did not fully discharge their seismic potential and could release further significant earthquakes in the near future.
Steven Whitmeyer, Lynn Fichter, Anita Marshall, and Hannah Liddle
Solid Earth, 12, 2803–2820, https://doi.org/10.5194/se-12-2803-2021, https://doi.org/10.5194/se-12-2803-2021, 2021
Short summary
Short summary
Field trips in the Stratigraphy, Structure, Tectonics (SST) course transitioned to a virtual format in Fall 2020, due to the COVID pandemic. Virtual field experiences (VFEs) were developed in web Google Earth and were evaluated in comparison with on-location field trips via an online survey. Students recognized the value of VFEs for revisiting outcrops and noted improved accessibility for students with disabilities. Potential benefits of hybrid field experiences were also indicated.
Amir Kalifi, Philippe Hervé Leloup, Philippe Sorrel, Albert Galy, François Demory, Vincenzo Spina, Bastien Huet, Frédéric Quillévéré, Frédéric Ricciardi, Daniel Michoux, Kilian Lecacheur, Romain Grime, Bernard Pittet, and Jean-Loup Rubino
Solid Earth, 12, 2735–2771, https://doi.org/10.5194/se-12-2735-2021, https://doi.org/10.5194/se-12-2735-2021, 2021
Short summary
Short summary
Molasse deposits, deposited and deformed at the western Alpine front during the Miocene (23 to 5.6 Ma), record the chronology of that deformation. We combine the first precise chronostratigraphy (precision of ∼0.5 Ma) of the Miocene molasse, the reappraisal of the regional structure, and the analysis of growth deformation structures in order to document three tectonic phases and the precise chronology of thrust westward propagation during the second one involving the Belledonne basal thrust.
Mark R. Handy, Stefan M. Schmid, Marcel Paffrath, Wolfgang Friederich, and the AlpArray Working Group
Solid Earth, 12, 2633–2669, https://doi.org/10.5194/se-12-2633-2021, https://doi.org/10.5194/se-12-2633-2021, 2021
Short summary
Short summary
New images from the multi-national AlpArray experiment illuminate the Alps from below. They indicate thick European mantle descending beneath the Alps and forming blobs that are mostly detached from the Alps above. In contrast, the Adriatic mantle in the Alps is much thinner. This difference helps explain the rugged mountains and the abundance of subducted and exhumed units at the core of the Alps. The blobs are stretched remnants of old ocean and its margins that reach down to at least 410 km.
Maurizio Ercoli, Daniele Cirillo, Cristina Pauselli, Harry M. Jol, and Francesco Brozzetti
Solid Earth, 12, 2573–2596, https://doi.org/10.5194/se-12-2573-2021, https://doi.org/10.5194/se-12-2573-2021, 2021
Short summary
Short summary
Past strong earthquakes can produce topographic deformations, often
memorizedin Quaternary sediments, which are typically studied by paleoseismologists through trenching. Using a ground-penetrating radar (GPR), we unveiled possible buried Quaternary faulting in the Mt. Pollino seismic gap region (southern Italy). We aim to contribute to seismic hazard assessment of an area potentially prone to destructive events as well as promote our workflow in similar contexts around the world.
Luca Smeraglia, Nathan Looser, Olivier Fabbri, Flavien Choulet, Marcel Guillong, and Stefano M. Bernasconi
Solid Earth, 12, 2539–2551, https://doi.org/10.5194/se-12-2539-2021, https://doi.org/10.5194/se-12-2539-2021, 2021
Short summary
Short summary
In this paper, we dated fault movements at geological timescales which uplifted the sedimentary successions of the Jura Mountains from below the sea level up to Earth's surface. To do so, we applied the novel technique of U–Pb geochronology on calcite mineralizations that precipitated on fault surfaces during times of tectonic activity. Our results document a time frame of the tectonic evolution of the Jura Mountains and provide new insight into the broad geological history of the Western Alps.
Renas I. Koshnaw, Fritz Schlunegger, and Daniel F. Stockli
Solid Earth, 12, 2479–2501, https://doi.org/10.5194/se-12-2479-2021, https://doi.org/10.5194/se-12-2479-2021, 2021
Short summary
Short summary
As continental plates collide, mountain belts grow. This study investigated the provenance of rocks from the northwestern segment of the Zagros mountain belt to unravel the convergence history of the Arabian and Eurasian plates. Provenance data synthesis and field relationships suggest that the Zagros Mountains developed as a result of the oceanic crust emplacement on the Arabian continental plate, followed by the Arabia–Eurasia collision and later uplift of the broader region.
David Hindle and Jonas Kley
Solid Earth, 12, 2425–2438, https://doi.org/10.5194/se-12-2425-2021, https://doi.org/10.5194/se-12-2425-2021, 2021
Short summary
Short summary
Central western Europe underwent a strange episode of lithospheric deformation, resulting in a chain of small mountains that run almost west–east across the continent and that formed in the middle of a tectonic plate, not at its edges as is usually expected. Associated with these mountains, in particular the Harz in central Germany, are marine basins contemporaneous with the mountain growth. We explain how those basins came to be as a result of the mountains bending the adjacent plate.
Andreas Eberts, Hamed Fazlikhani, Wolfgang Bauer, Harald Stollhofen, Helga de Wall, and Gerald Gabriel
Solid Earth, 12, 2277–2301, https://doi.org/10.5194/se-12-2277-2021, https://doi.org/10.5194/se-12-2277-2021, 2021
Short summary
Short summary
We combine gravity anomaly and topographic data with observations from thermochronology, metamorphic grades, and the granite inventory to detect patterns of basement block segmentation and differential exhumation along the southwestern Bohemian Massif. Based on our analyses, we introduce a previously unknown tectonic structure termed Cham Fault, which, together with the Pfahl and Danube shear zones, is responsible for the exposure of different crustal levels during late to post-Variscan times.
Christoph Grützner, Simone Aschenbrenner, Petra Jamšek
Rupnik, Klaus Reicherter, Nour Saifelislam, Blaž Vičič, Marko Vrabec, Julian Welte, and Kamil Ustaszewski
Solid Earth, 12, 2211–2234, https://doi.org/10.5194/se-12-2211-2021, https://doi.org/10.5194/se-12-2211-2021, 2021
Short summary
Short summary
Several large strike-slip faults in western Slovenia are known to be active, but most of them have not produced strong earthquakes in historical times. In this study we use geomorphology, near-surface geophysics, and fault excavations to show that two of these faults had surface-rupturing earthquakes during the Holocene. Instrumental and historical seismicity data do not capture the strongest events in this area.
Michael Warsitzka, Prokop Závada, Fabian Jähne-Klingberg, and Piotr Krzywiec
Solid Earth, 12, 1987–2020, https://doi.org/10.5194/se-12-1987-2021, https://doi.org/10.5194/se-12-1987-2021, 2021
Short summary
Short summary
A new analogue modelling approach was used to simulate the influence of tectonic extension and tilting of the basin floor on salt tectonics in rift basins. Our results show that downward salt flow and gravity gliding takes place if the flanks of the rift basin are tilted. Thus, extension occurs at the basin margins, which is compensated for by reduced extension and later by shortening in the graben centre. These outcomes improve the reconstruction of salt-related structures in rift basins.
Torsten Hundebøl Hansen, Ole Rønø Clausen, and Katrine Juul Andresen
Solid Earth, 12, 1719–1747, https://doi.org/10.5194/se-12-1719-2021, https://doi.org/10.5194/se-12-1719-2021, 2021
Short summary
Short summary
We have analysed the role of deep salt layers during tectonic shortening of a group of sedimentary basins buried below the North Sea. Due to the ability of salt to flow over geological timescales, the salt layers are much weaker than the surrounding rocks during tectonic deformation. Therefore, complex structures formed mainly where salt was present in our study area. Our results align with findings from other basins and experiments, underlining the importance of salt tectonics.
Frank Zwaan, Pauline Chenin, Duncan Erratt, Gianreto Manatschal, and Guido Schreurs
Solid Earth, 12, 1473–1495, https://doi.org/10.5194/se-12-1473-2021, https://doi.org/10.5194/se-12-1473-2021, 2021
Short summary
Short summary
We used laboratory experiments to simulate the early evolution of rift systems, and the influence of structural weaknesses left over from previous tectonic events that can localize new deformation. We find that the orientation and type of such weaknesses can induce complex structures with different orientations during a single phase of rifting, instead of requiring multiple rifting phases. These findings provide a strong incentive to reassess the tectonic history of various natural examples.
Laurent Jolivet, Laurent Arbaret, Laetitia Le Pourhiet, Florent Cheval-Garabédian, Vincent Roche, Aurélien Rabillard, and Loïc Labrousse
Solid Earth, 12, 1357–1388, https://doi.org/10.5194/se-12-1357-2021, https://doi.org/10.5194/se-12-1357-2021, 2021
Short summary
Short summary
Although viscosity of the crust largely exceeds that of magmas, we show, based on the Aegean and Tyrrhenian Miocene syn-kinematic plutons, how the intrusion of granites in extensional contexts is controlled by crustal deformation, from magmatic stage to cold mylonites. We show that a simple numerical setup with partial melting in the lower crust in an extensional context leads to the formation of metamorphic core complexes and low-angle detachments reproducing the observed evolution of plutons.
Miguel Cisneros, Jaime D. Barnes, Whitney M. Behr, Alissa J. Kotowski, Daniel F. Stockli, and Konstantinos Soukis
Solid Earth, 12, 1335–1355, https://doi.org/10.5194/se-12-1335-2021, https://doi.org/10.5194/se-12-1335-2021, 2021
Short summary
Short summary
Constraining the conditions at which rocks form is crucial for understanding geologic processes. For years, the conditions under which rocks from Syros, Greece, formed have remained enigmatic; yet these rocks are fundamental for understanding processes occurring at the interface between colliding tectonic plates (subduction zones). Here, we constrain conditions under which these rocks formed and show they were transported to the surface adjacent to the down-going (subducting) tectonic plate.
Karsten Reiter
Solid Earth, 12, 1287–1307, https://doi.org/10.5194/se-12-1287-2021, https://doi.org/10.5194/se-12-1287-2021, 2021
Short summary
Short summary
The influence and interaction of elastic material properties (Young's modulus, Poisson's ratio), density and low-friction faults on the resulting far-field stress pattern in the Earth's crust is tested with generic models. A Young's modulus contrast can lead to a significant stress rotation. Discontinuities with low friction in homogeneous models change the stress pattern only slightly, away from the fault. In addition, active discontinuities are able to compensate stress rotation.
Hilmar von Eynatten, Jonas Kley, István Dunkl, Veit-Enno Hoffmann, and Annemarie Simon
Solid Earth, 12, 935–958, https://doi.org/10.5194/se-12-935-2021, https://doi.org/10.5194/se-12-935-2021, 2021
Eline Le Breton, Sascha Brune, Kamil Ustaszewski, Sabin Zahirovic, Maria Seton, and R. Dietmar Müller
Solid Earth, 12, 885–913, https://doi.org/10.5194/se-12-885-2021, https://doi.org/10.5194/se-12-885-2021, 2021
Short summary
Short summary
The former Piemont–Liguria Ocean, which separated Europe from Africa–Adria in the Jurassic, opened as an arm of the central Atlantic. Using plate reconstructions and geodynamic modeling, we show that the ocean reached only 250 km width between Europe and Adria. Moreover, at least 65 % of the lithosphere subducted into the mantle and/or incorporated into the Alps during convergence in Cretaceous and Cenozoic times comprised highly thinned continental crust, while only 35 % was truly oceanic.
Cited articles
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems, https://www.tensorflow.org/ (last access: 17 February 2025), 2015. a
Ahlers, S., Henk, A., Hergert, T., Reiter, K., Müller, B., Röckel, L., Heidbach, O., Morawietz, S., Scheck-Wenderoth, M., and Anikiev, D.: 3D crustal stress state of Germany according to a data-calibrated geomechanical model, Solid Earth, 12, 1777–1799, https://doi.org/10.5194/se-12-1777-2021, 2021. a
Amadei, B. and Stephansson, O.: Rock Stress and its Measurement, Springer Science and Business Media, ISBN 10 0412447002, ISBN 13 978-0412447006, 1997. a
Bär, K., Reinsch, T., and Bott, J.: The PetroPhysical Property Database (P3) – a global compilation of lab-measured rock properties, Earth Syst. Sci. Data, 12, 2485–2515, https://doi.org/10.5194/essd-12-2485-2020, 2020. a
Bergen, K. J., Johnson, P. A., de Hoop, M. V., and Beroza, G. C.: Machine learning for data-driven discovery in solid Earth geoscience, Science, 363, eaau0323, https://doi.org/10.1126/science.aau0323, 2019. a
Blöcher, G., Cacace, M., Jacquey, A. B., Zang, A., Heidbach, O., Hofmann, H., Kluge, C., and Zimmermann, G.: Evaluating micro-seismic events triggered by reservoir operations at the geothermal site of Groß Schönebeck (Germany), Rock Mech. Rock Eng., 51, 3265–3279, 2018. a
Bond, C. E., Johnson, G., and Ellis, J. F.: Structural model creation: the impact of data type and creative space on geological reasoning and interpretation, Geol. Soc. Sp., 21, 83–97, https://doi.org/10.1144/SP421.4, 2015. a
Brady, B. H. and Brown, E. T.: Rock Mechanics: For Underground Mining, Springer Science and Business Media, ISBN 10 1402020643, ISBN 13 978-1402020643, 2006. a
Cacace, M. and Jacquey, A. B.: Flexible parallel implicit modelling of coupled thermal–hydraulic–mechanical processes in fractured rocks, Solid Earth, 8, 921–941, https://doi.org/10.5194/se-8-921-2017, 2017. a, b, c
Cosenza, A., Mannina, G., Vanrolleghem, P. A., and Neumann, M. B.: Global sensitivity analysis in wastewater applications: a comprehensive comparison of different methods, Environ. Modell. Softw., 49, 40–52, 2013. a
Crisci, E., Laloui, L., and Giger, S.: Arbeitsbericht NAB 20-08 TBO Bülach Dossier IX Rock-mechanical and Geomechanical Laboratory Testing, Arbeitsbericht, National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen, https://nagra.ch/en/downloads/arbeitsbericht-nab-20-08-2/ (last access: 17 February 2025), 2021. a
Degen, D. and Cacace, M.: Effects of transient processes for thermal simulations of the Central European Basin, Geosci. Model Dev., 14, 1699–1719, https://doi.org/10.5194/gmd-14-1699-2021, 2021. a
Degen, D., Veroy, K., and Wellmann, F.: cgre-aachen/DwarfElephant: DwarfElephant 1.0 (1.0), Zenodo [code], https://doi.org/10.5281/zenodo.4074777, 2020b. a
Degen, D., Spooner, C., Scheck-Wenderoth, M., and Cacace, M.: How biased are our models? – a case study of the alpine region, Geosci. Model Dev., 14, 7133–7153, https://doi.org/10.5194/gmd-14-7133-2021, 2021a. a, b, c
Degen, D., Veroy, K., Freymark, J., Scheck-Wenderoth, M., Poulet, T., and Wellmann, F.: Global sensitivity analysis to optimize basin-scale conductive model calibration – a case study from the Upper Rhine Graben, Geothermics, 95, 102143, https://doi.org/10.1016/j.geothermics.2021.102143, 2021b. a, b, c, d, e, f
Degen, D., Veroy, K., Scheck-Wenderoth, M., and Wellmann, F.: Crustal-scale thermal models: revisiting the influence of deep boundary conditions, Environ. Earth Sci., 81, 1–16, 2022b. a
Degen, D., Caviedes Voullième, D., Buiter, S., Hendricks Franssen, H.-J., Vereecken, H., González-Nicolás, A., and Wellmann, F.: Perspectives of physics-based machine learning strategies for geoscientific applications governed by partial differential equations, Geosci. Model Dev., 16, 7375–7409, https://doi.org/10.5194/gmd-16-7375-2023, 2023. a, b, c, d, e, f, g, h, i, j, k
Degen, D., Ziegler, M., Heidbach, O., Henk, A., Reiter, K., and Wellmann, F.: Non-Intrusive Reduced Basis Code for Elastic Geomechanical Models, Zenodo [data set] and [code], https://doi.org/10.5281/zenodo.13767010, 2024. a
Desroches, J., Peyret, E., Gisolf, A., Wilcox, A., Di Giovanni, M., de Jong, A. S., Sepehri, S., Garrard, R., and Giger, S.: Stress measurement campaign in scientific deep boreholes: focus on tool and methods, in: SPWLA Annual Logging Symposium, May 2021, virtual symposium, SPWLA-2021-0056 https://doi.org/10.30632/SPWLA-2021-0056, 2021. a, b
Ellsworth, W. L.: Injection-induced earthquakes, Science, 341, 1225942, https://doi.org/10.1126/science.1225942, 2013. a
Faroughi, S. A., Pawar, N., Fernandes, C., Das, S., Kalantari, N. K., and Mahjour, S. K.: Physics-guided, physics-informed, and physics-encoded neural networks in scientific computing, arXiv [preprint], https://doi.org/10.48550/arXiv.2211.07377 2022. a, b
Fischer, K. and Henk, A.: A workflow for building and calibrating 3-D geomechanical models – a case study for a gas reservoir in the North German Basin, Solid Earth, 4, 347–355, https://doi.org/10.5194/se-4-347-2013, 2013. a, b
Gaucher, E., Schoenball, M., Heidbach, O., Zang, A., Fokker, P. A., van Wees, J.-D., and Kohl, T.: Induced seismicity in geothermal reservoirs: a review of forecasting approaches, Renew. Sust. Energ. Rev., 52, 1473–1490, 2015. a
Geuzaine, C. and Remacle, J.-F.: Gmsh: a 3-D finite element mesh generator with built-in pre-and post-processing facilities, Int. J. Numer. Meth. Eng., 79, 1309–1331, 2009. a
Gölke, M. and Coblentz, D. D.: Origins of the European regional stress field, Tectonophysics, 266, 11–24, https://doi.org/10.1016/S0040-1951(96)00180-1, 1996. a
Gonus, J., Bailey, E., Desroches, J., and Garrard, R.: Nagra technical report 22-02, TBO Stadel-3-1: Data Report, Dossier VI: Wireline Logging, Micro-hydraulic Fracturing and Pressure-meter Testing, https://nagra.ch/en/downloads/arbeitsbericht-nab-22-02-2/ (last access: 17 February 2025), 2022a. a, b
Gonus, J., Bailey, E., Desroches, J., and Garrard, R.: Nagra technical report 22-02, TBO Stadel-2-1: Data Report, Dossier VI: Wireline Logging, Micro-hydraulic Fracturing and Pressure-meter Testing, https://nagra.ch/en/downloads/arbeitsbericht-nab-22-02-2/ (last access: 17 February 2025), 2022b. a, b
Guo, M. and Hesthaven, J. S.: Data-driven reduced order modeling for time-dependent problems, Comput. Method. Appl. M., 345, 75–99, 2019. a
Guo, T., Rokoš, O., and Veroy, K.: A reduced order model for geometrically parameterized two-scale simulations of elasto-plastic microstructures under large deformations, Comput. Method. Appl. M., 418, 116467, https://doi.org/10.1016/j.cma.2023.116467, 2024. a, b, c
Henk, A.: Perspectives of geomechanical reservoir models–why stress is important, European Magazine, 4, 1–5, 2008. a
Jacquey, A. B. and Cacace, M.: GOLEM, a MOOSE-based application, Zenodo [code], https://doi.org/10.5281/zenodo.999401, 2017. a
Jordan, M. I. and Mitchell, T. M.: Machine learning: trends, perspectives, and prospects, Science, 349, 255–260, 2015. a
Kotsiantis, S. B., Zaharakis, I., and Pintelas, P.: Supervised machine learning: a review of classification techniques, Emerging Artificial Intelligence Applications in Computer Engineering, 160, 3–24, 2007. a
Kumar, A., Hu, R., and Walsh, S. D.: Development of reduced order hydro-mechanical models of fractured media, Rock Mech. Rock Eng., 55, 1–14, 2021. a
Li, Y. E., O'Malley, D., Beroza, G., Curtis, A., and Johnson, P.: Machine Learning Developments and Applications in Solid-Earth Geosciences: Fad or Future?, J. Geophys. Res.-Sol. Ea., 128, e2022JB026310, https://doi.org/10.1029/2022JB026310, 2023. a
Lindsay, A. D., Gaston, D. R., Permann, C. J., Miller, J. M., Andrš, D., Slaughter, A. E., Kong, F., Hansel, J., Carlsen, R. W., Icenhour, C., Harbour, L., Giudicelli, G. L., Stogner, R. H., German, P., Badger, J., Biswas, S., Chapuis, L., Green, C., Hales, J., Hu, T., Jiang, W., Jung, Y. S., Matthews, C., Miao, Y., Novak, A., Peterson, J. W., Prince, Z. M., Rovinelli, A., Schunert, S., Schwen, D., Spencer, B. W., Veeraraghavan, S., Recuero, A., Yushu, D., Wang, Y., Wilkins, A., and Wong, C.: 2.0 – MOOSE: enabling massively parallel multiphysics simulation, SoftwareX, 20, 101202, https://doi.org/10.1016/j.softx.2022.101202, 2022. a
Loh, W.-L.: On Latin hypercube sampling, Ann. Stat., 24, 2058–2080, 1996. a
Mahesh, B.: Machine learning algorithms-a review, International Journal of Science and Research (IJSR), 9, 381–386, 2020. a
Martin, D.: Quantifying in situ stress magnitudes and orientations for Forsmark – Formsark stage 2.2, Tech. Rep. SKB R-07-26, Swedish Nuclear Fuel and Waste Management Co, Stockholm Sweden, technical report, https://www.osti.gov/etdeweb/servlets/purl/925966 (last access: 17 February 2025), 2007. a
NAGRA: In-situ stress field in the siting regions Jura Ost, Nördlich Lägern and Zürich Nordost, NAGRA, Wettingen, NAGRA Arbeitsbericht NAB 24-19, 91 pp., https://nagra.ch/downloads/arbeitsbericht-nab-24-19 (last access: 18 June 2025), 2024. a
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library, in: Advances in Neural Information Processing Systems 32, edited by: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., and Garnett, R., Curran Associates, Inc., http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf (last access: 17 February 2025), 8024–8035, 2019. a
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.: Scikit-learn: machine learning in Python, J. Mach. Learn. Res., 12, 2825–2830, 2011. a
Permann, C. J., Gaston, D. R., AndrÅ–, D., Carlsen, R. W., Kong, F., Lindsay, A. D., Miller, J. M., Peterson, J. W., Slaughter, A. E., Stogner, R. H., and Martineau, R. C.: MOOSE: enabling massively parallel multiphysics simulation, SoftwareX, 11, 100430, https://doi.org/10.1016/j.softx.2020.100430, 2020. a
Quarteroni, A., Manzoni, A., and Negri, F.: Reduced Basis Methods for Partial Differential Equations: An Introduction, UNITEXT, Springer International Publishing, https://doi.org/10.1007/978-3-319-15431-2, 2015. a, b, c
Razavi, S. and Gupta, H. V.: What do we mean by sensitivity analysis? The need for comprehensive characterization of “global” sensitivity in Earth and environmental systems models, Water Resour. Res., 51, 3070–3092, 2015. a
Reiter, K.: Stress rotation – impact and interaction of rock stiffness and faults, Solid Earth, 12, 1287–1307, https://doi.org/10.5194/se-12-1287-2021, 2021. a
Reiter, K. and Heidbach, O.: 3-D geomechanical–numerical model of the contemporary crustal stress state in the Alberta Basin (Canada), Solid Earth, 5, 1123–1149, https://doi.org/10.5194/se-5-1123-2014, 2014. a, b, c
Röckel, L., Ahlers, S., Müller, B., Reiter, K., Heidbach, O., Henk, A., Hergert, T., and Schilling, F.: The analysis of slip tendency of major tectonic faults in Germany, Solid Earth, 13, 1087–1105, https://doi.org/10.5194/se-13-1087-2022, 2022. a
Saltelli, A.: Making best use of model evaluations to compute sensitivity indices, Comput. Phys. Commun., 145, 280–297, 2002. a
Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., and Tarantola, S.: Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index, Comput. Phys. Commun., 181, 259–270, 2010. a
Santoso, R., Degen, D., Cacace, M., and Wellmann, F.: State-of-the-art physics-based machine learning for hydro-mechanical simulation in geothermal applications, in: European Geothermal Congress, Berlin, Germany, 17–21 October 2022, https://www.researchgate.net/profile/Ryan-Santoso-2/publication/368396013_State-of-the-art_physics-based_machine_learning_for_hydro-mechanical_simulation_in_geothermal_applications/links/63 e638e5c002331f726b5401/State-of-the-art-physics-based-machine-learning-for-hydro-mechanical-simulation-in-geothermal-applications.pdf (last access: 17 February 2025, 1–10, 2022. a
Sarrazin, F., Pianosi, F., and Wagener, T.: Global sensitivity analysis of environmental models: convergence and validation, Environ. Modell. Softw., 79, 135–152, 2016. a
Schmitt, D. R., Currie, C. A., and Zhang, L.: Crustal stress determination from boreholes and rock cores: fundamental principles, Tectonophysics, 580, 1–26, 2012. a
Schulz, E., Speekenbrink, M., and Krause, A.: A tutorial on Gaussian process regression: modelling, exploring, and exploiting functions, J. Math. Psychol., 85, 1–16, 2018. a
Segall, P. and Fitzgerald, S. D.: A note on induced stress changes in hydrocarbon and geothermal reservoirs, Tectonophysics, 289, 117–128, 1998. a
Sin, G., Gernaey, K. V., Neumann, M. B., van Loosdrecht, M. C., and Gujer, W.: Global sensitivity analysis in wastewater treatment plant model applications: prioritizing sources of uncertainty, Water Res., 45, 639–651, 2011. a
Smart, K. J., Ofoegbu, G. I., Morris, A. P., McGinnis, R. N., and Ferrill, D. A.: Geomechanical modeling of hydraulic fracturing: why mechanical stratigraphy, stress state, and pre-existing structure matter, AAPG Bull., 98, 2237–2261, 2014. a
Song, X., Zhang, J., Zhan, C., Xuan, Y., Ye, M., and Xu, C.: Global sensitivity analysis in hydrological modeling: review of concepts, methods, theoretical framework, and applications, J. Hydrol., 523, 739–757, 2015. a
Tang, Y., Reed, P., Wagener, T., and van Werkhoven, K.: Comparing sensitivity analysis methods to advance lumped watershed model identification and evaluation, Hydrol. Earth Syst. Sci., 11, 793–817, https://doi.org/10.5194/hess-11-793-2007, 2007. a
Tingay, M., Heidbach, O., Davies, R., and Swarbrick, R.: Triggering of the Lusi mud eruption: earthquake versus drilling initiation, Geology, 36, 639–642, 2008. a
Vanrolleghem, P. A., Mannina, G., Cosenza, A., and Neumann, M. B.: Global sensitivity analysis for urban water quality modelling: terminology, convergence and comparison of different methods, J. Hydrol., 522, 339–352, 2015. a
Wang, Q., Hesthaven, J. S., and Ray, D.: Non-intrusive reduced order modeling of unsteady flows using artificial neural networks with application to a combustion problem, J. Comput. Phys., 384, 289–307, https://doi.org/10.1016/j.jcp.2019.01.031, 2019. a, b
Willcox, K. E., Ghattas, O., and Heimbach, P.: The imperative of physics-based modeling and inverse theory in computational science, Nature Computational Science, 1, 166–168, 2021. a
Zhao, H.: A reduced order model based on machine learning for numerical analysis: An application to geomechanics, Eng. Appl. Artif. Intel., 100, 104194, https://doi.org/10.1016/j.engappai.2021.104194, 2021. a
Ziegler, M. O. and Heidbach, O.: The 3D stress state from geomechanical–numerical modelling and its uncertainties: a case study in the Bavarian Molasse Basin, Geothermal Energy, 8, 11, https://doi.org/10.1186/s40517-020-00162-z, 2020. a, b, c
Ziegler, M. O. and Heidbach, O.: Increasing accuracy of 3-D geomechanical-numerical models, Geophys. J. Int., 237, 1093–1108, https://doi.org/10.1093/gji/ggae096, 2024. a
Ziegler, M., Reiter, K., Heidbach, O., Zang, A., Kwiatek, G., Stromeyer, D., Dahm, T., Dresen, G., and Hofmann, G.: Mining-induced stress transfer and its relation to a Mw 1.9 seismic event in an ultra-deep South African gold mine, Pure Appl. Geophys., 172, 2557–2570, 2015. a
Ziegler, M. O., Heidbach, O., Reinecker, J., Przybycin, A. M., and Scheck-Wenderoth, M.: A multi-stage 3-D stress field modelling approach exemplified in the Bavarian Molasse Basin, Solid Earth, 7, 1365–1382, https://doi.org/10.5194/se-7-1365-2016, 2016. a
Ziegler, M., Heidbach, O., Morawietz, S., and Wang, Y.: Manual of the Matlab Script FAST Calibration v2.4, WSM Technical Report, https://doi.org/10.48440/WSM.2023.002, 23-02, 2023. a
Zoback, M. D.: Reservoir Geomechanics, Cambridge University Press, https://doi.org/10.1017/cbo9780511586477, 2007. a, b
Short summary
Obtaining reliable estimates of the subsurface state distributions is essential to determine the location of, e.g., potential nuclear waste disposal sites. However, providing these is challenging since it requires solving the problem numerous times, yielding high computational cost. To overcome this, we use a physics-based machine learning method to construct surrogate models. We demonstrate how it produces physics-preserving predictions, which differentiates it from purely data-driven approaches.
Obtaining reliable estimates of the subsurface state distributions is essential to determine the...