Bergen, K. J., Johnson, P. A., de Hoop, M. V., and Beroza, G. C.: Machine learning for data-driven discovery in solid Earth geoscience, Science, 363, eaau0323,
https://doi.org/10.1126/science.aau0323, 2019.
a
Blöcher, G., Cacace, M., Jacquey, A. B., Zang, A., Heidbach, O., Hofmann, H., Kluge, C., and Zimmermann, G.: Evaluating micro-seismic events triggered by reservoir operations at the geothermal site of Groß Schönebeck (Germany), Rock Mech. Rock Eng., 51, 3265–3279, 2018. a
Bond, C. E., Johnson, G., and Ellis, J. F.: Structural model creation: the impact of data type and creative space on geological reasoning and interpretation, Geol. Soc. Sp., 21, 83–97,
https://doi.org/10.1144/SP421.4, 2015.
a
Brady, B. H. and Brown, E. T.: Rock Mechanics: For Underground Mining, Springer Science and Business Media, ISBN 10 1402020643, ISBN 13 978-1402020643, 2006. a
Cacace, M. and Jacquey, A. B.: Flexible parallel implicit modelling of coupled thermal–hydraulic–mechanical processes in fractured rocks, Solid Earth, 8, 921–941,
https://doi.org/10.5194/se-8-921-2017, 2017.
a,
b,
c
Cosenza, A., Mannina, G., Vanrolleghem, P. A., and Neumann, M. B.: Global sensitivity analysis in wastewater applications: a comprehensive comparison of different methods, Environ. Modell. Softw., 49, 40–52, 2013. a
Crisci, E., Laloui, L., and Giger, S.: Arbeitsbericht NAB 20-08 TBO Bülach Dossier IX Rock-mechanical and Geomechanical Laboratory Testing, Arbeitsbericht, National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen,
https://nagra.ch/en/downloads/arbeitsbericht-nab-20-08-2/ (last access: 17 February 2025), 2021. a
Crisci, E., Laloui, L., and Giger, S.: Nagra technical report 22-01, TBO Stadel-3-1: Data Report, Dossier IX: Rock-mechanical and Geomechanical Laboratory Testing,
https://nagra.ch/en/downloads/arbeitsbericht-nab-22-01-3/ (last access: 17 February 2025), 2022a.
a,
b,
c,
d,
e,
f
Crisci, E., Laloui, L., and Giger, S.: Nagra technical report 22-02, TBO Stadel-2-1: Data Report, Dossier IX: Rock-mechanical and Geomechanical Laboratory Testing,
https://nagra.ch/en/downloads/arbeitsbericht-nab-22-02-2/ (last access: 17 February 2025), 2022b.
a,
b,
c
Degen, D. and Wellmann, F.: Guidelines for Sensitivity Analyses in Process Simulations for Solid Earth Geosciences, EarthArXiv [preprint],
https://doi.org/10.31223/X58H83, 2024.
a,
b,
c,
d,
e
Degen, D., Veroy, K., and Wellmann, F.: Certified reduced basis method in geosciences, Computat. Geosci., 24, 241–259, 2020a.
a,
b
Degen, D., Spooner, C., Scheck-Wenderoth, M., and Cacace, M.: How biased are our models? – a case study of the alpine region, Geosci. Model Dev., 14, 7133–7153,
https://doi.org/10.5194/gmd-14-7133-2021, 2021a.
a,
b,
c
Degen, D., Veroy, K., Freymark, J., Scheck-Wenderoth, M., Poulet, T., and Wellmann, F.: Global sensitivity analysis to optimize basin-scale conductive model calibration – a case study from the Upper Rhine Graben, Geothermics, 95, 102143,
https://doi.org/10.1016/j.geothermics.2021.102143, 2021b.
a,
b,
c,
d,
e,
f
Degen, D., Cacace, M., and Wellmann, F.: 3D multi-physics uncertainty quantification using physics-based machine learning, Sci. Rep., 12, 17491,
https://doi.org/10.1038/s41598-022-21739-7, 2022a.
a,
b,
c,
d,
e,
f
Degen, D., Veroy, K., Scheck-Wenderoth, M., and Wellmann, F.: Crustal-scale thermal models: revisiting the influence of deep boundary conditions, Environ. Earth Sci., 81, 1–16, 2022b. a
Degen, D., Veroy, K., and Wellmann, F.: Uncertainty quantification for basin-scale geothermal conduction models, Sci. Rep., 12, 1–10, 2022c.
a,
b,
c
Degen, D., Caviedes Voullième, D., Buiter, S., Hendricks Franssen, H.-J., Vereecken, H., González-Nicolás, A., and Wellmann, F.: Perspectives of physics-based machine learning strategies for geoscientific applications governed by partial differential equations, Geosci. Model Dev., 16, 7375–7409,
https://doi.org/10.5194/gmd-16-7375-2023, 2023.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j,
k
Degen, D., Ziegler, M., Heidbach, O., Henk, A., Reiter, K., and Wellmann, F.: Non-Intrusive Reduced Basis Code for Elastic Geomechanical Models, Zenodo [data set] and [code],
https://doi.org/10.5281/zenodo.13767010, 2024.
a
Desroches, J., Peyret, E., Gisolf, A., Wilcox, A., Di Giovanni, M., de Jong, A. S., Sepehri, S., Garrard, R., and Giger, S.: Stress measurement campaign in scientific deep boreholes: focus on tool and methods, in: SPWLA Annual Logging Symposium, May 2021, virtual symposium, SPWLA-2021-0056
https://doi.org/10.30632/SPWLA-2021-0056, 2021.
a,
b
Faroughi, S. A., Pawar, N., Fernandes, C., Das, S., Kalantari, N. K., and Mahjour, S. K.: Physics-guided, physics-informed, and physics-encoded neural networks in scientific computing, arXiv [preprint],
https://doi.org/10.48550/arXiv.2211.07377 2022.
a,
b
Fischer, K. and Henk, A.: A workflow for building and calibrating 3-D geomechanical models – a case study for a gas reservoir in the North German Basin, Solid Earth, 4, 347–355,
https://doi.org/10.5194/se-4-347-2013, 2013.
a,
b
Gaucher, E., Schoenball, M., Heidbach, O., Zang, A., Fokker, P. A., van Wees, J.-D., and Kohl, T.: Induced seismicity in geothermal reservoirs: a review of forecasting approaches, Renew. Sust. Energ. Rev., 52, 1473–1490, 2015. a
Geuzaine, C. and Remacle, J.-F.: Gmsh: a 3-D finite element mesh generator with built-in pre-and post-processing facilities, Int. J. Numer. Meth. Eng., 79, 1309–1331, 2009. a
Gonus, J., Bailey, E., Desroches, J., and Garrard, R.: Nagra technical report 22-02, TBO Stadel-3-1: Data Report, Dossier VI: Wireline Logging, Micro-hydraulic Fracturing and Pressure-meter Testing,
https://nagra.ch/en/downloads/arbeitsbericht-nab-22-02-2/ (last access: 17 February 2025), 2022a.
a,
b
Gonus, J., Bailey, E., Desroches, J., and Garrard, R.: Nagra technical report 22-02, TBO Stadel-2-1: Data Report, Dossier VI: Wireline Logging, Micro-hydraulic Fracturing and Pressure-meter Testing,
https://nagra.ch/en/downloads/arbeitsbericht-nab-22-02-2/ (last access: 17 February 2025), 2022b.
a,
b
Gonus, J., Bailey, E., Desroches, J., and Garrard, R.: Nagra technical report 22-04, TBO Bachs-1-1: Data Report, Dossier VI: Wireline Logging, Micro-hydraulic Fracturing and Pressure-meter Testing,
https://nagra.ch/en/downloads/arbeitsbericht-nab-22-04-2/ (last access: 17 February 2025), 2023.
a,
b
Guo, T., Rokoš, O., and Veroy, K.: A reduced order model for geometrically parameterized two-scale simulations of elasto-plastic microstructures under large deformations, Comput. Method. Appl. M., 418, 116467,
https://doi.org/10.1016/j.cma.2023.116467, 2024.
a,
b,
c
Heidbach, O., Rajabi, M., Cui, X., Fuchs, K., Müller, B., Reinecker, J., Reiter, K., Tingay, M., Wenzel, F., Xie, F., Ziegler, M. O., Zoback, M.-L., and Zoback, M.: The World Stress Map database release 2016: crustal stress pattern across scales, Tectonophysics, 744, 484–498, 2018.
a,
b
Henk, A.: Perspectives of geomechanical reservoir models–why stress is important, European Magazine, 4, 1–5, 2008. a
Hergert, T., Heidbach, O., Reiter, K., Giger, S. B., and Marschall, P.: Stress field sensitivity analysis in a sedimentary sequence of the Alpine foreland, northern Switzerland, Solid Earth, 6, 533–552,
https://doi.org/10.5194/se-6-533-2015, 2015.
a,
b,
c,
d,
e,
f
Hesthaven, J. and Ubbiali, S.: Non-intrusive reduced order modeling of nonlinear problems using neural networks, J. Comput. Phys., 363, 55–78,
https://doi.org/10.1016/j.jcp.2018.02.037, 2018.
a,
b,
c,
d,
e,
f,
g,
h
Hesthaven, J. S., Rozza, G., and Stamm, B.: Certified reduced basis methods for parametrized partial differential equations, SpringerBriefs in Mathematics, Springer,
https://doi.org/10.1007/978-3-319-22470-1, 2016.
a,
b,
c,
d,
e
Lecampion, B. and Lei, T.: Reconstructing the 3d initial stress state over reservoir geo-mechanics model from local measure-ments and geological priors: a bayesian approach, Schlumberger J. Model. Des. Simul., 1, 100–104, 2010.
a,
b
Li, Y. E., O'Malley, D., Beroza, G., Curtis, A., and Johnson, P.: Machine Learning Developments and Applications in Solid-Earth Geosciences: Fad or Future?, J. Geophys. Res.-Sol. Ea., 128, e2022JB026310,
https://doi.org/10.1029/2022JB026310, 2023.
a
Lindsay, A. D., Gaston, D. R., Permann, C. J., Miller, J. M., Andrš, D., Slaughter, A. E., Kong, F., Hansel, J., Carlsen, R. W., Icenhour, C., Harbour, L., Giudicelli, G. L., Stogner, R. H., German, P., Badger, J., Biswas, S., Chapuis, L., Green, C., Hales, J., Hu, T., Jiang, W., Jung, Y. S., Matthews, C., Miao, Y., Novak, A., Peterson, J. W., Prince, Z. M., Rovinelli, A., Schunert, S., Schwen, D., Spencer, B. W., Veeraraghavan, S., Recuero, A., Yushu, D., Wang, Y., Wilkins, A., and Wong, C.: 2.0 – MOOSE: enabling massively parallel multiphysics simulation, SoftwareX, 20, 101202,
https://doi.org/10.1016/j.softx.2022.101202, 2022.
a
Loh, W.-L.: On Latin hypercube sampling, Ann. Stat., 24, 2058–2080, 1996. a
Mahesh, B.: Machine learning algorithms-a review, International Journal of Science and Research (IJSR), 9, 381–386, 2020. a
Martin, D.: Quantifying in situ stress magnitudes and orientations for Forsmark – Formsark stage 2.2, Tech. Rep. SKB R-07-26, Swedish Nuclear Fuel and Waste Management Co, Stockholm Sweden, technical report,
https://www.osti.gov/etdeweb/servlets/purl/925966 (last access: 17 February 2025), 2007. a
Morawietz, S., Heidbach, O., Reiter, K., Ziegler, M., Rajabi, M., Zimmermann, G., Müller, B., and Tingay, M.: An open-access stress magnitude database for Germany and adjacent regions, Geothermal Energy, 8, 1–39, 2020.
a,
b,
c,
d
NAGRA: In-situ stress field in the siting regions Jura Ost, Nördlich Lägern and Zürich Nordost, NAGRA, Wettingen, NAGRA Arbeitsbericht NAB 24-19, 91 pp.,
https://nagra.ch/downloads/arbeitsbericht-nab-24-19 (last access: 18 June 2025), 2024. a
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library, in: Advances in Neural Information Processing Systems 32, edited by: Wallach, H., Larochelle, H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., and Garnett, R., Curran Associates, Inc.,
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf (last access: 17 February 2025), 8024–8035, 2019.
a
Permann, C. J., Gaston, D. R., AndrÅ–, D., Carlsen, R. W., Kong, F., Lindsay, A. D., Miller, J. M., Peterson, J. W., Slaughter, A. E., Stogner, R. H., and Martineau, R. C.: MOOSE: enabling massively parallel multiphysics simulation, SoftwareX, 11, 100430,
https://doi.org/10.1016/j.softx.2020.100430, 2020.
a
Quarteroni, A., Manzoni, A., and Negri, F.: Reduced Basis Methods for Partial Differential Equations: An Introduction, UNITEXT, Springer International Publishing,
https://doi.org/10.1007/978-3-319-15431-2, 2015.
a,
b,
c
Raissi, M., Perdikaris, P., and Karniadakis, G. E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys., 378, 686–707, 2019.
a,
b
Razavi, S. and Gupta, H. V.: What do we mean by sensitivity analysis? The need for comprehensive characterization of “global” sensitivity in Earth and environmental systems models, Water Resour. Res., 51, 3070–3092, 2015. a
Reiter, K. and Heidbach, O.: 3-D geomechanical–numerical model of the contemporary crustal stress state in the Alberta Basin (Canada), Solid Earth, 5, 1123–1149,
https://doi.org/10.5194/se-5-1123-2014, 2014.
a,
b,
c
Röckel, L., Ahlers, S., Müller, B., Reiter, K., Heidbach, O., Henk, A., Hergert, T., and Schilling, F.: The analysis of slip tendency of major tectonic faults in Germany, Solid Earth, 13, 1087–1105,
https://doi.org/10.5194/se-13-1087-2022, 2022.
a
Rozza, G., Huynh, D. B. P., and Patera, A. T.: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations: application to transport and continuum mechanics, Arch. Comput. Method. E., 15, 229–275, 2008.
a,
b
Saltelli, A.: Making best use of model evaluations to compute sensitivity indices, Comput. Phys. Commun., 145, 280–297, 2002. a
Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., and Tarantola, S.: Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index, Comput. Phys. Commun., 181, 259–270, 2010. a
Saltelli, A., Aleksankina, K., Becker, W., Fennell, P., Ferretti, F., Holst, N., Li, S., and Wu, Q.: Why so many published sensitivity analyses are false: a systematic review of sensitivity analysis practices, Environ. Modell. Softw., 114, 29–39, 2019.
a,
b,
c
Santoso, R., Degen, D., Cacace, M., and Wellmann, F.: State-of-the-art physics-based machine learning for hydro-mechanical simulation in geothermal applications, in: European Geothermal Congress, Berlin, Germany, 17–21 October 2022,
https://www.researchgate.net/profile/Ryan-Santoso-2/publication/368396013_State-of-the-art_physics-based_machine_learning_for_hydro-mechanical_simulation_in_geothermal_applications/links/63 e638e5c002331f726b5401/State-of-the-art-physics-based-machine-learning-for-hydro-mechanical-simulation-in-geothermal-applications.pdf (last access: 17 February 2025, 1–10, 2022.
a
Schulz, E., Speekenbrink, M., and Krause, A.: A tutorial on Gaussian process regression: modelling, exploring, and exploiting functions, J. Math. Psychol., 85, 1–16, 2018. a
Sin, G., Gernaey, K. V., Neumann, M. B., van Loosdrecht, M. C., and Gujer, W.: Global sensitivity analysis in wastewater treatment plant model applications: prioritizing sources of uncertainty, Water Res., 45, 639–651, 2011. a
Singha, D. K. and Chatterjee, R.: Geomechanical modeling using finite element method for prediction of in-situ stress in Krishna–Godavari basin, India, Int. J. Rock Mech. Min., 73, 15–27, 2015.
a,
b,
c
Smart, K. J., Ofoegbu, G. I., Morris, A. P., McGinnis, R. N., and Ferrill, D. A.: Geomechanical modeling of hydraulic fracturing: why mechanical stratigraphy, stress state, and pre-existing structure matter, AAPG Bull., 98, 2237–2261, 2014. a
Sobol, I. M.: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates, Math. Comput. Simulat., 55, 271–280, 2001.
a,
b,
c
Song, X., Zhang, J., Zhan, C., Xuan, Y., Ye, M., and Xu, C.: Global sensitivity analysis in hydrological modeling: review of concepts, methods, theoretical framework, and applications, J. Hydrol., 523, 739–757, 2015. a
Spillmann, T., Schoenball, M., Tanner, R., and Diehl, T.: Nagra tec
hnical report 22-26, Ergänzung Schwachbebennetz in der Nordschweiz: Installation Bohrlochseismometer Bülach-1-1,
https://nagra.ch/en/downloads/arbeitsbericht-nab-22-26-3/ (last access: 17 February 2025), 2022.
a,
b
Swischuk, R., Mainini, L., Peherstorfer, B., and Willcox, K.: Projection-based model reduction: formulations for physics-based machine learning, Comput. Fluids, 179, 704–717,
https://doi.org/10.1016/j.compfluid.2018.07.021, 2019.
a,
b,
c,
d,
e
Tang, Y., Reed, P., Wagener, T., and van Werkhoven, K.: Comparing sensitivity analysis methods to advance lumped watershed model identification and evaluation, Hydrol. Earth Syst. Sci., 11, 793–817,
https://doi.org/10.5194/hess-11-793-2007, 2007.
a
Tingay, M., Heidbach, O., Davies, R., and Swarbrick, R.: Triggering of the Lusi mud eruption: earthquake versus drilling initiation, Geology, 36, 639–642, 2008. a
Vanrolleghem, P. A., Mannina, G., Cosenza, A., and Neumann, M. B.: Global sensitivity analysis for urban water quality modelling: terminology, convergence and comparison of different methods, J. Hydrol., 522, 339–352, 2015. a
van Wees, J.-D., Osinga, S., Van Thienen-Visser, K., and Fokker, P. A.: Reservoir creep and induced seismicity: inferences from geomechanical modeling of gas depletion in the Groningen field, Geophys. J. Int., 212, 1487–1497, 2018.
a,
b
Wainwright, H. M., Finsterle, S., Jung, Y., Zhou, Q., and Birkholzer, J. T.: Making sense of global sensitivity analyses, Comput. Geosci., 65, 84–94, 2014.
a,
b
Wang, Q., Hesthaven, J. S., and Ray, D.: Non-intrusive reduced order modeling of unsteady flows using artificial neural networks with application to a combustion problem, J. Comput. Phys., 384, 289–307,
https://doi.org/10.1016/j.jcp.2019.01.031, 2019.
a,
b
Willard, J., Jia, X., Xu, S., Steinbach, M., and Kumar, V.: Integrating scientific knowledge with machine learning for engineering and environmental systems, ACM Comput. Surv., 55, 1–37, 2022.
a,
b
Ziegler, M. O.: Rock properties and modelled stress state uncertainties: a study of variability and dependence, Rock Mech. Rock Eng., 55, 4549–4564, 2022.
a,
b
Ziegler, M. O. and Heidbach, O.: The 3D stress state from geomechanical–numerical modelling and its uncertainties: a case study in the Bavarian Molasse Basin, Geothermal Energy, 8, 11,
https://doi.org/10.1186/s40517-020-00162-z, 2020.
a,
b,
c
Ziegler, M., Reiter, K., Heidbach, O., Zang, A., Kwiatek, G., Stromeyer, D., Dahm, T., Dresen, G., and Hofmann, G.: Mining-induced stress transfer and its relation to a Mw 1.9 seismic event in an ultra-deep South African gold mine, Pure Appl. Geophys., 172, 2557–2570, 2015. a
Ziegler, M. O., Heidbach, O., Reinecker, J., Przybycin, A. M., and Scheck-Wenderoth, M.: A multi-stage 3-D stress field modelling approach exemplified in the Bavarian Molasse Basin, Solid Earth, 7, 1365–1382,
https://doi.org/10.5194/se-7-1365-2016, 2016.
a
Ziegler, M., Heidbach, O., Morawietz, S., and Wang, Y.: Manual of the Matlab Script FAST Calibration v2.4, WSM Technical Report,
https://doi.org/10.48440/WSM.2023.002, 23-02, 2023.
a