Articles | Volume 10, issue 2
https://doi.org/10.5194/se-10-379-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-10-379-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Calibrating a new attenuation curve for the Dead Sea region using surface wave dispersion surveys in sites damaged by the 1927 Jericho earthquake
Yaniv Darvasi
CORRESPONDING AUTHOR
The Fredy & Nadine Herrmann Institute of Earth Sciences, The Hebrew
University of Jerusalem, 9190401 Jerusalem, Israel
Amotz Agnon
The Fredy & Nadine Herrmann Institute of Earth Sciences, The Hebrew
University of Jerusalem, 9190401 Jerusalem, Israel
Related authors
No articles found.
Mariana Belferman, Amotz Agnon, Regina Katsman, and Zvi Ben-Avraham
Nat. Hazards Earth Syst. Sci., 22, 2553–2565, https://doi.org/10.5194/nhess-22-2553-2022, https://doi.org/10.5194/nhess-22-2553-2022, 2022
Short summary
Short summary
Internal fluid pressure in pores leads to breaking. With this mechanical principle and a correlation between historical water level changes and seismicity, we explore possible variants for water level reconstruction in the Dead Sea basin. Using the best-correlated variant, an additional indication is established regarding the location of historical earthquakes. This leads us to propose a certain forecast for the next earthquake in view of the fast and persistent dropping level of the Dead Sea.
Zvika Orr, Tehila Erblich, Shifra Unger, Osnat Barnea, Moshe Weinstein, and Amotz Agnon
Nat. Hazards Earth Syst. Sci., 21, 317–337, https://doi.org/10.5194/nhess-21-317-2021, https://doi.org/10.5194/nhess-21-317-2021, 2021
I. Neugebauer, M. J. Schwab, N. D. Waldmann, R. Tjallingii, U. Frank, E. Hadzhiivanova, R. Naumann, N. Taha, A. Agnon, Y. Enzel, and A. Brauer
Clim. Past, 12, 75–90, https://doi.org/10.5194/cp-12-75-2016, https://doi.org/10.5194/cp-12-75-2016, 2016
Short summary
Short summary
Micro-facies changes and elemental variations in deep Dead Sea sediments are used to reconstruct relative lake level changes for the early last glacial period. The results indicate a close link of hydroclimatic variability in the Levant to North Atlantic-Mediterranean climates during the time of the build-up of Northern Hemisphere ice shields. First petrographic analyses of gravels in the deep core question the recent hypothesis of a Dead Sea dry-down at the end of the last interglacial.
Related subject area
Subject area: The evolving Earth surface | Editorial team: Seismics, seismology, paleoseismology, geoelectrics, and electromagnetics | Discipline: Geophysics
Seismic wave modeling of fluid-saturated fractured porous rock: including fluid pressure diffusion effects of discretely distributed large-scale fractures
Integration of automatic implicit geological modelling in deterministic geophysical inversion
Ground motion emissions due to wind turbines: observations, acoustic coupling, and attenuation relationships
Seismic amplitude response to internal heterogeneity of mass-transport deposits
Investigation of the effects of surrounding media on the distributed acoustic sensing of a helically wound fibre-optic cable with application to the New Afton deposit, British Columbia
Geophysical analysis of an area affected by subsurface dissolution – case study of an inland salt marsh in northern Thuringia, Germany
An efficient probabilistic workflow for estimating induced earthquake parameters in 3D heterogeneous media
Dynamic motion monitoring of a 3.6 km long steel rod in a borehole during cold-water injection with distributed fiber-optic sensing
On the comparison of strain measurements from fibre optics with a dense seismometer array at Etna volcano (Italy)
The impact of seismic interpretation methods on the analysis of faults: a case study from the Snøhvit field, Barents Sea
Integrated land and water-borne geophysical surveys shed light on the sudden drying of large karst lakes in southern Mexico
On the morphology and amplitude of 2D and 3D thermal anomalies induced by buoyancy-driven flow within and around fault zones
Characterizing a decametre-scale granitic reservoir using ground-penetrating radar and seismic methods
Upper Jurassic carbonate buildups in the Miechów Trough, southern Poland – insights from seismic data interpretations
New regional stratigraphic insights from a 3D geological model of the Nasia sub-basin, Ghana, developed for hydrogeological purposes and based on reprocessed B-field data originally collected for mineral exploration
Characterisation of subglacial water using a constrained transdimensional Bayesian transient electromagnetic inversion
Subsurface characterization of a quick-clay vulnerable area using near-surface geophysics and hydrological modelling
Electrical formation factor of clean sand from laboratory measurements and digital rock physics
Drill bit noise imaging without pilot trace, a near-surface interferometry example
Shear wave reflection seismic yields subsurface dissolution and subrosion patterns: application to the Ghor Al-Haditha sinkhole site, Dead Sea, Jordan
Yingkai Qi, Xuehua Chen, Qingwei Zhao, Xin Luo, and Chunqiang Feng
Solid Earth, 15, 535–554, https://doi.org/10.5194/se-15-535-2024, https://doi.org/10.5194/se-15-535-2024, 2024
Short summary
Short summary
Fractures tend to dominate the mechanical and hydraulic properties of porous rock and impact the scattering characteristics of passing waves. This study takes into account the poroelastic effects of fractures in numerical modeling. Our results demonstrate that scattered waves from complex fracture systems are strongly affected by the fractures.
Jérémie Giraud, Guillaume Caumon, Lachlan Grose, Vitaliy Ogarko, and Paul Cupillard
Solid Earth, 15, 63–89, https://doi.org/10.5194/se-15-63-2024, https://doi.org/10.5194/se-15-63-2024, 2024
Short summary
Short summary
We present and test an algorithm that integrates geological modelling into deterministic geophysical inversion. This is motivated by the need to model the Earth using all available data and to reconcile the different types of measurements. We introduce the methodology and test our algorithm using two idealised scenarios. Results suggest that the method we propose is effectively capable of improving the models recovered by geophysical inversion and may be applied in real-world scenarios.
Laura Gaßner and Joachim Ritter
Solid Earth, 14, 785–803, https://doi.org/10.5194/se-14-785-2023, https://doi.org/10.5194/se-14-785-2023, 2023
Short summary
Short summary
In this work we analyze signals emitted from wind turbines. They induce sound as well as ground motion waves which propagate through the subsurface and are registered by sensitive instruments. In our data we observe when these signals are present and how strong they are. Some signals are present in ground motion and sound data, providing the opportunity to study similarities and better characterize emissions. Furthermore, we study the amplitudes with distance to improve the signal prediction.
Jonathan Ford, Angelo Camerlenghi, Francesca Zolezzi, and Marilena Calarco
Solid Earth, 14, 137–151, https://doi.org/10.5194/se-14-137-2023, https://doi.org/10.5194/se-14-137-2023, 2023
Short summary
Short summary
Submarine landslides commonly appear as low-amplitude zones in seismic data. Previous studies have attributed this to a lack of preserved internal structure. We use seismic modelling to show that an amplitude reduction can be generated even when there is still metre-scale internal structure, by simply deforming the bedding. This has implications for interpreting failure type, for core-seismic correlation and for discriminating landslides from other "transparent" phenomena such as free gas.
Sepidehalsadat Hendi, Mostafa Gorjian, Gilles Bellefleur, Christopher D. Hawkes, and Don White
Solid Earth, 14, 89–99, https://doi.org/10.5194/se-14-89-2023, https://doi.org/10.5194/se-14-89-2023, 2023
Short summary
Short summary
In this study, the modelling results are used to help understand the performance of a helically wound fibre (HWC) from a field study at the New Afton mine, British Columbia. We introduce the numerical 3D model to model strain values in HWC to design more effective HWC system. The DAS dataset at New Afton, interpreted in the context of our modelling, serves as a practical demonstration of the extreme effects of surrounding media and coupling on HWC data quality.
Sonja H. Wadas, Hermann Buness, Raphael Rochlitz, Peter Skiba, Thomas Günther, Michael Grinat, David C. Tanner, Ulrich Polom, Gerald Gabriel, and Charlotte M. Krawczyk
Solid Earth, 13, 1673–1696, https://doi.org/10.5194/se-13-1673-2022, https://doi.org/10.5194/se-13-1673-2022, 2022
Short summary
Short summary
The dissolution of rocks poses a severe hazard because it can cause subsidence and sinkhole formation. Based on results from our study area in Thuringia, Germany, using P- and SH-wave reflection seismics, electrical resistivity and electromagnetic methods, and gravimetry, we develop a geophysical investigation workflow. This workflow enables identifying the initial triggers of subsurface dissolution and its control factors, such as structural constraints, fluid pathways, and mass movement.
La Ode Marzujriban Masfara, Thomas Cullison, and Cornelis Weemstra
Solid Earth, 13, 1309–1325, https://doi.org/10.5194/se-13-1309-2022, https://doi.org/10.5194/se-13-1309-2022, 2022
Short summary
Short summary
Induced earthquakes are natural phenomena in which the events are associated with human activities. Although the magnitudes of these events are mostly smaller than tectonic events, in some cases, the magnitudes can be high enough to damage buildings near the event's location. To study these (high-magnitude) induced events, we developed a workflow in which the recorded data from an earthquake are used to describe the source and monitor the area for other (potentially high-magnitude) earthquakes.
Martin Peter Lipus, Felix Schölderle, Thomas Reinsch, Christopher Wollin, Charlotte Krawczyk, Daniela Pfrang, and Kai Zosseder
Solid Earth, 13, 161–176, https://doi.org/10.5194/se-13-161-2022, https://doi.org/10.5194/se-13-161-2022, 2022
Short summary
Short summary
A fiber-optic cable was installed along a freely suspended rod in a deep geothermal well in Munich, Germany. A cold-water injection test was monitored with fiber-optic distributed acoustic and temperature sensing. During injection, we observe vibrational events in the lower part of the well. On the basis of a mechanical model, we conclude that the vibrational events are caused by thermal contraction of the rod. The results illustrate potential artifacts when analyzing downhole acoustic data.
Gilda Currenti, Philippe Jousset, Rosalba Napoli, Charlotte Krawczyk, and Michael Weber
Solid Earth, 12, 993–1003, https://doi.org/10.5194/se-12-993-2021, https://doi.org/10.5194/se-12-993-2021, 2021
Short summary
Short summary
We investigate the capability of distributed acoustic sensing (DAS) to record dynamic strain changes related to Etna volcano activity in 2019. To validate the DAS measurements, we compute strain estimates from seismic signals recorded by a dense broadband array. A general good agreement is found between array-derived strain and DAS measurements along the fibre optic cable. Localised short wavelength discrepancies highlight small-scale structural heterogeneities in the investigated area.
Jennifer E. Cunningham, Nestor Cardozo, Chris Townsend, and Richard H. T. Callow
Solid Earth, 12, 741–764, https://doi.org/10.5194/se-12-741-2021, https://doi.org/10.5194/se-12-741-2021, 2021
Short summary
Short summary
This work investigates the impact of commonly used seismic interpretation methods on the analysis of faults. Fault analysis refers to fault length, displacement, and the impact these factors have on geological modelling and hydrocarbon volume calculation workflows. This research was conducted to give geoscientists a better understanding of the importance of interpretation methods and the impact of unsuitable methology on geological analyses.
Matthias Bücker, Adrián Flores Orozco, Jakob Gallistl, Matthias Steiner, Lukas Aigner, Johannes Hoppenbrock, Ruth Glebe, Wendy Morales Barrera, Carlos Pita de la Paz, César Emilio García García, José Alberto Razo Pérez, Johannes Buckel, Andreas Hördt, Antje Schwalb, and Liseth Pérez
Solid Earth, 12, 439–461, https://doi.org/10.5194/se-12-439-2021, https://doi.org/10.5194/se-12-439-2021, 2021
Short summary
Short summary
We use seismic, electromagnetic, and geoelectrical methods to assess sediment thickness and lake-bottom geology of two karst lakes. An unexpected drainage event provided us with the unusual opportunity to compare water-borne measurements with measurements carried out on the dry lake floor. The resulting data set does not only provide insight into the specific lake-bottom geology of the studied lakes but also evidences the potential and limitations of the employed field methods.
Laurent Guillou-Frottier, Hugo Duwiquet, Gaëtan Launay, Audrey Taillefer, Vincent Roche, and Gaétan Link
Solid Earth, 11, 1571–1595, https://doi.org/10.5194/se-11-1571-2020, https://doi.org/10.5194/se-11-1571-2020, 2020
Short summary
Short summary
In the first kilometers of the subsurface, temperature anomalies due to heat conduction rarely exceed 20–30°C. However, when deep hot fluids in the shallow crust flow upwards, for example through permeable fault zones, hydrothermal convection can form high-temperature geothermal reservoirs. Numerical modeling of hydrothermal convection shows that vertical fault zones may host funnel-shaped, kilometer-sized geothermal reservoirs whose exploitation would not need drilling at depths below 2–3 km.
Joseph Doetsch, Hannes Krietsch, Cedric Schmelzbach, Mohammadreza Jalali, Valentin Gischig, Linus Villiger, Florian Amann, and Hansruedi Maurer
Solid Earth, 11, 1441–1455, https://doi.org/10.5194/se-11-1441-2020, https://doi.org/10.5194/se-11-1441-2020, 2020
Łukasz Słonka and Piotr Krzywiec
Solid Earth, 11, 1097–1119, https://doi.org/10.5194/se-11-1097-2020, https://doi.org/10.5194/se-11-1097-2020, 2020
Short summary
Short summary
This paper shows the results of seismic interpretations that document the presence of large Upper Jurassic carbonate buildups in the Miechów Trough (S Poland). Our work fills the gap in recognition of the Upper Jurassic carbonate depositional system of southern Poland. The results also provide an excellent generic reference point, showing how and to what extent seismic data can be used for studies of carbonate depositional systems, in particular for the identification of the carbonate buildups.
Elikplim Abla Dzikunoo, Giulio Vignoli, Flemming Jørgensen, Sandow Mark Yidana, and Bruce Banoeng-Yakubo
Solid Earth, 11, 349–361, https://doi.org/10.5194/se-11-349-2020, https://doi.org/10.5194/se-11-349-2020, 2020
Short summary
Short summary
Time-domain electromagnetic (TEM) geophysics data originally collected for mining purposes were reprocessed and inverted. The new inversions were used to construct a 3D model of the subsurface geology to facilitate hydrogeological investigations within a DANIDA-funded project. Improved resolutions from the TEM enabled the identification of possible paleovalleys of glacial origin, suggesting the need for a reevaluation of the current lithostratigraphy of the Voltaian sedimentary basin.
Siobhan F. Killingbeck, Adam D. Booth, Philip W. Livermore, C. Richard Bates, and Landis J. West
Solid Earth, 11, 75–94, https://doi.org/10.5194/se-11-75-2020, https://doi.org/10.5194/se-11-75-2020, 2020
Short summary
Short summary
This paper presents MuLTI-TEM, a Bayesian inversion tool for inverting TEM data with independent depth constraints to provide statistical properties and uncertainty analysis of the resistivity profile with depth. MuLTI-TEM is highly versatile, being compatible with most TEM survey designs, ground-based or airborne, along with the depth constraints being provided from any external source. Here, we present an application of MuLTI-TEM to characterise the subglacial water under a Norwegian glacier.
Silvia Salas-Romero, Alireza Malehmir, Ian Snowball, and Benoît Dessirier
Solid Earth, 10, 1685–1705, https://doi.org/10.5194/se-10-1685-2019, https://doi.org/10.5194/se-10-1685-2019, 2019
Short summary
Short summary
Land–river reflection seismic, hydrogeological modelling, and magnetic investigations in an area prone to quick-clay landslides in SW Sweden provide a detailed description of the subsurface structures, such as undulating fractured bedrock, a sedimentary sequence of intercalating leached and unleached clay, and coarse-grained deposits. Hydrological properties of the coarse-grained layer help us understand its role in the leaching process that leads to the formation of quick clays in the area.
Mohammed Ali Garba, Stephanie Vialle, Mahyar Madadi, Boris Gurevich, and Maxim Lebedev
Solid Earth, 10, 1505–1517, https://doi.org/10.5194/se-10-1505-2019, https://doi.org/10.5194/se-10-1505-2019, 2019
Mehdi Asgharzadeh, Ashley Grant, Andrej Bona, and Milovan Urosevic
Solid Earth, 10, 1015–1023, https://doi.org/10.5194/se-10-1015-2019, https://doi.org/10.5194/se-10-1015-2019, 2019
Short summary
Short summary
Data acquisition costs mainly borne by expensive vibrator machines (i.e., deployment, operations, and maintenance) can be regarded as the main impediment to wide application of seismic methods in the mining industry. Here, we show that drill bit noise can be used to image the shallow subsurface when it is optimally acquired and processed. Drill bit imaging methods have many applications in small scale near-surface projects, such as those in mining exploration and geotechnical investigation.
Ulrich Polom, Hussam Alrshdan, Djamil Al-Halbouni, Eoghan P. Holohan, Torsten Dahm, Ali Sawarieh, Mohamad Y. Atallah, and Charlotte M. Krawczyk
Solid Earth, 9, 1079–1098, https://doi.org/10.5194/se-9-1079-2018, https://doi.org/10.5194/se-9-1079-2018, 2018
Short summary
Short summary
The alluvial fan of Ghor Al-Haditha (Dead Sea) is affected by subsidence and sinkholes. Different models and hypothetical processes have been suggested in the past; high-resolution shear wave reflection surveys carried out in 2013 and 2014 showed the absence of evidence for a massive shallow salt layer as formerly suggested. Thus, a new process interpretation is proposed based on both the dissolution and physical erosion of Dead Sea mud layers.
Cited articles
Abel, F.-M.: Le recent tremblement de terre en Palestine, Rev. Biblique,
36, 571–578, 1927.
Abrahamson, N. A., Silva, W. J., and Kamai, R.: Summary of the ASK14 ground
motion relation for active crustal regions, Earthq. Spectra, 30,
1025–1055, 2014.
Aguirre, J. and Irikura, K.: Nonlinearity, liquefaction, and velocity
variation of soft soil layers in Port Island, Kobe, during the Hyogo-ken
Nanbu earthquake, B. Seismol. Soc. Am., 87, 1244–1258, 1997.
Aki, K.: Local site effect on ground motion, Earthq. Eng. Soil Dyn. II Recent
Adv. Ground-Motion Eval., 1988.
Aki, K. and Richards, P. G.: Quantitative seismology, Mill Valley, Calif: University Science Book, 2002.
Aksinenko, T. and Hofstetter, A.: 1-D semi-empirical modeling of the
subsurface across Israel for site effect evaluations, State of Israel GII
Report ES_17_2012, Ministry of Energy and Water Resources,
2012.
Ambraseys, N.: Earthquakes in the Mediterranean and Middle East: a
multidisciplinary study of seismicity up to 1900, Cambridge University
Press, Cambridge, 2009.
Ambraseys, N. N. and Melville, C. P.: An analysis of the eastern Mediterranean
earthquake of 20 May 1202, in: Historical Seismograms and
Earthquakes of the World, edited by: Lee, W., Academic Press, San Diego, CA, 181–200, 1988.
Amiran, D. H. K.: A revised earthquake-catalogue of Palestine, Isr. Explor.
J., 2, 48–65, 1952.
Arieh, E.: Seismicity of Israel and adjacent areas, Geol. Surv. Isr. Bull.,
43, 10–14, 1967.
Avni, R.: The 1927 Jericho earthquake, comprehensive macroseismic analysis
based on contemporary sources, Ben-Gurion Univ. Negev, Beersheba, 203, 1999.
Bakun, W. H. U. and Wentworth, C. M.: Estimating earthquake location and
magnitude from seismic intensity data, B. Seismol. Soc. Am.,
87, 1502–1521, 1997.
Ben-Menahem, A., Nur, A., and Vered, M.: Tectonics, seismicity and structure
of the Afro-Eurasian junction – the breaking of an incoherent plate, Phys.
Earth Planet. Inter., 12, 1–50, 1976.
Ben-Menahem, A.: Four thousand years of seismicity along the Dead Sea rift,
J. Geophys. Res.-Sol. Ea., 96, 20195–20216, 1991.
Blanckenhorn, M.: Das Erdbeben im Juli 1927 in Palästina, Z. Deut. Palastina-Ver., 4, 288–296, 1927.
Boore, D. M.: Simulation of ground motion using the stochastic method, Pure
Appl. Geophys., 160, 635–676, 2003.
Boore, D. M., Joyner, W. B., and Fumal, T. E.: Equations for estimating
horizontal response spectra and peak acceleration from western North American
earthquakes: A summary of recent work, Seismol. Res. Lett., 68,
128–153, 1997.
Boore, D. M., Thompson, E. M., and Cadet, H.: Regional correlations of
and velocities averaged over depths less than and greater than 30 meters,
B. Seismol. Soc. Am., 101, 3046–3059, 2011.
Borcherdt, R., Glassmoyer, G., Andrews, M., and Cranswick, E.: 3 Effect of
Site Conditions On Ground Motion and Damage, Earthq. Spectra, 5, 23–42,
1989.
Borcherdt, R. D.: Estimates of site-dependent response spectra for design
(methodology and justification), Earthq. Spectra, 10, 617–653,
1994.
Brawer, A. Y.: Earthquakes events in Israel from July 1927 to August 1928, Jew. Pal. Expl. Soc.,
316–325,
1928. (in Hebrew)
Building Seismic Safety Council (BSSC): NEHRP recommended provisions for
seismic regulations for new buildings and other structures, Part 1:
Provisions, Federal Emergency Management Agency, 368, Washington, D.C., 2001.
Campbell, K. W. and Bozorgnia, Y.: NGA ground motion model for the geometric
mean horizontal component of PGA, PGV, PGD and 5 % damped linear elastic
response spectra for periods ranging from 0.01 to 10 s, Earthq. Spectra,
24, 139–171, 2008.
CEN, EN 1998-1 Eurocode 8: Design of Structures for Earthquake Resistance,
Part 1: General Rules, Seismic Actions and Rules for Buildings, CEN, European
Committee for Standardization, 2005.
Ciaccio, M. G. and Cultrera, G.: Terremoto e rischio sismico, Ediesse, Italy,
2014.
Dal Moro, G.: Surface wave analysis for near surface applications, Elsevier,
Italy, 2014.
Dal Moro, G., Pipan, M., and Gabrielli, P.: Rayleigh wave dispersion curve
inversion via genetic algorithms and marginal posterior probability density
estimation, J. Appl. Geophys., 61, 39–55, 2007.
Darvasi, Y. and Agnon, A.: Database of Vs measurements,
https://doi.org/10.6084/m9.figshare.7775972.v1, 2019.
Field, E. H. and Jacob, K. H.: A comparison and test of various site-response
estimation techniques, including three that are not reference-site dependent,
B. Seismol. Soc. Am., 85, 1127–1143, 1995.
Foti, S., Lai, C. G., Rix, G. J., and Strobbia, C.: Surface wave methods for
near-surface site characterization, CRC press, Boca Raton, 2014.
Guidoboni, E. and Comastri, A.: Catalogue of Earthquakes and Tsunamis in the
Mediterranean Area from the 11th to the 15th Century, SGA, Roma-Bologna,
2005.
Hall, J. F. (Ed.): Northridge Earthquake January 17, 1994: Preliminary
Reconnaissance Report, Publ. No. 94-01, Earthquake Engineering Research
Institute, Oakland, Calif., 1994.
Hall, J. K.: The 25-m DTM (digital terrain model) of Israel, Isr. J. Earth
Sci., 57, 145–147, 2008.
Hough, S. E. and Avni, R.: The 1170 and 1202 CE Dead Sea Rift earthquakes and
long-term magnitude distribution of the Dead Sea Fault Zone, Isr. J. Earth
Sci., 58, 295–308, https://doi.org/10.1560/IJES.58.3-4.295, 2011.
Hough, S. E., Friberg, P. A., Busby, R., Field, E. F., Jacob, K. H., and
Borcherdt, R. D.: Sediment-induced amplification and the collapse of the
Nimitz Freeway, Nature, 344, 853–855, 1990.
Joyner, W. B. and Boore, D. M.: Measurement, characterization, and prediction
of strong ground motion, in: Earthquake Engineering and Soil Dynamics II,
Proceedings of American Society of Civil Engineers Geotechnical Engineering
Division Specialty Conference, Park City, Utah, 27–30 June, 43–102, 1988.
Kagan, E., Stein, M., Agnon, A., and Neumann, F.: Intrabasin paleoearthquake
and quiescence correlation of the late Holocene Dead Sea, J. Geophys.
Res.-Sol. Ea., 116, https://doi.org/10.1029/2010JB007452, 2011.
Medvedev, S. V., Sponheuer, W., and Karnik, V.: Seismic intensity scale version
MSK 1964, United nation Educ. Sci. Cult. Organ. Paris, 7, 1965.
Milne, J.: Seismology: London, Kegan Paul, Trench, Truber, London, 1898.
Park, C. B., Miller, R. D., and Xia, J.: Multi-channel analysis of surface
waves (MASW) – a summary report of technical aspects, experimental results,
and perspective, Kansas Geol. Surv., open file report No: 97-10, 1997.
Park, C. B., Miller, R. D., and Xia, J.: Imaging dispersion curves of surface
waves on multi-channel record, in: SEG Technical Program Expanded Abstracts
1998, 1377–1380, Society of Exploration Geophysicists, 1998.
Ryden, N., Park, C. B., Ulriksen, P., and Miller, R. D.: Multimodal approach
to seismic pavement testing, J. Geotech. Geoenvironmental Eng.,
130, 636–645, 2004.
Shani-Kadmiel, S., Tsesarsky, M., and Gvirtzman, Z.: Distributed Slip Model
for Forward Modeling Strong Earthquakes, B. Seismol. Soc. Am.,
106, 93–103, 2016.
Shapira, A.: Redetermined magnitudes of earthquakes in the Afro-Eurasian
Junction, Isr. J. Earth Sci., 28, 107–109, 1979.
Shapira, A., Avni, R., and Nur, A.: A new estimate for the epicenter of the
Jericho earthquake of 11 July 1927, Isr. J. Earth Sci., 42, 93–96,
1993.
Singh, S. K., Lermo, J., Dominguez, T., Ordaz, M., Espinosa, J. M., Mena, E.
and Quaas, R.: The Mexico earthquake of September 19, 1985 – a study of
amplification of seismic waves in the valley of Mexico with respect to a hill
zone site, Earthq. Spectra, 4, 653–673, 1988.
The Standards Institution of Israel (SII): Israeli Standard SI 413 Amendment
No. 5, 2013.
Willis, B.: Earthquakes in the holy land, B. Seismol. Soc. Am.,
18, 73–103, 1928.
Xia, J., Miller, R. D., and Park, C. B.: Estimation of near-surface shear-wave
velocity by inversion of Rayleigh waves, Geophysics, 64, 691–700,
1999.
Xia, J., Miller, R. D., Park, C. B., Hunter, J. A., Harris, J. B., and Ivanov,
J.: Comparing shear-wave velocity profiles inverted from multichannel surface
wave with borehole measurements, Soil Dyn. Earthq. Eng., 22,
181–190, 2002.
Zaslavsky, Y., Shapira, A., Gorstein, M., Perelman, N., Ataev, G., and
Aksinenko, T.: Questioning the applicability of soil amplification factors as
defined by NEHRP (USA) in the Israel building standards, Nat. Sci., 4,
631–639, https://doi.org/10.4236/ns.2012.428083, 2012.
Zohar, M. and Marco, S.: Re-estimating the epicenter of the 1927 Jericho
earthquake using spatial distribution of intensity data, J. Appl. Geophys.,
82, 19–29, 2012.