Articles | Volume 11, issue 4
Research article
24 Aug 2020
Research article |  | 24 Aug 2020

Deep learning for fast simulation of seismic waves in complex media

Ben Moseley, Tarje Nissen-Meyer, and Andrew Markham

Related authors

Introducing noisi: a Python tool for ambient noise cross-correlation modeling and noise source inversion
Laura Ermert, Jonas Igel, Korbinian Sager, Eléonore Stutzmann, Tarje Nissen-Meyer, and Andreas Fichtner
Solid Earth, 11, 1597–1615,,, 2020
Short summary

Related subject area

Subject area: Crustal structure and composition | Editorial team: Seismics, seismology, paleoseismology, geoelectrics, and electromagnetics | Discipline: Seismology
Quantifying gender gaps in seismology authorship
Laura Anna Ermert, Maria Koroni, and Naiara Korta Martiartu
Solid Earth, 14, 485–498,,, 2023
Short summary
Mapping the basement of the Cerdanya Basin (eastern Pyrenees) using seismic ambient noise
Jordi Díaz, Sergi Ventosa, Martin Schimmel, Mario Ruiz, Albert Macau, Anna Gabàs, David Martí, Özgenç Akin, and Jaume Vergés
Solid Earth, 14, 499–514,,, 2023
Short summary
Probing environmental and tectonic changes underneath Ciudad de México with the urban seismic field
Laura Ermert, Enrique Cabral-Cano, Estelle Chaussard, Dario Solano-Rojas, Luis Quintanar, Diana Morales Padilla, Enrique A. Fernandez-Torres, and Marine A. Denolle
EGUsphere,,, 2023
Short summary
Constraints on fracture distribution in the Los Humeros geothermal field from beamforming of ambient seismic noise
Heather Kennedy, Katrin Löer, and Amy Gilligan
Solid Earth, 13, 1843–1858,,, 2022
Short summary
Radial anisotropy and S-wave velocity depict the internal to external zone transition within the Variscan orogen (NW Iberia)
Jorge Acevedo, Gabriela Fernández-Viejo, Sergio Llana-Fúnez, Carlos López-Fernández, Javier Olona, and Diego Pérez-Millán
Solid Earth, 13, 659–679,,, 2022
Short summary

Cited articles

Ahmed, E., Saint, A., Shabayek, A. E. R., Cherenkova, K., Das, R., Gusev, G., Aouada, D., and Ottersten, B.: A survey on Deep Learning Advances on Different 3D Data Representations, arXiv [preprint],, 2018. a
Aki, K. and Richards, P. G.: Quantitative seismology, W. H. Freeman and Co., New York, New York, 1980. a, b
Araya-Polo, M., Jennings, J., Adler, A., and Dahlke, T.: Deep-learning tomography, The Leading Edge, 37, 58–66, 2018. a
Bergen, K. J., Johnson, P. A., De Hoop, M. V., and Beroza, G. C.: Machine learning for data-driven discovery in solid Earth geoscience, Science, 363, eaau0323,, 2019. a
Short summary
Simulations of seismic waves are very important; they allow us to understand how earthquakes spread and how the interior of the Earth is structured. However, whilst powerful, existing simulation methods usually require a large amount of computational power and time to run. In this research, we use modern machine learning techniques to accelerate these calculations inside complex models of the Earth.