Articles | Volume 11, issue 4
https://doi.org/10.5194/se-11-1527-2020
https://doi.org/10.5194/se-11-1527-2020
Research article
 | 
24 Aug 2020
Research article |  | 24 Aug 2020

Deep learning for fast simulation of seismic waves in complex media

Ben Moseley, Tarje Nissen-Meyer, and Andrew Markham

Related authors

Introducing noisi: a Python tool for ambient noise cross-correlation modeling and noise source inversion
Laura Ermert, Jonas Igel, Korbinian Sager, Eléonore Stutzmann, Tarje Nissen-Meyer, and Andreas Fichtner
Solid Earth, 11, 1597–1615, https://doi.org/10.5194/se-11-1597-2020,https://doi.org/10.5194/se-11-1597-2020, 2020
Short summary

Related subject area

Subject area: Crustal structure and composition | Editorial team: Seismics, seismology, paleoseismology, geoelectrics, and electromagnetics | Discipline: Seismology
Extraction of pre-earthquake anomalies from borehole strain data using Graph WaveNet: a case study of the 2013 Lushan earthquake in China
Chenyang Li, Yu Duan, Ying Han, Zining Yu, Chengquan Chi, and Dewang Zhang
Solid Earth, 15, 877–893, https://doi.org/10.5194/se-15-877-2024,https://doi.org/10.5194/se-15-877-2024, 2024
Short summary
Frequency-dependent shear wave attenuation across the Central Anatolia region, Türkiye
Gizem Izgi, Tuna Eken, Peter Gaebler, Tülay Kaya-Eken, and Tuncay Taymaz
Solid Earth, 15, 657–669, https://doi.org/10.5194/se-15-657-2024,https://doi.org/10.5194/se-15-657-2024, 2024
Short summary
Earthquakes triggered by the subsurface undrained response to reservoir-impoundment at Irapé, Brazil
Haris Raza, George Sand França, Eveline Sayão, and Victor Vilarrasa
EGUsphere, https://doi.org/10.5194/egusphere-2024-166,https://doi.org/10.5194/egusphere-2024-166, 2024
Short summary
Thermal structure of the southern Caribbean and northwestern South America: implications for seismogenesis
Ángela María Gómez-García, Álvaro González, Mauro Cacace, Magdalena Scheck-Wenderoth, and Gaspar Monsalve
Solid Earth, 15, 281–303, https://doi.org/10.5194/se-15-281-2024,https://doi.org/10.5194/se-15-281-2024, 2024
Short summary
Reference seismic crustal model of the Dinarides
Katarina Zailac, Bojan Matoš, Igor Vlahović, and Josip Stipčević
Solid Earth, 14, 1197–1220, https://doi.org/10.5194/se-14-1197-2023,https://doi.org/10.5194/se-14-1197-2023, 2023
Short summary

Cited articles

Ahmed, E., Saint, A., Shabayek, A. E. R., Cherenkova, K., Das, R., Gusev, G., Aouada, D., and Ottersten, B.: A survey on Deep Learning Advances on Different 3D Data Representations, arXiv [preprint], https://arxiv.org/abs/1808.01462, 2018. a
Aki, K. and Richards, P. G.: Quantitative seismology, W. H. Freeman and Co., New York, New York, 1980. a, b
Araya-Polo, M., Jennings, J., Adler, A., and Dahlke, T.: Deep-learning tomography, The Leading Edge, 37, 58–66, 2018. a
Bergen, K. J., Johnson, P. A., De Hoop, M. V., and Beroza, G. C.: Machine learning for data-driven discovery in solid Earth geoscience, Science, 363, eaau0323, https://doi.org/10.1126/science.aau0323, 2019. a
Download
Short summary
Simulations of seismic waves are very important; they allow us to understand how earthquakes spread and how the interior of the Earth is structured. However, whilst powerful, existing simulation methods usually require a large amount of computational power and time to run. In this research, we use modern machine learning techniques to accelerate these calculations inside complex models of the Earth.