Articles | Volume 11, issue 4
Research article
24 Aug 2020
Research article |  | 24 Aug 2020

Deep learning for fast simulation of seismic waves in complex media

Ben Moseley, Tarje Nissen-Meyer, and Andrew Markham

Related authors

Introducing noisi: a Python tool for ambient noise cross-correlation modeling and noise source inversion
Laura Ermert, Jonas Igel, Korbinian Sager, Eléonore Stutzmann, Tarje Nissen-Meyer, and Andreas Fichtner
Solid Earth, 11, 1597–1615,,, 2020
Short summary

Related subject area

Subject area: Crustal structure and composition | Editorial team: Seismics, seismology, paleoseismology, geoelectrics, and electromagnetics | Discipline: Seismology
The impact of seismic noise produced by wind turbines on seismic borehole measurements
Fabian Limberger, Georg Rümpker, Michael Lindenfeld, and Hagen Deckert
Solid Earth, 14, 859–869,,, 2023
Short summary
Probing environmental and tectonic changes underneath Mexico City with the urban seismic field
Laura A. Ermert, Enrique Cabral-Cano, Estelle Chaussard, Darío Solano-Rojas, Luis Quintanar, Diana Morales Padilla, Enrique A. Fernández-Torres, and Marine A. Denolle
Solid Earth, 14, 529–549,,, 2023
Short summary
Quantifying gender gaps in seismology authorship
Laura Anna Ermert, Maria Koroni, and Naiara Korta Martiartu
Solid Earth, 14, 485–498,,, 2023
Short summary
Mapping the basement of the Cerdanya Basin (eastern Pyrenees) using seismic ambient noise
Jordi Díaz, Sergi Ventosa, Martin Schimmel, Mario Ruiz, Albert Macau, Anna Gabàs, David Martí, Özgenç Akin, and Jaume Vergés
Solid Earth, 14, 499–514,,, 2023
Short summary
Referent seismic crustal model of the Dinarides
Katarina Zailac, Bojan Matoš, Igor Vlahović, and Josip Stipčević
EGUsphere,,, 2023
Short summary

Cited articles

Ahmed, E., Saint, A., Shabayek, A. E. R., Cherenkova, K., Das, R., Gusev, G., Aouada, D., and Ottersten, B.: A survey on Deep Learning Advances on Different 3D Data Representations, arXiv [preprint],, 2018. a
Aki, K. and Richards, P. G.: Quantitative seismology, W. H. Freeman and Co., New York, New York, 1980. a, b
Araya-Polo, M., Jennings, J., Adler, A., and Dahlke, T.: Deep-learning tomography, The Leading Edge, 37, 58–66, 2018. a
Bergen, K. J., Johnson, P. A., De Hoop, M. V., and Beroza, G. C.: Machine learning for data-driven discovery in solid Earth geoscience, Science, 363, eaau0323,, 2019. a
Short summary
Simulations of seismic waves are very important; they allow us to understand how earthquakes spread and how the interior of the Earth is structured. However, whilst powerful, existing simulation methods usually require a large amount of computational power and time to run. In this research, we use modern machine learning techniques to accelerate these calculations inside complex models of the Earth.