Articles | Volume 11, issue 6
https://doi.org/10.5194/se-11-2487-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/se-11-2487-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
In situ hydromechanical responses during well drilling recorded by fiber-optic distributed strain sensing
Geological Carbon Dioxide Storage Technology Research Association,
Kyoto, 6190292, Japan
Research Institute of Innovative Technology for the Earth (RITE),
Kyoto, 619-0292, Japan
Xinglin Lei
Geological Survey of Japan, National Institute of Advanced Industrial
Science and Technology, Tsukuba, 305-8567, Japan
Tsutomu Hashimoto
Geological Carbon Dioxide Storage Technology Research Association,
Kyoto, 6190292, Japan
Research Institute of Innovative Technology for the Earth (RITE),
Kyoto, 619-0292, Japan
Ziqiu Xue
Geological Carbon Dioxide Storage Technology Research Association,
Kyoto, 6190292, Japan
Research Institute of Innovative Technology for the Earth (RITE),
Kyoto, 619-0292, Japan
Related subject area
Subject area: Crustal structure and composition | Editorial team: Seismics, seismology, paleoseismology, geoelectrics, and electromagnetics | Discipline: Geophysics
Post-Caledonian tectonic evolution of the Precambrian and Paleozoic platform boundary zone offshore Poland based on the new and vintage multi-channel reflection seismic data
Comparison of surface-wave techniques to estimate S- and P-wave velocity models from active seismic data
Complex fault system revealed by 3-D seismic reflection data with deep learning and fault network analysis
Advanced seismic characterization of a geothermal carbonate reservoir – insight into the structure and diagenesis of a reservoir in the German Molasse Basin
Electrical conductivity of anhydrous and hydrous gabbroic melt under high temperature and high pressure: implications for the high-conductivity anomalies in the mid-ocean ridge region
Formation and geophysical character of transitional crust at the passive continental margin around Walvis Ridge, Namibia
Utilisation of probabilistic magnetotelluric modelling to constrain magnetic data inversion: proof-of-concept and field application
Comparison of straight-ray and curved-ray surface wave tomography approaches in near-surface studies
3D deep geothermal reservoir imaging with wireline distributed acoustic sensing in two boreholes
3D high-resolution seismic imaging of the iron oxide deposits in Ludvika (Sweden) using full-waveform inversion and reverse time migration
Three-dimensional reflection seismic imaging of the iron oxide deposits in the Ludvika mining area, Sweden, using Fresnel volume migration
Drone-based magnetic and multispectral surveys to develop a 3D model for mineral exploration at Qullissat, Disko Island, Greenland
Ambient seismic noise analysis of LARGE-N data for mineral exploration in the Central Erzgebirge, Germany
Surface-wave tomography for mineral exploration: a successful combination of passive and active data (Siilinjärvi phosphorus mine, Finland)
Imaging crustal structures through a passive seismic imaging approach in a mining area in Saxony, Germany
Reverse time migration (RTM) imaging of iron oxide deposits in the Ludvika mining area, Sweden
Near-surface structure of the Sodankylä area in Finland, obtained by passive seismic interferometry
Evolution of the Iberian Massif as deduced from its crustal thickness and geometry of a mid-crustal (Conrad) discontinuity
Four-dimensional tracer flow reconstruction in fractured rock through borehole ground-penetrating radar (GPR) monitoring
Moho topography beneath the European Eastern Alps by global-phase seismic interferometry
Seismic imaging across fault systems in the Abitibi greenstone belt – an analysis of pre- and post-stack migration approaches in the Chibougamau area, Quebec, Canada
Wireline distributed acoustic sensing allows 4.2 km deep vertical seismic profiling of the Rotliegend 150 °C geothermal reservoir in the North German Basin
Sparse 3D reflection seismic survey for deep-targeting iron oxide deposits and their host rocks, Ludvika Mines, Sweden
Fault sealing and caprock integrity for CO2 storage: an in situ injection experiment
What can seismic noise tell us about the Alpine reactivation of the Iberian Massif? An example in the Iberian Central System
Coherent diffraction imaging for enhanced fault and fracture network characterization
Seismic evidence for failed rifting in the Ligurian Basin, Western Alpine domain
Azimuth-, angle- and frequency-dependent seismic velocities of cracked rocks due to squirt flow
Characteristics of a fracture network surrounding a hydrothermally altered shear zone from geophysical borehole logs
Bayesian full-waveform inversion of tube waves to estimate fracture aperture and compliance
Correlation of core and downhole seismic velocities in high-pressure metamorphic rocks: a case study for the COSC-1 borehole, Sweden
Prediction of seismic P-wave velocity using machine learning
Large-scale electrical resistivity tomography in the Cheb Basin (Eger Rift) at an International Continental Drilling Program (ICDP) monitoring site to image fluid-related structures
Anisotropic P-wave travel-time tomography implementing Thomsen's weak approximation in TOMO3D
Full-waveform inversion of short-offset, band-limited seismic data in the Alboran Basin (SE Iberia)
Fault interpretation in seismic reflection data: an experiment analysing the impact of conceptual model anchoring and vertical exaggeration
Improving the quality of empirical Green's functions, obtained by cross-correlation of high-frequency ambient seismic noise
Quantifying the impact of the structural uncertainty on the gross rock volume in the Lubina and Montanazo oil fields (Western Mediterranean)
What happens to fracture energy in brittle fracture? Revisiting the Griffith assumption
Constraining the geotherm beneath the British Isles from Bayesian inversion of Curie depth: integrated modelling of magnetic, geothermal, and seismic data
Crustal-scale depth imaging via joint full-waveform inversion of ocean-bottom seismometer data and pre-stack depth migration of multichannel seismic data: a case study from the eastern Nankai Trough
Imaging the East European Craton margin in northern Poland using extended correlation processing of regional seismic reflection profiles
Ionian Abyssal Plain: a window into the Tethys oceanic lithosphere
Granite microporosity changes due to fracturing and alteration: secondary mineral phases as proxies for porosity and permeability estimation
3-D seismic travel-time tomography validation of a detailed subsurface model: a case study of the Záncara river basin (Cuenca, Spain)
The effect of rock composition on muon tomography measurements
Seismic imaging of dyke swarms within the Sorgenfrei–Tornquist Zone (Sweden) and implications for thermal energy storage
Quang Nguyen, Michal Malinowski, Stanisław Mazur, Sergiy Stovba, Małgorzata Ponikowska, and Christian Hübscher
Solid Earth, 15, 1029–1046, https://doi.org/10.5194/se-15-1029-2024, https://doi.org/10.5194/se-15-1029-2024, 2024
Short summary
Short summary
Our work demonstrates the following: (1) an efficient seismic data-processing strategy focused on suppressing shallow-water multiple reflections. (2) An improvement in the quality of legacy marine seismic data. (3) A seismic interpretation of sedimentary successions overlying the basement in the transition zone from the Precambrian to Paleozoic platforms. (4) The tectonic evolution of the Koszalin Fault and its relation to the Caledonian Deformation Front offshore Poland.
Farbod Khosro Anjom, Frank Adler, and Laura Valentina Socco
Solid Earth, 15, 367–386, https://doi.org/10.5194/se-15-367-2024, https://doi.org/10.5194/se-15-367-2024, 2024
Short summary
Short summary
Most surface-wave techniques focus on estimating the S-wave velocity (VS) model and consider the P-wave velocity (VP) model as prior information in the inversion step. Here, we show the application of three surface-wave methods to estimate both VS and VP models. We apply the methods to the data from a hard-rock site that were acquired through the irregular source–receiver recording technique. We compare the outcomes and performances of the methods in detail.
Thilo Wrona, Indranil Pan, Rebecca E. Bell, Christopher A.-L. Jackson, Robert L. Gawthorpe, Haakon Fossen, Edoseghe E. Osagiede, and Sascha Brune
Solid Earth, 14, 1181–1195, https://doi.org/10.5194/se-14-1181-2023, https://doi.org/10.5194/se-14-1181-2023, 2023
Short summary
Short summary
We need to understand where faults are to do the following: (1) assess their seismic hazard, (2) explore for natural resources and (3) store CO2 safely in the subsurface. Currently, we still map subsurface faults primarily by hand using seismic reflection data, i.e. acoustic images of the Earth. Mapping faults this way is difficult and time-consuming. Here, we show how to use deep learning to accelerate fault mapping and how to use networks or graphs to simplify fault analyses.
Sonja H. Wadas, Johanna F. Krumbholz, Vladimir Shipilin, Michael Krumbholz, David C. Tanner, and Hermann Buness
Solid Earth, 14, 871–908, https://doi.org/10.5194/se-14-871-2023, https://doi.org/10.5194/se-14-871-2023, 2023
Short summary
Short summary
The geothermal carbonate reservoir below Munich, Germany, is extremely heterogeneous because it is controlled by many factors like lithology, diagenesis, karstification, and tectonic deformation. We used a 3D seismic single- and multi-attribute analysis combined with well data and a neural-net-based lithology classification to obtain an improved reservoir concept outlining its structural and diagenetic evolution and to identify high-quality reservoir zones in the Munich area.
Mengqi Wang, Lidong Dai, Haiying Hu, Ziming Hu, Chenxin Jing, Chuanyu Yin, Song Luo, and Jinhua Lai
Solid Earth, 14, 847–858, https://doi.org/10.5194/se-14-847-2023, https://doi.org/10.5194/se-14-847-2023, 2023
Short summary
Short summary
This is the first time that the electrical conductivity of gabbroic melt was assessed at high temperature and high pressure. The dependence of electrical conductivity on the degree of depolymerization was also explored. Electrical conductivity of gabbroic melts can be employed to interpret high-conductivity anomalies in the Mohns Ridge of the Arctic Ocean. This is of widespread interest to potential readers in high-pressure rock physics, solid geophysics, and deep Earth science.
Gesa Franz, Marion Jegen, Max Moorkamp, Christian Berndt, and Wolfgang Rabbel
Solid Earth, 14, 237–259, https://doi.org/10.5194/se-14-237-2023, https://doi.org/10.5194/se-14-237-2023, 2023
Short summary
Short summary
Our study focuses on the correlation of two geophysical parameters (electrical resistivity and density) with geological units. We use this computer-aided correlation to improve interpretation of the Earth’s formation history along the Namibian coast and the associated formation of the South Atlantic Ocean. It helps to distinguish different types of sediment cover and varieties of oceanic crust, as well as to identify typical features associated with the breakup of continents.
Jérémie Giraud, Hoël Seillé, Mark D. Lindsay, Gerhard Visser, Vitaliy Ogarko, and Mark W. Jessell
Solid Earth, 14, 43–68, https://doi.org/10.5194/se-14-43-2023, https://doi.org/10.5194/se-14-43-2023, 2023
Short summary
Short summary
We propose and apply a workflow to combine the modelling and interpretation of magnetic anomalies and resistivity anomalies to better image the basement. We test the method on a synthetic case study and apply it to real world data from the Cloncurry area (Queensland, Australia), which is prospective for economic minerals. Results suggest a new interpretation of the composition and structure towards to east of the profile that we modelled.
Mohammadkarim Karimpour, Evert Slob, and Laura Valentina Socco
Solid Earth, 13, 1569–1583, https://doi.org/10.5194/se-13-1569-2022, https://doi.org/10.5194/se-13-1569-2022, 2022
Short summary
Short summary
Near-surface characterisation is of great importance. Surface wave tomography (SWT) is a powerful tool to model the subsurface. In this work we compare straight-ray and curved-ray SWT at near-surface scale. We apply both approaches to four datasets and compare the results in terms of the quality of the final model and the computational cost. We show that in the case of high data coverage, straight-ray SWT can produce similar results to curved-ray SWT but with less computational cost.
Evgeniia Martuganova, Manfred Stiller, Ben Norden, Jan Henninges, and Charlotte M. Krawczyk
Solid Earth, 13, 1291–1307, https://doi.org/10.5194/se-13-1291-2022, https://doi.org/10.5194/se-13-1291-2022, 2022
Short summary
Short summary
We demonstrate the applicability of vertical seismic profiling (VSP) acquired using wireline distributed acoustic sensing (DAS) technology for deep geothermal reservoir imaging and characterization. Borehole DAS data provide critical input for seismic interpretation and help assess small-scale geological structures. This case study can be used as a basis for detailed structural exploration of geothermal reservoirs and provide insightful information for geothermal exploration projects.
Brij Singh, Michał Malinowski, Andrzej Górszczyk, Alireza Malehmir, Stefan Buske, Łukasz Sito, and Paul Marsden
Solid Earth, 13, 1065–1085, https://doi.org/10.5194/se-13-1065-2022, https://doi.org/10.5194/se-13-1065-2022, 2022
Short summary
Short summary
Fast depletion of shallower deposits is pushing the mining industry to look for cutting-edge technologies for deep mineral targeting. We demonstrated a joint workflow including two state-of-the-art technologies: full-waveform inversion and reverse time migration. We produced Earth images with significant details which can help with better estimation of areas with high mineralisation, better mine planning and safety measures.
Felix Hloušek, Michal Malinowski, Lena Bräunig, Stefan Buske, Alireza Malehmir, Magdalena Markovic, Lukasz Sito, Paul Marsden, and Emma Bäckström
Solid Earth, 13, 917–934, https://doi.org/10.5194/se-13-917-2022, https://doi.org/10.5194/se-13-917-2022, 2022
Short summary
Short summary
Methods for mineral exploration play an important role within the EU. Exploration must be environmentally friendly, cost effective, and feasible in populated areas. Seismic methods have the potential to deliver detailed images of mineral deposits but suffer from these demands. We show the results for a sparse 3D seismic dataset acquired in Sweden. The 3D depth image allows us to track the known mineralizations beyond the known extent and gives new insights into the geometry of the deposit.
Robert Jackisch, Björn H. Heincke, Robert Zimmermann, Erik V. Sørensen, Markku Pirttijärvi, Moritz Kirsch, Heikki Salmirinne, Stefanie Lode, Urpo Kuronen, and Richard Gloaguen
Solid Earth, 13, 793–825, https://doi.org/10.5194/se-13-793-2022, https://doi.org/10.5194/se-13-793-2022, 2022
Short summary
Short summary
We integrate UAS-based magnetic and multispectral data with legacy exploration data of a Ni–Cu–PGE prospect on Disko Island, West Greenland. The basalt unit has a complex magnetization, and we use a constrained 3D magnetic vector inversion to estimate magnetic properties and spatial dimensions of the target unit. Our 3D modelling reveals a horizontal sheet and a strong remanent magnetization component. We highlight the advantage of UAS use in rugged and remote terrain.
Trond Ryberg, Moritz Kirsch, Christian Haberland, Raimon Tolosana-Delgado, Andrea Viezzoli, and Richard Gloaguen
Solid Earth, 13, 519–533, https://doi.org/10.5194/se-13-519-2022, https://doi.org/10.5194/se-13-519-2022, 2022
Short summary
Short summary
Novel methods for mineral exploration play an important role in future resource exploration. The methods have to be environmentally friendly, socially accepted and cost effective by integrating multidisciplinary methodologies. We investigate the potential of passive, ambient noise tomography combined with 3D airborne electromagnetics for mineral exploration in Geyer, Germany. We show that the combination of the two geophysical data sets has promising potential for future mineral exploration.
Chiara Colombero, Myrto Papadopoulou, Tuomas Kauti, Pietari Skyttä, Emilia Koivisto, Mikko Savolainen, and Laura Valentina Socco
Solid Earth, 13, 417–429, https://doi.org/10.5194/se-13-417-2022, https://doi.org/10.5194/se-13-417-2022, 2022
Short summary
Short summary
Passive-source surface waves may be exploited in mineral exploration for deeper investigations. We propose a semi-automatic workflow for their processing. The geological interpretation of the results obtained at a mineral site (Siilinjärvi phosphorus mine) shows large potentialities and effectiveness of the proposed workflow.
Hossein Hassani, Felix Hloušek, Stefan Buske, and Olaf Wallner
Solid Earth, 12, 2703–2715, https://doi.org/10.5194/se-12-2703-2021, https://doi.org/10.5194/se-12-2703-2021, 2021
Short summary
Short summary
Passive seismic imaging methods use natural earthquakes as seismic sources, while in active seismic imaging methods, artificial sources (e.g. explosives) are used to generate seismic waves. We imaged some structures related to a major fault plane through a passive seismic imaging approach using microearthquakes with magnitudes smaller than 0.9 (Mw). These structures have not been illuminated by a previously conducted 3D active seismic survey due to their large dip angles.
Yinshuai Ding and Alireza Malehmir
Solid Earth, 12, 1707–1718, https://doi.org/10.5194/se-12-1707-2021, https://doi.org/10.5194/se-12-1707-2021, 2021
Short summary
Short summary
In this article, we investigate the potential of reverse time migration (RTM) for deep targeting iron oxide deposits and the possible AVO effect that is potentially seen in the common image gathers from this migration algorithm. The results are promising and help to delineate the deposits and host rock structures using a 2D dataset from the Ludvika mines of central Sweden.
Nikita Afonin, Elena Kozlovskaya, Suvi Heinonen, and Stefan Buske
Solid Earth, 12, 1563–1579, https://doi.org/10.5194/se-12-1563-2021, https://doi.org/10.5194/se-12-1563-2021, 2021
Short summary
Short summary
In our study, we show the results of a passive seismic interferometry application for mapping the uppermost crust in the area of active mineral exploration in northern Finland. The obtained velocity models agree well with geological data and complement the results of reflection seismic data interpretation.
Puy Ayarza, José Ramón Martínez Catalán, Ana Martínez García, Juan Alcalde, Juvenal Andrés, José Fernando Simancas, Immaculada Palomeras, David Martí, Irene DeFelipe, Chris Juhlin, and Ramón Carbonell
Solid Earth, 12, 1515–1547, https://doi.org/10.5194/se-12-1515-2021, https://doi.org/10.5194/se-12-1515-2021, 2021
Short summary
Short summary
Vertical incidence seismic profiling on the Iberian Massif images a mid-crustal-scale discontinuity at the top of the reflective lower crust. This feature shows that upper- and lower-crustal reflections merge into it, suggesting that it has often behaved as a detachment. The orogen-scale extension of this discontinuity, present in Gondwanan and Avalonian affinity terranes into the Iberian Massif, demonstrates its relevance, leading us to interpret it as the Conrad discontinuity.
Peter-Lasse Giertzuch, Joseph Doetsch, Alexis Shakas, Mohammadreza Jalali, Bernard Brixel, and Hansruedi Maurer
Solid Earth, 12, 1497–1513, https://doi.org/10.5194/se-12-1497-2021, https://doi.org/10.5194/se-12-1497-2021, 2021
Short summary
Short summary
Two time-lapse borehole ground penetrating radar (GPR) surveys were conducted during saline tracer experiments in weakly fractured crystalline rock with sub-millimeter fractures apertures, targeting electrical conductivity changes. The combination of time-lapse reflection and transmission GPR surveys from different boreholes allowed monitoring the tracer flow and reconstructing the flow path and its temporal evolution in 3D and provided a realistic visualization of the hydrological processes.
Irene Bianchi, Elmer Ruigrok, Anne Obermann, and Edi Kissling
Solid Earth, 12, 1185–1196, https://doi.org/10.5194/se-12-1185-2021, https://doi.org/10.5194/se-12-1185-2021, 2021
Short summary
Short summary
The European Alps formed during collision between the European and Adriatic plates and are one of the most studied orogens for understanding the dynamics of mountain building. In the Eastern Alps, the contact between the colliding plates is still a matter of debate. We have used the records from distant earthquakes to highlight the geometries of the crust–mantle boundary in the Eastern Alpine area; our results suggest a complex and faulted internal crustal structure beneath the higher crests.
Saeid Cheraghi, Alireza Malehmir, Mostafa Naghizadeh, David Snyder, Lucie Mathieu, and Pierre Bedeaux
Solid Earth, 12, 1143–1164, https://doi.org/10.5194/se-12-1143-2021, https://doi.org/10.5194/se-12-1143-2021, 2021
Short summary
Short summary
High-resolution seismic profiles in 2D are acquired in the north and south of the Chibougamau area, Quebec, Canada located in the northeast of the Abitibi Greenstone belt. The area mostly includes volcanic rocks, and both profiles cross over several fault zones. The seismic method is acquired to image the subsurface down to depth of 12 km. The main aim of this study is to image major fault zones and the geological formations connected to those faults to investigate metal endowment in the area.
Jan Henninges, Evgeniia Martuganova, Manfred Stiller, Ben Norden, and Charlotte M. Krawczyk
Solid Earth, 12, 521–537, https://doi.org/10.5194/se-12-521-2021, https://doi.org/10.5194/se-12-521-2021, 2021
Short summary
Short summary
We performed a seismic survey in two 4.3 km deep geothermal research wells using the novel method of distributed acoustic sensing and wireline cables. The characteristics of the acquired data, methods for data processing and quality improvement, and interpretations on the geometry and structure of the sedimentary and volcanic reservoir rocks are presented. The method enables measurements at high temperatures and reduced cost compared to conventional sensors.
Alireza Malehmir, Magdalena Markovic, Paul Marsden, Alba Gil, Stefan Buske, Lukasz Sito, Emma Bäckström, Martiya Sadeghi, and Stefan Luth
Solid Earth, 12, 483–502, https://doi.org/10.5194/se-12-483-2021, https://doi.org/10.5194/se-12-483-2021, 2021
Short summary
Short summary
A smooth transition toward decarbonization demands access to more minerals of critical importance. Europe has a good geology for many of these mineral deposits, but at a depth requiring sensitive, environmentally friendly, and cost-effective methods for their exploration. In this context, we present a sparse 3D seismic dataset that allowed identification of potential iron oxide resources at depth and helped to characterise key geological structures and a historical tailing in central Sweden.
Alba Zappone, Antonio Pio Rinaldi, Melchior Grab, Quinn C. Wenning, Clément Roques, Claudio Madonna, Anne C. Obermann, Stefano M. Bernasconi, Matthias S. Brennwald, Rolf Kipfer, Florian Soom, Paul Cook, Yves Guglielmi, Christophe Nussbaum, Domenico Giardini, Marco Mazzotti, and Stefan Wiemer
Solid Earth, 12, 319–343, https://doi.org/10.5194/se-12-319-2021, https://doi.org/10.5194/se-12-319-2021, 2021
Short summary
Short summary
The success of the geological storage of carbon dioxide is linked to the availability at depth of a capable reservoir and an impermeable caprock. The sealing capacity of the caprock is a key parameter for long-term CO2 containment. Faults crosscutting the caprock might represent preferential pathways for CO2 to escape. A decameter-scale experiment on injection in a fault, monitored by an integrated network of multiparamerter sensors, sheds light on the mobility of fluids within the fault.
Juvenal Andrés, Puy Ayarza, Martin Schimmel, Imma Palomeras, Mario Ruiz, and Ramon Carbonell
Solid Earth, 11, 2499–2513, https://doi.org/10.5194/se-11-2499-2020, https://doi.org/10.5194/se-11-2499-2020, 2020
Benjamin Schwarz and Charlotte M. Krawczyk
Solid Earth, 11, 1891–1907, https://doi.org/10.5194/se-11-1891-2020, https://doi.org/10.5194/se-11-1891-2020, 2020
Short summary
Short summary
Intricate fault and fracture networks cut through the upper crust, and their detailed delineation and characterization play an important role in the Earth sciences. While conventional geophysical sounding techniques only provide indirect means of detection, we present scale-spanning field data examples, in which coherent diffraction imaging – a framework inspired by optics and visual perception – enables the direct imaging of these crustal features at an unprecedented spatial resolution.
Anke Dannowski, Heidrun Kopp, Ingo Grevemeyer, Dietrich Lange, Martin Thorwart, Jörg Bialas, and Martin Wollatz-Vogt
Solid Earth, 11, 873–887, https://doi.org/10.5194/se-11-873-2020, https://doi.org/10.5194/se-11-873-2020, 2020
Short summary
Short summary
The Ligurian Sea opened ~30–15 Ma during the SE migration of the Calabrian subduction zone. Seismic travel time tomography reveals the absence of oceanic crust, documenting that the extension of continental lithosphere stopped before seafloor spreading initiated. The extension led to extreme crustal thinning and possibly exhumed mantle accompanied by syn-rift sedimentation. Our new interpretation of the crust's nature is important for plate reconstruction modelling related to the Alpine orogen.
Yury Alkhimenkov, Eva Caspari, Simon Lissa, and Beatriz Quintal
Solid Earth, 11, 855–871, https://doi.org/10.5194/se-11-855-2020, https://doi.org/10.5194/se-11-855-2020, 2020
Short summary
Short summary
We perform a three-dimensional numerical study of the fluid–solid deformation at the pore scale. We show that seismic wave velocities exhibit strong azimuth-, angle- and frequency-dependent behavior due to squirt flow between interconnected cracks. We conclude that the overall anisotropy mainly increases due to squirt flow, but in some specific planes it can locally decrease as well as increase, depending on the material properties.
Eva Caspari, Andrew Greenwood, Ludovic Baron, Daniel Egli, Enea Toschini, Kaiyan Hu, and Klaus Holliger
Solid Earth, 11, 829–854, https://doi.org/10.5194/se-11-829-2020, https://doi.org/10.5194/se-11-829-2020, 2020
Short summary
Short summary
A shallow borehole was drilled to explore the petrophysical and hydraulic characteristics of a hydrothermally active fault in the crystalline Aar massif of the Alps. A key objective of studying surficial features of this kind is to establish analogies with natural and deep-seated engineered hydrothermal systems. A wide range of geophysical borehole logs was acquired, which revealed a complex fracture network in the damage zone of the fault and a related compartmentalized hydraulic behavior.
Jürg Hunziker, Andrew Greenwood, Shohei Minato, Nicolás Daniel Barbosa, Eva Caspari, and Klaus Holliger
Solid Earth, 11, 657–668, https://doi.org/10.5194/se-11-657-2020, https://doi.org/10.5194/se-11-657-2020, 2020
Short summary
Short summary
The characterization of fractures is crucial for a wide range of pertinent applications, such as geothermal energy production, hydrocarbon exploration, CO2 sequestration, and nuclear waste disposal. We estimate fracture parameters based on waves that travel along boreholes (tube waves) using a stochastic optimization approach.
Felix Kästner, Simona Pierdominici, Judith Elger, Alba Zappone, Jochem Kück, and Christian Berndt
Solid Earth, 11, 607–626, https://doi.org/10.5194/se-11-607-2020, https://doi.org/10.5194/se-11-607-2020, 2020
Short summary
Short summary
Knowledge about physical properties at depth is crucial to image and understand structures linked with orogenic processes. We examined seismic velocities from core and downhole data from the COSC-1 borehole, Sweden, and calibrated our results with laboratory measurements on core samples. Despite a strong mismatch between the core and downhole velocities due to microcracks, mafic units are resolved at all scales, while at sample scale, strong seismic anisotropy correlates with the rock foliation.
Ines Dumke and Christian Berndt
Solid Earth, 10, 1989–2000, https://doi.org/10.5194/se-10-1989-2019, https://doi.org/10.5194/se-10-1989-2019, 2019
Short summary
Short summary
Knowing the velocity with which seismic waves travel through the top of the crust is important both for identifying anomalies, e.g. the presence of resources, and for geophysical data evaluation. Traditionally this has been done by using empirical functions. Here, we use machine learning to derive better seismic velocity estimates for the crust below the oceans. In most cases this methods performs better than empirical averages.
Tobias Nickschick, Christina Flechsig, Jan Mrlina, Frank Oppermann, Felix Löbig, and Thomas Günther
Solid Earth, 10, 1951–1969, https://doi.org/10.5194/se-10-1951-2019, https://doi.org/10.5194/se-10-1951-2019, 2019
Short summary
Short summary
An active CO2 degassing site in the western Eger Rift, Czech Republic, was investigated with a 6.5 km long geophysical survey using a specific large-scale geoelectrical setup, supported by shallow geoelectrical surveys and gravity measurements. The experiment reveals unusually low resistivities in the sediments and basement below the degassing area of less than 10 Ω and provides a base for a custom geological model of the area for a future 400 m deep research drilling in this area.
Adrià Meléndez, Clara Estela Jiménez, Valentí Sallarès, and César R. Ranero
Solid Earth, 10, 1857–1876, https://doi.org/10.5194/se-10-1857-2019, https://doi.org/10.5194/se-10-1857-2019, 2019
Short summary
Short summary
A new code for anisotropic travel-time tomography is presented. We describe the equations governing the anisotropic ray propagation algorithm and the modified inversion solver. We study the sensitivity of two medium parameterizations and compare four inversion strategies on a canonical model. This code can provide better understanding of the Earth's subsurface in the rather common geological contexts in which seismic velocity displays a weak dependency on the polar angle of ray propagation.
Clàudia Gras, Daniel Dagnino, Clara Estela Jiménez-Tejero, Adrià Meléndez, Valentí Sallarès, and César R. Ranero
Solid Earth, 10, 1833–1855, https://doi.org/10.5194/se-10-1833-2019, https://doi.org/10.5194/se-10-1833-2019, 2019
Short summary
Short summary
We present a workflow that combines different geophysical techniques, showing that a detailed seismic velocity model can be obtained even for non-optimal data sets, i.e. relatively short-offset, band-limited streamer data recorded in deep water. This fact has an important implication for the Marine seismic community, suggesting that many of the existing data sets should be revisited and analysed with new techniques to enhance our understanding of the subsurface, as in the Alboran Basin case.
Juan Alcalde, Clare E. Bond, Gareth Johnson, Armelle Kloppenburg, Oriol Ferrer, Rebecca Bell, and Puy Ayarza
Solid Earth, 10, 1651–1662, https://doi.org/10.5194/se-10-1651-2019, https://doi.org/10.5194/se-10-1651-2019, 2019
Nikita Afonin, Elena Kozlovskaya, Jouni Nevalainen, and Janne Narkilahti
Solid Earth, 10, 1621–1634, https://doi.org/10.5194/se-10-1621-2019, https://doi.org/10.5194/se-10-1621-2019, 2019
Carla Patricia Bárbara, Patricia Cabello, Alexandre Bouche, Ingrid Aarnes, Carlos Gordillo, Oriol Ferrer, Maria Roma, and Pau Arbués
Solid Earth, 10, 1597–1619, https://doi.org/10.5194/se-10-1597-2019, https://doi.org/10.5194/se-10-1597-2019, 2019
Timothy R. H. Davies, Maurice J. McSaveney, and Natalya V. Reznichenko
Solid Earth, 10, 1385–1395, https://doi.org/10.5194/se-10-1385-2019, https://doi.org/10.5194/se-10-1385-2019, 2019
Short summary
Short summary
Griffith (1921) assumed that energy used to create new surface area by breaking intact rock immediately becomes surface energy which is not available for further breakage. Our lab data disprove this assumption; we created much more new surface area, 90 % on submicron fragments, than the energy involved should allow. As technology allows ever smaller fragments to be measured, continued use of the Griffith assumption will lead to incorrect energy budgets for earthquakes and rock avalanches.
Ben Mather and Javier Fullea
Solid Earth, 10, 839–850, https://doi.org/10.5194/se-10-839-2019, https://doi.org/10.5194/se-10-839-2019, 2019
Short summary
Short summary
The temperature in the crust can be constrained by the Curie depth, which is often interpreted as the 580 °C isotherm. We cast the estimation of Curie depth, from maps of the magnetic anomaly, within a Bayesian framework to properly quantify its uncertainty across the British Isles. We find that uncertainty increases considerably for deeper Curie depths, which demonstrates that generally this method is only reliable in hotter regions, such as Scotland and Northern Ireland.
Andrzej Górszczyk, Stéphane Operto, Laure Schenini, and Yasuhiro Yamada
Solid Earth, 10, 765–784, https://doi.org/10.5194/se-10-765-2019, https://doi.org/10.5194/se-10-765-2019, 2019
Short summary
Short summary
In order to broaden our knowledge about the deep lithosphere using seismic methods, we develop leading-edge imaging workflows integrating different types of data. Here we exploit the complementary information carried by seismic wavefields, which are fundamentally different in terms of acquisition setting. We cast this information into our processing workflow and build a detailed model of the subduction zone, which is subject to further geological interpretation.
Miłosz Mężyk, Michał Malinowski, and Stanisław Mazur
Solid Earth, 10, 683–696, https://doi.org/10.5194/se-10-683-2019, https://doi.org/10.5194/se-10-683-2019, 2019
Short summary
Short summary
The Precambrian East European Craton is one of the most important building blocks of the European plate. Unlike in Scandinavia, its crystalline crust in Poland is concealed beneath younger sediments. Reprocessing of ca. 950 km regional reflection seismic profiles acquired during shale gas exploration in NE Poland revealed reflectivity patterns interpreted as signs of Svekofennian orogeny, proving a similar mechanism of Paleoproterozoic crustal formation across the Baltic Sea.
Anke Dannowski, Heidrun Kopp, Frauke Klingelhoefer, Dirk Klaeschen, Marc-André Gutscher, Anne Krabbenhoeft, David Dellong, Marzia Rovere, David Graindorge, Cord Papenberg, and Ingo Klaucke
Solid Earth, 10, 447–462, https://doi.org/10.5194/se-10-447-2019, https://doi.org/10.5194/se-10-447-2019, 2019
Short summary
Short summary
The nature of the Ionian Sea crust has been the subject of scientific debate for more than 30 years. Seismic data, recorded on ocean bottom instruments, have been analysed and support the interpretation of the Ionian Abyssal Plain as a remnant of the Tethys oceanic lithosphere with the Malta Escarpment as a transform margin and a Tethys opening in the NNW–SSE direction.
Martin Staněk and Yves Géraud
Solid Earth, 10, 251–274, https://doi.org/10.5194/se-10-251-2019, https://doi.org/10.5194/se-10-251-2019, 2019
Short summary
Short summary
Granite is suitable to host geothermal wells or disposals of hazardous waste and in these cases the rock porosity and permeability are critical. Our detailed porosity and permeability data on variously deformed Lipnice granite yield a span of 5 orders of magnitude in permeability between the least and the most deformed facies. To facilitate the estimation of porosity and permeability in similar settings, we provide optical and chemical data on the characteristic minerals of each facies.
David Marti, Ignacio Marzan, Jana Sachsenhausen, Joaquina Alvarez-Marrón, Mario Ruiz, Montse Torne, Manuela Mendes, and Ramon Carbonell
Solid Earth, 10, 177–192, https://doi.org/10.5194/se-10-177-2019, https://doi.org/10.5194/se-10-177-2019, 2019
Short summary
Short summary
A detailed knowledge of the very shallow subsurface has become of crucial interest for modern society, especially if it hosts critical surface infrastructures such as temporary waste storage sites. The use of indirect methods to characterize the internal structure of the subsurface has been successfully applied, based on the 3-D distribution of seismic velocities and well-log data, which are of great interest for civil engineering companies.
Alessandro Lechmann, David Mair, Akitaka Ariga, Tomoko Ariga, Antonio Ereditato, Ryuichi Nishiyama, Ciro Pistillo, Paola Scampoli, Fritz Schlunegger, and Mykhailo Vladymyrov
Solid Earth, 9, 1517–1533, https://doi.org/10.5194/se-9-1517-2018, https://doi.org/10.5194/se-9-1517-2018, 2018
Short summary
Short summary
Muon tomography is a technology, similar to X-ray tomography, to image the interior of an object, including geologically interesting ones. In this work, we examined the influence of rock composition on the physical measurements, and the possible error that is made by assuming a too-simplistic rock model. We performed numerical simulations for a more realistic rock model and found that beyond 300 m of rock, the composition starts to play a significant role and has to be accounted for.
Alireza Malehmir, Bo Bergman, Benjamin Andersson, Robert Sturk, and Mattis Johansson
Solid Earth, 9, 1469–1485, https://doi.org/10.5194/se-9-1469-2018, https://doi.org/10.5194/se-9-1469-2018, 2018
Short summary
Short summary
Interest and demand for green-type energy usage and storage are growing worldwide. Among several, thermal energy storage that stores energy (excess heat or cold) in fluids is particularly interesting. For an upscaling purpose, three seismic profiles were acquired within the Tornquist suture zone in the southwest of Sweden and historical crustal-scale offshore BABEL lines revisited. A number of dykes have been imaged and implications for the storage and tectonic setting within the zone discussed.
Cited articles
Alghamdi, A., Hesse, M. A., Chen, J., and Ghattas, O.: Bayesian Poroelastic
Aquifer Characterization From InSAR Surface Deformation Data. Part I:
Maximum A Posteriori Estimate, Water Resour. Res., 56, e2020WR027391,
https://doi.org/10.1029/2020WR027391, 2020.
Barbour, A. J. and Wyatt, F. K.: Modeling strain and pore pressure
associated with fluid extraction: The Pathfinder Ranch experiment, J.
Geophys. Res.-Sol. Ea., 119, 5254–5273, https://doi.org/10.1002/2014JB011169,
2014.
Barrias, A., Casas, J., and Villalba, S.: A review of distributed optical
fiber sensors for civil engineering applications, Sensors, 16, 748, https://doi.org/10.3390/s16050748,
2016.
Becker, M. W., Ciervo, C., Cole, M., Coleman, T., and Mondanos, M.: Fracture hydromechanical response measured by fiber optic distributed acoustic sensing at milliHertz frequencies, Geophys. Res. Lett., 44, 7295–7302, https://doi.org/10.1002/2017GL073931, 2017.
Bense, V. F., Read, T., Bour, O., Le Borgne, T., Coleman, T., Krause, S.,
Chalari, A., Mondanos, M., Ciocca, F., and Selker, J. S.: Distributed T
emperature S ensing as a downhole tool in hydrogeology, Water Resour. Res.,
52, 9259–9273, 2016.
Benson, S., Cook, P., Anderson, J., Bachu, S., Nimir, H. B., Basu, B.,
Bradshaw, J., Deguchi, G., Gale, J., and von Goerne, G.: Underground
geological storage, IPCC Spec. Rep. carbon dioxide capture storage,
195–276, 2005.
Biot, M. A.: General theory of three-dimensional consolidation, J. Appl.
Phys., 12, 155–164, 1941.
Bohloli, B., Bjørnarå, T. I., Park, J., and Rucci, A.: Can we use
surface uplift data for reservoir performance monitoring? A case study from
In Salah, Algeria, Int. J. Greenh. Gas Con., 76, 200–207, https://doi.org/10.1016/j.ijggc.2018.06.024,
2018.
Bonì, R., Meisina, C., Teatini, P., Zucca, F., Zoccarato, C.,
Franceschini, A., Ezquerro, P., Béjar-Pizarro, M., Antonio
Fernández-Merodo, J., Guardiola-Albert, C., Luis Pastor, J., Tomás, R., and Herrera, G.: 3D groundwater flow and deformation modelling of Madrid
aquifer, J. Hydrol., 585, 124773,
https://doi.org/10.1016/j.jhydrol.2020.124773, 2020.
Cheng, A. H.-D.: Poroelasticity, Springer, Cham, https://doi.org/10.1007/978-3-319-25202-5, 2016.
Daley, T. M., Freifeld, B. M., Ajo-Franklin, J., Dou, S., Pevzner, R.,
Shulakova, V., Kashikar, S., Miller, D. E., Goetz, J., and Henninges, J.:
Field testing of fiber-optic distributed acoustic sensing (DAS) for
subsurface seismic monitoring, Lead. Edge, 32, 699–706,
2013.
des Tombe, B. F., Bakker, M., Smits, F., Schaars, F., and van der Made, K.:
Estimation of the variation in specific discharge over large depth using
Distributed Temperature Sensing (DTS) measurements of the heat pulse
response, Water Resour. Res., 55, 811–826, 2019.
Ferronato, M., Gambolati, G., Teatini, P., and Baù, D.: Interpretation of
radioactive marker measurements to evaluate compaction in the Northern
Adriatic gas fields, SPE Reserv. Eval. Eng., 6, 401–411, 2003.
Freifeld, B. M., Finsterle, S., Onstott, T. C., Toole, P., and Pratt, L. M.:
Ground surface temperature reconstructions: Using in situ estimates for
thermal conductivity acquired with a fiber-optic distributed thermal
perturbation sensor, Geophys. Res. Lett., 35, L14309, https://doi.org/10.1029/2008GL034762,
2008.
Guglielmi, Y., Nussbaum, C., Jeanne, P., Rutqvist, J., Cappa, F., and
Birkholzer, J.: Complexity of Fault Rupture and Fluid Leakage in Shale:
Insights From a Controlled Fault Activation Experiment, J. Geophys. Res.-Sol. Ea., 125, e2019JB017781, https://doi.org/10.1029/2019JB017781, 2020.
Hartog, A. H.: An introduction to distributed optical fibre sensors, CRC
press, Boca Raton, FL, USA, 2017.
Hisz, D. B., Murdoch, L. C., and Germanovich, L. N.: A portable borehole
extensometer and tiltmeter for characterizing aquifers, Water Resour. Res.,
49, 7900–7910, 2013.
Jousset, P., Reinsch, T., Ryberg, T., Blanck, H., Clarke, A., Aghayev, R.,
Hersir, G. P., Henninges, J., Weber, M., and Krawczyk, C. M.: Dynamic strain
determination using fibre-optic cables allows imaging of seismological and
structural features, Nat. Commun., 9, 2509, https://doi.org/10.1038/s41467-018-04860-y,
2018.
Kinoshita, C. and Saffer, D. M.: In Situ Permeability and Scale Dependence
of an Active Accretionary Prism Determined From Cross-Borehole Experiments,
Geophys. Res. Lett., 45, 6935–6943, https://doi.org/10.1029/2018GL078304, 2018.
Kishida, K., Yamauchi, Y., and Guzik, A.: Study of Optical Fibers
Strain-Temperature Sensitivities Using Hybrid Brillouin-Rayleigh System, Photonic Sensors,
4, 1–11, https://doi.org/10.1007/s13320-013-0136-1, 2014.
Kogure, T. and Okuda, Y.: Monitoring the vertical distribution of
rainfall-induced strain changes in a landslide measured by distributed fiber
optic sensing (DFOS) with Rayleigh backscattering, Geophys. Res. Lett.,
45, 4033–4040, https://doi.org/10.1029/2018GL077607, 2018.
Koyamada, Y., Imahama, M., Kubota, K., and Hogari, K.: Fiber-optic
distributed strain and temperature sensing with very high measurand
resolution over long range using coherent OTDR, J. Lightwave Technol., 27,
1142–1146, 2009.
Krietsch, H., Gischig, V., Jalali, M. R., Doetsch, J., Valley, B., and Amann, F.: A comparison of FBG-and Brillouin-strain sensing in the framework of a
decameter-scale hydraulic stimulation experiment, in: 52nd US Rock
Mechanics/Geomechanics Symposium, American Rock Mechanics Association,
2018.
Krietsch, H., Gischig, V. S., Doetsch, J., Evans, K. F., Villiger, L., Jalali,
M., Valley, B., Löw, S., and Amann, F.: Hydromechanical processes and their
influence on the stimulation effected volume: observations from a
decameter-scale hydraulic stimulation project, Solid Earth, 11, 1699–1729,
https://doi.org/10.5194/se-11-1699-2020, 2020.
Lei, X., Xue, Z., and Hashimoto, T.: Fiber Optic Sensing for Geomechanical Monitoring: (2) – Distributed Strain Measurements at a Pumping Test and Geomechanical Modeling of Deformation of Reservoir Rocks, Appl. Sci., 9, 417, https://doi.org/10.3390/app9030417, 2019.
Lellouch, A., Yuan, S., Spica, Z., Biondi, B., and Ellsworth, W. L.: Seismic
Velocity Estimation Using Passive Downhole Distributed Acoustic Sensing
Records: Examples From the San Andreas Fault Observatory at Depth, J.
Geophys. Res.-Sol. Ea., 124, 6931–6948, https://doi.org/10.1029/2019JB017533,
2019.
Lindsey, N. J., Dawe, T. C., and Ajo-franklin, J. B.: Illuminating seafloor
faults and ocean dynamics with dark fiber distributed acoustic sensing, Science,
1107, 1103–1107, 2019.
Lindsey, N. J., Rademacher, H., and Ajo-Franklin, J. B.: On the Broadband
Instrument Response of Fiber-Optic DAS Arrays, J. Geophys. Res.-Sol. Ea.,
125, e2019JB018145, https://doi.org/10.1029/2019JB018145, 2020.
Luo, H., Li, H., Lu, Y., Li, Y., and Guo, Z.: Inversion of distributed
temperature measurements to interpret the flow profile for a multistage
fractured horizontal well in low-permeability gas reservoir, Appl. Math.
Model., 77, 360–377, https://doi.org/10.1016/j.apm.2019.07.047, 2020.
Maldaner, C. H., Munn, J. D., Coleman, T. I., Molson, J. W., and Parker, B. L.: Groundwater Flow Quantification in Fractured Rock Boreholes Using Active
Distributed Temperature Sensing Under Natural Gradient Conditions, Water
Resour. Res., 55, 3285–3306, https://doi.org/10.1029/2018WR024319, 2019.
Mouli-Castillo, J., Wilkinson, M., Mignard, D., McDermott, C., Haszeldine, R. S., and Shipton, Z. K.: Inter-seasonal compressed-air energy storage using
saline aquifers, Nat. Energy, 4, 131–139, 2019.
Murdoch, L. C., Freeman, C. E., Germanovich, L. N., Thrash, C., and DeWolf, S.: Using in situ vertical displacements to characterize changes in moisture
load, Water Resour. Res., 51, 5998–6016,
https://doi.org/10.1002/2015WR017335, 2015.
Murdoch, L. C., Germanovich, L. N., DeWolf, S. J., Moysey, S. M. J., Hanna, A. C., Kim, S., and Duncan, R. G.: Feasibility of using in situ deformation
to monitor CO2 storage, Int. J. Greenh. Gas Con., 93,
102853, https://doi.org/10.1016/j.ijggc.2019.102853, 2020.
Neuzil, C. E.: Hydromechanical coupling in geologic processes, Hydrogeol. J., 11, 41–83, 2003.
Permann, C. J., Gaston, D. R., Andrš, D., Carlsen, R. W., Kong, F.,
Lindsay, A. D., Miller, J. M., Peterson, J. W., Slaughter, A. E., Stogner, R. H., and Martineau, R. C.: MOOSE: Enabling massively parallel multiphysics
simulation, SoftwareX, 11, 100430,
https://doi.org/10.1016/j.softx.2020.100430, 2020.
Rezaei, A. and Mousavi, Z.: Characterization of land deformation, hydraulic
head, and aquifer properties of the Gorgan confined aquifer, Iran, from
InSAR observations, J. Hydrol., 579, 124196, https://doi.org/10.1016/j.jhydrol.2019.124196, 2019.
Rice, J. R. and Cleary, M. P.: Some basic stress diffusion solutions for
fluid-saturated elastic porous media with compressible constituents, Rev.
Geophys., 14, 227–241, 1976.
Rudnicki, J. W.: Fluid mass sources and point forces in linear elastic
diffusive solids, Mech. Mater., 5, 383–393, 1986.
Rutqvist, J., Rinaldi, A. P., Cappa, F., Jeanne, P., Mazzoldi, A., Urpi, L.,
Guglielmi, Y., and Vilarrasa, V.: Fault activation and induced seismicity in
geological carbon storage – Lessons learned from recent modeling studies, J. Rock Mech. Geotech. Eng., 8, 789–804,
https://doi.org/10.1016/j.jrmge.2016.09.001, 2016.
Schenato, L.: A review of distributed fibre optic sensors for
geo-hydrological applications, Appl. Sci., 7, 896, https://doi.org/10.3390/app7090896,
2017.
Schuite, J., Longuevergne, L., Bour, O., Boudin, F., Durand, S., and
Lavenant, N.: Inferring field-scale properties of a fractured aquifer from
ground surface deformation during a well test, Geophys. Res. Lett., 42,
10–696, 2015.
Schuite, J., Longuevergne, L., Bour, O., Burbey, T. J., Boudin, F.,
Lavenant, N., and Davy, P.: Understanding the hydromechanical behavior of a
fault zone from transient surface tilt and fluid pressure observations at
hourly time scales, Water Resour. Res., 53, 10558–10582, 2017.
Schweisinger, T., Svenson, E. J., and Murdoch, L. C.: Introduction to
hydromechanical well tests in fractured rock aquifers, Ground Water, 47,
69–79, https://doi.org/10.1111/j.1745-6584.2008.00501.x, 2009.
Shanafield, M., Banks, E. W., Arkwright, J. W., and Hausner, M. B.:
Fiber-optic Sensing for Environmental Applications: Where We've Come From-
and What's Possible?, Water Resour. Res., 54, 2012–2017,
https://doi.org/10.1029/2018WR022768, 2018.
Smith, R. and Knight, R.: Modeling Land Subsidence Using InSAR and Airborne
Electromagnetic Data, Water Resour. Res., 55, 2801–2819,
https://doi.org/10.1029/2018WR024185, 2019.
Sun, Y., Xue, Z., Hashimoto, T., and Lei, X.: Distributed Fiber Optic Sensing System for Well-based Monitoring Water Injection Tests – A Geomechanical Responses Perspective, Water Resour. Res., 56, 1–30, https://doi.org/10.1029/2019WR024794, 2020.
Vasco, D. W., Ferretti, A., and Novali, F.: Reservoir monitoring and
characterization using satellite geodetic data: Interferometric synthetic
aperture radar observations from the Krechba field, Algeria, Geophysics,
73, WA113–WA122, 2008.
Vasco, D. W., Rucci, A., Ferretti, A., Novali, F., Bissell, R. C., Ringrose, P. S., Mathieson, A. S., and Wright, I. W.: Satellite-based measurements of
surface deformation reveal fluid flow associated with the geological storage
of carbon dioxide, Geophys. Res. Lett., 37, L03303, https://doi.org/10.1029/2009GL041544, 2010.
Vilarrasa, V., Carrera, J., and Olivella, S.: Hydromechanical
characterization of CO2 injection sites, Int. J. Greenh. Gas Con., 19,
665–677, 2013.
Wang, H. F.: Theory of linear poroelasticity with applications to
geomechanics and hydrogeology, Princeton University Press, Princeton, New Jersey,
2017.
Wu, Q., Nair, S., Shuck, M., van Oort, E., Guzik, A., and Kishida, K.:
Advanced distributed fiber optic sensors for monitoring real-time cementing
operations and long term zonal isolation, J. Petrol Sci. Eng., 158, 479–493,
2017.
Yang, D., Li, Q., and Zhang, L.: Propagation of pore pressure diffusion waves
in saturated porous media, J. Appl. Phys., 117, 134902, https://doi.org/10.1063/1.4916805, 2015.
Yang, D., Li, Q., and Zhang, L.: Characteristics of carbon dioxide emissions
from a seismically active fault, Aerosol Air Qual. Res., 19, 1911–1919,
2019.
Zappone, A., Rinaldi, A. P., Grab, M., Wenning, Q., Roques, C., Madonna, C.,
Obermann, A., Bernasconi, S. M., Soom, F., Cook, P., Guglielmi, Y., Nussbaum,
C., Giardini, D., and Wiemer, S.: Fault sealing and caprock integrity for
CO2 storage: an in-situ injection experiment, Solid Earth Discuss.,
https://doi.org/10.5194/se-2020-100, in review, 2020.
Zhang, C., Shi, B., Gu, K., Liu, S., Wu, J., Zhang, S., Zhang, L., Jiang, H.,
and Wei, G.: Vertically distributed sensing of deformation using fiber optic
sensing, Geophys. Res. Lett., 45, 11–732, 2018.
Zhang, Y. and Xue, Z.: Deformation-Based Monitoring of Water Migration in
Rocks Using Distributed Fiber Optic Strain Sensing: A Laboratory Study,
Water Resour. Res., 55, 8368–8383, 2019.
Zhang, Y., Xue, Z., Park, H., Shi, J., Kiyama, T., Lei, X., Sun, Y., and
Liang, Y.: Tracking CO2 Plumes in Clay-Rich Rock by Distributed Fiber Optic
Strain Sensing (DFOSS): A Laboratory Demonstration, Water Resour. Res.,
55, 856–867, 2019.
Zhang, Y., Lei, X., Hashimoto, T., and Xue, Z.: In situ hydromechanical responses during well drilling recorded by fiber-optic distributed strain sensing (Dataset), Figshare, https://doi.org/10.6084/m9.figshare.12009504, 2020.
Zhu, T. and Stensrud, D. J.: Characterizing Thunder-Induced Ground Motions
Using Fiber-Optic Distributed Acoustic Sensing Array, J. Geophys. Res.-Atmos., 124, 12810–12823, 2019.
Short summary
Spatially continuous strain responses in two monitoring wells induced by a well-drilling process were monitored using high-resolution fiber-optic distributed strain sensing (DSS). The modeling results suggest that the strain polarities and magnitudes along the wellbores may be indicative of the layered-permeability structure or heterogeneous formation damage. The performance and value of DSS as a novel hydrogeophysical tool for in situ subsurface monitoring are emphasized.
Spatially continuous strain responses in two monitoring wells induced by a well-drilling process...
Special issue