Articles | Volume 12, issue 5
https://doi.org/10.5194/se-12-1075-2021
https://doi.org/10.5194/se-12-1075-2021
Research article
 | 
17 May 2021
Research article |  | 17 May 2021

Seismic noise variability as an indicator of urban mobility during the COVID-19 pandemic in the Santiago metropolitan region, Chile

Javier Ojeda and Sergio Ruiz

Related subject area

Subject area: Crustal structure and composition | Editorial team: Seismics, seismology, paleoseismology, geoelectrics, and electromagnetics | Discipline: Seismology
Constraints on fracture distribution in the Los Humeros geothermal field from beamforming of ambient seismic noise
Heather Kennedy, Katrin Löer, and Amy Gilligan
Solid Earth, 13, 1843–1858, https://doi.org/10.5194/se-13-1843-2022,https://doi.org/10.5194/se-13-1843-2022, 2022
Short summary
Quantifying gender gaps in seismology authorship
Laura Anna Ermert, Maria Koroni, and Naiara Korta Martiartu
EGUsphere, https://doi.org/10.5194/egusphere-2022-810,https://doi.org/10.5194/egusphere-2022-810, 2022
Short summary
Radial anisotropy and S-wave velocity depict the internal to external zone transition within the Variscan orogen (NW Iberia)
Jorge Acevedo, Gabriela Fernández-Viejo, Sergio Llana-Fúnez, Carlos López-Fernández, Javier Olona, and Diego Pérez-Millán
Solid Earth, 13, 659–679, https://doi.org/10.5194/se-13-659-2022,https://doi.org/10.5194/se-13-659-2022, 2022
Short summary
Distributed acoustic sensing as a tool for subsurface mapping and seismic event monitoring: a proof of concept
Nicola Piana Agostinetti, Alberto Villa, and Gilberto Saccorotti
Solid Earth, 13, 449–468, https://doi.org/10.5194/se-13-449-2022,https://doi.org/10.5194/se-13-449-2022, 2022
Short summary
Seismic monitoring of the STIMTEC hydraulic stimulation experiment in anisotropic metamorphic gneiss
Carolin M. Boese, Grzegorz Kwiatek, Thomas Fischer, Katrin Plenkers, Juliane Starke, Felix Blümle, Christoph Janssen, and Georg Dresen
Solid Earth, 13, 323–346, https://doi.org/10.5194/se-13-323-2022,https://doi.org/10.5194/se-13-323-2022, 2022
Short summary

Cited articles

Apple: Mobility Trends Reports, available at: https://www.apple.com/covid19/mobility, (last access: 2 October 2020), 2020. a, b
Ardhuin, F., Stutzmann, E., Schimmel, M., and Mangeney, A.: Ocean wave sources of seismic noise, J. Geophys. Res.-Oceans, 116, C09004, https://doi.org/10.1029/2011JC006952, 2011. a
Barrientos, S.: The seismic network of Chile, Seismol. Res. Lett., 89, 467–474, 2018. a, b
Bennett, M.: All things equal? Heterogeneity in policy effectiveness against COVID-19 spread in chile, World Development, 137, 105208, https://doi.org/10.1016/j.worlddev.2020.105208, 2021. a
Boese, C., Wotherspoon, L., Alvarez, M., and Malin, P.: Analysis of anthropogenic and natural noise from multilevel borehole seismometers in an urban environment, Auckland, New Zealand, Bull. Seismol. Soc. Am., 105, 285–299, 2015. a
Download
Short summary
In Santiago, Chile, the lockdown imposed due to COVID-19 was recorded by seismological instruments. This analysis shows temporal changes in the surface vibrations controlled by lockdown phases, mobility, and epidemiological factors. Our findings suggest that dynamic lockdown and the early deconfinement in April 2020 caused an increase in mobility and therefore virus transmission. We propose that seismic networks could be used to monitor urban mobility as a new proxy in public policies.