Articles | Volume 12, issue 8
https://doi.org/10.5194/se-12-1719-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/se-12-1719-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Thick- and thin-skinned basin inversion in the Danish Central Graben, North Sea – the role of deep evaporites and basement kinematics
Torsten Hundebøl Hansen
CORRESPONDING AUTHOR
Department of Geoscience, Aarhus University, Aarhus C, 8000, Denmark
Ole Rønø Clausen
Department of Geoscience, Aarhus University, Aarhus C, 8000, Denmark
Katrine Juul Andresen
Department of Geoscience, Aarhus University, Aarhus C, 8000, Denmark
Related authors
No articles found.
Kelly A. Hogan, Martin Jakobsson, Larry Mayer, Brendan T. Reilly, Anne E. Jennings, Joseph S. Stoner, Tove Nielsen, Katrine J. Andresen, Egon Nørmark, Katrien A. Heirman, Elina Kamla, Kevin Jerram, Christian Stranne, and Alan Mix
The Cryosphere, 14, 261–286, https://doi.org/10.5194/tc-14-261-2020, https://doi.org/10.5194/tc-14-261-2020, 2020
Short summary
Short summary
Glacial sediments in fjords hold a key record of environmental and ice dynamic changes during ice retreat. Here we use a comprehensive geophysical survey from the Petermann Fjord system in NW Greenland to map these sediments, identify depositional processes and calculate glacial erosion rates for the retreating palaeo-Petermann ice stream. Ice streaming is the dominant control on glacial erosion rates which vary by an order of magnitude during deglaciation and are in line with modern rates.
Ulrich Kotthoff, Jeroen Groeneveld, Jeanine L. Ash, Anne-Sophie Fanget, Nadine Quintana Krupinski, Odile Peyron, Anna Stepanova, Jonathan Warnock, Niels A. G. M. Van Helmond, Benjamin H. Passey, Ole Rønø Clausen, Ole Bennike, Elinor Andrén, Wojciech Granoszewski, Thomas Andrén, Helena L. Filipsson, Marit-Solveig Seidenkrantz, Caroline P. Slomp, and Thorsten Bauersachs
Biogeosciences, 14, 5607–5632, https://doi.org/10.5194/bg-14-5607-2017, https://doi.org/10.5194/bg-14-5607-2017, 2017
Short summary
Short summary
We present reconstructions of paleotemperature, paleosalinity, and paleoecology from the Little Belt (Site M0059) over the past ~ 8000 years and evaluate the applicability of numerous proxies. Conditions were lacustrine until ~ 7400 cal yr BP. A transition to brackish–marine conditions then occurred within ~ 200 years. Salinity proxies rarely allowed quantitative estimates but revealed congruent results, while quantitative temperature reconstructions differed depending on the proxies used.
Related subject area
Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Structural geology and tectonics, paleoseismology, rock physics, experimental deformation | Discipline: Tectonics
Stress state at faults: the influence of rock stiffness contrast, stress orientation, and ratio
Interseismic and long-term deformation of southeastern Sicily driven by the Ionian slab roll-back
Rift and plume: a discussion on active and passive rifting mechanisms in the Afro-Arabian rift based on synthesis of geophysical data
Propagating rifts: the roles of crustal damage and ascending mantle fluids
Cretaceous–Paleocene extension at the southwestern continental margin of India and opening of the Laccadive basin: constraints from geophysical data
On the role of trans-lithospheric faults in the long-term seismotectonic segmentation of active margins: a case study in the Andes
Extensional exhumation of cratons: insights from the Early Cretaceous Rio Negro–Juruena belt (Amazonian Craton, Colombia)
Hydrogen solubility of stishovite provides insights into water transportation to the deep Earth
Networks of geometrically coherent faults accommodate Alpine tectonic inversion offshore southwestern Iberia
Along-strike variation of volcanic addition controlling post breakup sedimentary infill: Pelotas margin, Austral South Atlantic
Melt-enhanced strain localization and phase mixing in a large-scale mantle shear zone (Ronda peridotite, Spain)
Selective inversion of rift basins in lithospheric-scale analogue experiments
The link between Somalian Plate rotation and the East African Rift System: an analogue modelling study
Inversion of extensional basins parallel and oblique to their boundaries: inferences from analogue models and field observations from the Dolomites Indenter, European eastern Southern Alps
Magnetic fabric analyses of basin inversion: a sandbox modelling approach
The influence of crustal strength on rift geometry and development – insights from 3D numerical modelling
Construction of the Ukrainian Carpathian wedge from low-temperature thermochronology and tectono-stratigraphic analysis
Analogue modelling of basin inversion: a review and future perspectives
Insights into the interaction of a shale with CO2
Tectonostratigraphic evolution of the Slyne Basin
Control of crustal strength, tectonic inheritance, and stretching/ shortening rates on crustal deformation and basin reactivation: insights from laboratory models
Late Cretaceous–early Palaeogene inversion-related tectonic structures at the northeastern margin of the Bohemian Massif (southwestern Poland and northern Czechia)
The analysis of slip tendency of major tectonic faults in Germany
Earthquake ruptures and topography of the Chilean margin controlled by plate interface deformation
Late Quaternary faulting in the southern Matese (Italy): implications for earthquake potential and slip rate variability in the southern Apennines
Rare earth elements associated with carbonatite–alkaline complexes in western Rajasthan, India: exploration targeting at regional scale
Structural complexities and tectonic barriers controlling recent seismic activity in the Pollino area (Calabria–Lucania, southern Italy) – constraints from stress inversion and 3D fault model building
The Mid Atlantic Appalachian Orogen Traverse: a comparison of virtual and on-location field-based capstone experiences
Chronology of thrust propagation from an updated tectono-sedimentary framework of the Miocene molasse (western Alps)
Orogenic lithosphere and slabs in the greater Alpine area – interpretations based on teleseismic P-wave tomography
Ground-penetrating radar signature of Quaternary faulting: a study from the Mt. Pollino region, southern Apennines, Italy
U–Pb dating of middle Eocene–Pliocene multiple tectonic pulses in the Alpine foreland
Detrital zircon provenance record of the Zagros mountain building from the Neotethys obduction to the Arabia–Eurasia collision, NW Zagros fold–thrust belt, Kurdistan region of Iraq
The Subhercynian Basin: an example of an intraplate foreland basin due to a broken plate
Late to post-Variscan basement segmentation and differential exhumation along the SW Bohemian Massif, central Europe
Holocene surface-rupturing earthquakes on the Dinaric Fault System, western Slovenia
Contribution of gravity gliding in salt-bearing rift basins – a new experimental setup for simulating salt tectonics under the influence of sub-salt extension and tilting
Complex rift patterns, a result of interacting crustal and mantle weaknesses, or multiphase rifting? Insights from analogue models
Interactions of plutons and detachments: a comparison of Aegean and Tyrrhenian granitoids
Insights from elastic thermobarometry into exhumation of high-pressure metamorphic rocks from Syros, Greece
Stress rotation – impact and interaction of rock stiffness and faults
Late Cretaceous to Paleogene exhumation in central Europe – localized inversion vs. large-scale domal uplift
Kinematics and extent of the Piemont–Liguria Basin – implications for subduction processes in the Alps
Effects of basal drag on subduction dynamics from 2D numerical models
Hydrocarbon accumulation in basins with multiple phases of extension and inversion: examples from the Western Desert (Egypt) and the western Black Sea
Long-wavelength late-Miocene thrusting in the north Alpine foreland: implications for late orogenic processes
A reconstruction of Iberia accounting for Western Tethys–North Atlantic kinematics since the late-Permian–Triassic
The enigmatic curvature of Central Iberia and its puzzling kinematics
Control of 3-D tectonic inheritance on fold-and-thrust belts: insights from 3-D numerical models and application to the Helvetic nappe system
Plio-Quaternary tectonic evolution of the southern margin of the Alboran Basin (Western Mediterranean)
Moritz O. Ziegler, Robin Seithel, Thomas Niederhuber, Oliver Heidbach, Thomas Kohl, Birgit Müller, Mojtaba Rajabi, Karsten Reiter, and Luisa Röckel
Solid Earth, 15, 1047–1063, https://doi.org/10.5194/se-15-1047-2024, https://doi.org/10.5194/se-15-1047-2024, 2024
Short summary
Short summary
The rotation of the principal stress axes in a fault structure because of a rock stiffness contrast has been investigated for the impact of the ratio of principal stresses, the angle between principal stress axes and fault strike, and the ratio of the rock stiffness contrast. A generic 2D geomechanical model is employed for the systematic investigation of the parameter space.
Amélie Viger, Stéphane Dominguez, Stéphane Mazzotti, Michel Peyret, Maxime Henriquet, Giovanni Barreca, Carmelo Monaco, and Adrien Damon
Solid Earth, 15, 965–988, https://doi.org/10.5194/se-15-965-2024, https://doi.org/10.5194/se-15-965-2024, 2024
Short summary
Short summary
New satellite geodetic data (PS-InSAR) evidence a generalized subsidence and an eastward tilting of southeastern Sicily combined with a local relative uplift along its eastern coast. We perform flexural and elastic modeling and show that the slab pull force induced by the Ionian slab roll-back and extrado deformation reproduce the measured surface deformation. Finally, we propose an original seismic cycle model that is mainly driven by the southward migration of the Ionian slab roll-back.
Ran Issachar, Peter Haas, Nico Augustin, and Jörg Ebbing
Solid Earth, 15, 807–826, https://doi.org/10.5194/se-15-807-2024, https://doi.org/10.5194/se-15-807-2024, 2024
Short summary
Short summary
In this contribution, we explore the causal relationship between the arrival of the Afar plume and the initiation of the Afro-Arabian rift. We mapped the rift architecture in the triple-junction region using geophysical data and reviewed the available geological data. We interpret a progressive development of the plume–rift system and suggest an interaction between active and passive mechanisms in which the plume provided a push force that changed the kinematics of the associated plates.
Folarin Kolawole and Rasheed Ajala
Solid Earth, 15, 747–762, https://doi.org/10.5194/se-15-747-2024, https://doi.org/10.5194/se-15-747-2024, 2024
Short summary
Short summary
We investigate the upper-crustal structure of the Rukwa–Tanganyika rift zone in East Africa, where the Tanganyika rift interacts with the Rukwa and Mweru-Wantipa rifts, coinciding with abundant seismicity at the rift tips. Seismic velocity structure and patterns of seismicity clustering reveal zones around 10 km deep with anomalously high Vp / Vs ratios at the rift tips, indicative of a localized mechanically weakened crust caused by mantle volatiles and damage associated with bending strain.
Mathews George Gilbert, Parakkal Unnikrishnan, and Munukutla Radhakrishna
Solid Earth, 15, 671–682, https://doi.org/10.5194/se-15-671-2024, https://doi.org/10.5194/se-15-671-2024, 2024
Short summary
Short summary
The study identifies evidence for extension south of Tellicherry Arch along the southwestern continental margin of India through the integrated analysis of multichannel seismic and gravity data. The sediment deposition pattern indicates that this extension occurred after the Eocene. We further propose that the anticlockwise rotation of India and the passage of the Réunion plume have facilitated the opening of the Laccadive basin.
Gonzalo Yanez, Jose Piquer, and Orlando Rivera
EGUsphere, https://doi.org/10.5194/egusphere-2024-1338, https://doi.org/10.5194/egusphere-2024-1338, 2024
Short summary
Short summary
We postulate that the observed spatial distribution of large earthquakes in active convergence zones, organized in segments where large events are repeated every 100–300 years, depends on large scale continental faults and fluid release from the subducting slab. In order to support this model, we use proxies at different spatial and temporal scales (historic seismicity, megathrust slip solutions, inter-seismic cumulative seismicity, GPS/viscous plate coupling, and coast line morphology).
Ana Fonseca, Simon Nachtergaele, Amed Bonilla, Stijn Dewaele, and Johan De Grave
Solid Earth, 15, 329–352, https://doi.org/10.5194/se-15-329-2024, https://doi.org/10.5194/se-15-329-2024, 2024
Short summary
Short summary
This study explores the erosion and exhumation processes and history of early continental crust hidden within the Amazonian Rainforest. This crust forms part of the Amazonian Craton, an ancient continental fragment. Our surprising findings reveal the area underwent rapid early Cretaceous exhumation triggered by tectonic forces. This discovery challenges the traditional perception that cratons are stable and long-lived entities and shows they can deform readily under specific geological contexts.
Mengdan Chen, Changxin Yin, Danling Chen, Long Tian, Liang Liu, and Lei Kang
Solid Earth, 15, 215–227, https://doi.org/10.5194/se-15-215-2024, https://doi.org/10.5194/se-15-215-2024, 2024
Short summary
Short summary
Stishovite remains stable under mantle conditions and can incorporate various amounts of water in its crystal structure. We provide a systematic review of previous studies on water in stishovite and propose a new model for water solubility of Al-bearing stishovite. Calculation results based on this model suggest that stishovite may effectively accommodate water from the breakdown of hydrous minerals and could make an important contribution to water enrichment in the mantle transition zone.
Tiago M. Alves
Solid Earth, 15, 39–62, https://doi.org/10.5194/se-15-39-2024, https://doi.org/10.5194/se-15-39-2024, 2024
Short summary
Short summary
Alpine tectonic inversion is reviewed for southwestern Iberia, known for its historical earthquakes and tsunamis. High-quality 2D seismic data image 26 faults mapped to a depth exceeding 10 km. Normal faults accommodated important vertical uplift and shortening. They are 100–250 km long and may generate earthquakes with Mw > 8.0. Regions of Late Mesozoic magmatism comprise thickened, harder crust, forming lateral buttresses to compression and promoting the development of fold-and-thrust belts.
Marlise Colling Cassel, Nick Kusznir, Gianreto Manatschal, and Daniel Sauter
EGUsphere, https://doi.org/10.5194/egusphere-2023-2584, https://doi.org/10.5194/egusphere-2023-2584, 2023
Short summary
Short summary
The Atlantic Ocean results from the break-up of the palaeocontinent Gondwana. Since then, the Brazilian and African margins record a thick volcanic layers and received a large contribution of sediments recording this process. We show the influence of early volcanics on the sediments deposited later by analysing the Pelotas Margin, south of Brazil. The volume of volcanic layers is not homogeneous along this sector, promoting variation in the space available to accommodate later sediments.
Sören Tholen, Jolien Linckens, and Gernold Zulauf
Solid Earth, 14, 1123–1154, https://doi.org/10.5194/se-14-1123-2023, https://doi.org/10.5194/se-14-1123-2023, 2023
Short summary
Short summary
Intense phase mixing with homogeneously distributed secondary phases and irregular grain boundaries and shapes indicates that metasomatism formed the microstructures predominant in the shear zone of the NW Ronda peridotite. Amphibole presence, olivine crystal orientations, and the consistency to the Beni Bousera peridotite (Morocco) point to OH-bearing metasomatism by small fractions of evolved melts. Results confirm a strong link between reactions and localized deformation in the upper mantle.
Anindita Samsu, Weronika Gorczyk, Timothy Chris Schmid, Peter Graham Betts, Alexander Ramsay Cruden, Eleanor Morton, and Fatemeh Amirpoorsaeed
Solid Earth, 14, 909–936, https://doi.org/10.5194/se-14-909-2023, https://doi.org/10.5194/se-14-909-2023, 2023
Short summary
Short summary
When a continent is pulled apart, it breaks and forms a series of depressions called rift basins. These basins lie above weakened crust that is then subject to intense deformation during subsequent tectonic compression. Our analogue experiments show that when a system of basins is squeezed in a direction perpendicular to the main trend of the basins, some basins rise up to form mountains while others do not.
Frank Zwaan and Guido Schreurs
Solid Earth, 14, 823–845, https://doi.org/10.5194/se-14-823-2023, https://doi.org/10.5194/se-14-823-2023, 2023
Short summary
Short summary
The East African Rift System (EARS) is a major plate tectonic feature splitting the African continent apart. Understanding the tectonic processes involved is of great importance for societal and economic reasons (natural hazards, resources). Laboratory experiments allow us to simulate these large-scale processes, highlighting the links between rotational plate motion and the overall development of the EARS. These insights are relevant when studying other rift systems around the globe as well.
Anna-Katharina Sieberer, Ernst Willingshofer, Thomas Klotz, Hugo Ortner, and Hannah Pomella
Solid Earth, 14, 647–681, https://doi.org/10.5194/se-14-647-2023, https://doi.org/10.5194/se-14-647-2023, 2023
Short summary
Short summary
Through analogue models and field observations, we investigate how inherited platform–basin geometries control strain localisation, style, and orientation of reactivated and new structures during inversion. Our study shows that the style of evolving thrusts and their changes along-strike are controlled by pre-existing rheological discontinuities. The results of this study are relevant for understanding inversion structures in general and for the European eastern Southern Alps in particular.
Thorben Schöfisch, Hemin Koyi, and Bjarne Almqvist
Solid Earth, 14, 447–461, https://doi.org/10.5194/se-14-447-2023, https://doi.org/10.5194/se-14-447-2023, 2023
Short summary
Short summary
A magnetic fabric analysis provides information about the reorientation of magnetic grains and is applied to three sandbox models that simulate different stages of basin inversion. The analysed magnetic fabrics reflect the different developed structures and provide insights into the different deformed stages of basin inversion. It is a first attempt of applying magnetic fabric analyses to basin inversion sandbox models but shows the possibility of applying it to such models.
Thomas B. Phillips, John B. Naliboff, Ken J. W. McCaffrey, Sophie Pan, Jeroen van Hunen, and Malte Froemchen
Solid Earth, 14, 369–388, https://doi.org/10.5194/se-14-369-2023, https://doi.org/10.5194/se-14-369-2023, 2023
Short summary
Short summary
Continental crust comprises bodies of varying strength, formed through numerous tectonic events. When subject to extension, these areas produce distinct rift and fault systems. We use 3D models to examine how rifts form above
strongand
weakareas of crust. We find that faults become more developed in weak areas. Faults are initially stopped at the boundaries with stronger areas before eventually breaking through. We relate our model observations to rift systems globally.
Marion Roger, Arjan de Leeuw, Peter van der Beek, Laurent Husson, Edward R. Sobel, Johannes Glodny, and Matthias Bernet
Solid Earth, 14, 153–179, https://doi.org/10.5194/se-14-153-2023, https://doi.org/10.5194/se-14-153-2023, 2023
Short summary
Short summary
We study the construction of the Ukrainian Carpathians with LT thermochronology (AFT, AHe, and ZHe) and stratigraphic analysis. QTQt thermal models are combined with burial diagrams to retrieve the timing and magnitude of sedimentary burial, tectonic burial, and subsequent exhumation of the wedge's nappes from 34 to ∼12 Ma. Out-of-sequence thrusting and sediment recycling during wedge building are also identified. This elucidates the evolution of a typical wedge in a roll-back subduction zone.
Frank Zwaan, Guido Schreurs, Susanne J. H. Buiter, Oriol Ferrer, Riccardo Reitano, Michael Rudolf, and Ernst Willingshofer
Solid Earth, 13, 1859–1905, https://doi.org/10.5194/se-13-1859-2022, https://doi.org/10.5194/se-13-1859-2022, 2022
Short summary
Short summary
When a sedimentary basin is subjected to compressional tectonic forces after its formation, it may be inverted. A thorough understanding of such
basin inversionis of great importance for scientific, societal, and economic reasons, and analogue tectonic models form a key part of our efforts to study these processes. We review the advances in the field of basin inversion modelling, showing how the modelling results can be applied, and we identify promising venues for future research.
Eleni Stavropoulou and Lyesse Laloui
Solid Earth, 13, 1823–1841, https://doi.org/10.5194/se-13-1823-2022, https://doi.org/10.5194/se-13-1823-2022, 2022
Short summary
Short summary
Shales are identified as suitable caprock formations for geolocigal CO2 storage thanks to their low permeability. Here, small-sized shale samples are studied under field-representative conditions with X-ray tomography. The geochemical impact of CO2 on calcite-rich zones is for the first time visualised, the role of pre-existing micro-fissures in the CO2 invasion trapping in the matererial is highlighted, and the initiation of micro-cracks when in contact with anhydrous CO2 is demonstrated.
Conor M. O'Sullivan, Conrad J. Childs, Muhammad M. Saqab, John J. Walsh, and Patrick M. Shannon
Solid Earth, 13, 1649–1671, https://doi.org/10.5194/se-13-1649-2022, https://doi.org/10.5194/se-13-1649-2022, 2022
Short summary
Short summary
The Slyne Basin is a sedimentary basin located offshore north-western Ireland. It formed through a long and complex evolution involving distinct periods of extension. The basin is subdivided into smaller basins, separated by deep structures related to the ancient Caledonian mountain-building event. These deep structures influence the shape of the basin as it evolves in a relatively unique way, where early faults follow these deep structures, but later faults do not.
Benjamin Guillaume, Guido M. Gianni, Jean-Jacques Kermarrec, and Khaled Bock
Solid Earth, 13, 1393–1414, https://doi.org/10.5194/se-13-1393-2022, https://doi.org/10.5194/se-13-1393-2022, 2022
Short summary
Short summary
Under tectonic forces, the upper part of the crust can break along different types of faults, depending on the orientation of the applied stresses. Using scaled analogue models, we show that the relative magnitude of compressional and extensional forces as well as the presence of inherited structures resulting from previous stages of deformation control the location and type of faults. Our results gives insights into the tectonic evolution of areas showing complex patterns of deformation.
Andrzej Głuszyński and Paweł Aleksandrowski
Solid Earth, 13, 1219–1242, https://doi.org/10.5194/se-13-1219-2022, https://doi.org/10.5194/se-13-1219-2022, 2022
Short summary
Short summary
Old seismic data recently reprocessed with modern software allowed us to study at depth the Late Cretaceous tectonic structures in the Permo-Mesozoic rock sequences in the Sudetes. The structures formed in response to Iberia collision with continental Europe. The NE–SW compression undulated the crystalline basement top and produced folds, faults and joints in the sedimentary cover. Our results are of importance for regional geology and in prospecting for deep thermal waters.
Luisa Röckel, Steffen Ahlers, Birgit Müller, Karsten Reiter, Oliver Heidbach, Andreas Henk, Tobias Hergert, and Frank Schilling
Solid Earth, 13, 1087–1105, https://doi.org/10.5194/se-13-1087-2022, https://doi.org/10.5194/se-13-1087-2022, 2022
Short summary
Short summary
Reactivation of tectonic faults can lead to earthquakes and jeopardize underground operations. The reactivation potential is linked to fault properties and the tectonic stress field. We create 3D geometries for major faults in Germany and use stress data from a 3D geomechanical–numerical model to calculate their reactivation potential and compare it to seismic events. The reactivation potential in general is highest for NNE–SSW- and NW–SE-striking faults and strongly depends on the fault dip.
Nadaya Cubas, Philippe Agard, and Roxane Tissandier
Solid Earth, 13, 779–792, https://doi.org/10.5194/se-13-779-2022, https://doi.org/10.5194/se-13-779-2022, 2022
Short summary
Short summary
Earthquake extent prediction is limited by our poor understanding of slip deficit patterns. From a mechanical analysis applied along the Chilean margin, we show that earthquakes are bounded by extensive plate interface deformation. This deformation promotes stress build-up, leading to earthquake nucleation; earthquakes then propagate along smoothed fault planes and are stopped by heterogeneously distributed deformation. Slip deficit patterns reflect the spatial distribution of this deformation.
Paolo Boncio, Eugenio Auciello, Vincenzo Amato, Pietro Aucelli, Paola Petrosino, Anna C. Tangari, and Brian R. Jicha
Solid Earth, 13, 553–582, https://doi.org/10.5194/se-13-553-2022, https://doi.org/10.5194/se-13-553-2022, 2022
Short summary
Short summary
We studied the Gioia Sannitica normal fault (GF) within the southern Matese fault system (SMF) in southern Apennines (Italy). It is a fault with a long slip history that has experienced recent reactivation or acceleration. Present activity has resulted in late Quaternary fault scarps and Holocene surface faulting. The maximum slip rate is ~ 0.5 mm/yr. Activation of the 11.5 km GF or the entire 30 km SMF can produce up to M 6.2 or M 6.8 earthquakes, respectively.
Malcolm Aranha, Alok Porwal, Manikandan Sundaralingam, Ignacio González-Álvarez, Amber Markan, and Karunakar Rao
Solid Earth, 13, 497–518, https://doi.org/10.5194/se-13-497-2022, https://doi.org/10.5194/se-13-497-2022, 2022
Short summary
Short summary
Rare earth elements (REEs) are considered critical mineral resources for future industrial growth due to their short supply and rising demand. This study applied an artificial-intelligence-based technique to target potential REE-deposit hosting areas in western Rajasthan, India. Uncertainties associated with the prospective targets were also estimated to aid decision-making. The presented workflow can be applied to similar regions elsewhere to locate potential zones of REE mineralisation.
Daniele Cirillo, Cristina Totaro, Giusy Lavecchia, Barbara Orecchio, Rita de Nardis, Debora Presti, Federica Ferrarini, Simone Bello, and Francesco Brozzetti
Solid Earth, 13, 205–228, https://doi.org/10.5194/se-13-205-2022, https://doi.org/10.5194/se-13-205-2022, 2022
Short summary
Short summary
The Pollino region is a highly seismic area of Italy. Increasing the geological knowledge on areas like this contributes to reducing risk and saving lives. We reconstruct the 3D model of the faults which generated the 2010–2014 seismicity integrating geological and seismological data. Appropriate relationships based on the dimensions of the activated faults suggest that they did not fully discharge their seismic potential and could release further significant earthquakes in the near future.
Steven Whitmeyer, Lynn Fichter, Anita Marshall, and Hannah Liddle
Solid Earth, 12, 2803–2820, https://doi.org/10.5194/se-12-2803-2021, https://doi.org/10.5194/se-12-2803-2021, 2021
Short summary
Short summary
Field trips in the Stratigraphy, Structure, Tectonics (SST) course transitioned to a virtual format in Fall 2020, due to the COVID pandemic. Virtual field experiences (VFEs) were developed in web Google Earth and were evaluated in comparison with on-location field trips via an online survey. Students recognized the value of VFEs for revisiting outcrops and noted improved accessibility for students with disabilities. Potential benefits of hybrid field experiences were also indicated.
Amir Kalifi, Philippe Hervé Leloup, Philippe Sorrel, Albert Galy, François Demory, Vincenzo Spina, Bastien Huet, Frédéric Quillévéré, Frédéric Ricciardi, Daniel Michoux, Kilian Lecacheur, Romain Grime, Bernard Pittet, and Jean-Loup Rubino
Solid Earth, 12, 2735–2771, https://doi.org/10.5194/se-12-2735-2021, https://doi.org/10.5194/se-12-2735-2021, 2021
Short summary
Short summary
Molasse deposits, deposited and deformed at the western Alpine front during the Miocene (23 to 5.6 Ma), record the chronology of that deformation. We combine the first precise chronostratigraphy (precision of ∼0.5 Ma) of the Miocene molasse, the reappraisal of the regional structure, and the analysis of growth deformation structures in order to document three tectonic phases and the precise chronology of thrust westward propagation during the second one involving the Belledonne basal thrust.
Mark R. Handy, Stefan M. Schmid, Marcel Paffrath, Wolfgang Friederich, and the AlpArray Working Group
Solid Earth, 12, 2633–2669, https://doi.org/10.5194/se-12-2633-2021, https://doi.org/10.5194/se-12-2633-2021, 2021
Short summary
Short summary
New images from the multi-national AlpArray experiment illuminate the Alps from below. They indicate thick European mantle descending beneath the Alps and forming blobs that are mostly detached from the Alps above. In contrast, the Adriatic mantle in the Alps is much thinner. This difference helps explain the rugged mountains and the abundance of subducted and exhumed units at the core of the Alps. The blobs are stretched remnants of old ocean and its margins that reach down to at least 410 km.
Maurizio Ercoli, Daniele Cirillo, Cristina Pauselli, Harry M. Jol, and Francesco Brozzetti
Solid Earth, 12, 2573–2596, https://doi.org/10.5194/se-12-2573-2021, https://doi.org/10.5194/se-12-2573-2021, 2021
Short summary
Short summary
Past strong earthquakes can produce topographic deformations, often
memorizedin Quaternary sediments, which are typically studied by paleoseismologists through trenching. Using a ground-penetrating radar (GPR), we unveiled possible buried Quaternary faulting in the Mt. Pollino seismic gap region (southern Italy). We aim to contribute to seismic hazard assessment of an area potentially prone to destructive events as well as promote our workflow in similar contexts around the world.
Luca Smeraglia, Nathan Looser, Olivier Fabbri, Flavien Choulet, Marcel Guillong, and Stefano M. Bernasconi
Solid Earth, 12, 2539–2551, https://doi.org/10.5194/se-12-2539-2021, https://doi.org/10.5194/se-12-2539-2021, 2021
Short summary
Short summary
In this paper, we dated fault movements at geological timescales which uplifted the sedimentary successions of the Jura Mountains from below the sea level up to Earth's surface. To do so, we applied the novel technique of U–Pb geochronology on calcite mineralizations that precipitated on fault surfaces during times of tectonic activity. Our results document a time frame of the tectonic evolution of the Jura Mountains and provide new insight into the broad geological history of the Western Alps.
Renas I. Koshnaw, Fritz Schlunegger, and Daniel F. Stockli
Solid Earth, 12, 2479–2501, https://doi.org/10.5194/se-12-2479-2021, https://doi.org/10.5194/se-12-2479-2021, 2021
Short summary
Short summary
As continental plates collide, mountain belts grow. This study investigated the provenance of rocks from the northwestern segment of the Zagros mountain belt to unravel the convergence history of the Arabian and Eurasian plates. Provenance data synthesis and field relationships suggest that the Zagros Mountains developed as a result of the oceanic crust emplacement on the Arabian continental plate, followed by the Arabia–Eurasia collision and later uplift of the broader region.
David Hindle and Jonas Kley
Solid Earth, 12, 2425–2438, https://doi.org/10.5194/se-12-2425-2021, https://doi.org/10.5194/se-12-2425-2021, 2021
Short summary
Short summary
Central western Europe underwent a strange episode of lithospheric deformation, resulting in a chain of small mountains that run almost west–east across the continent and that formed in the middle of a tectonic plate, not at its edges as is usually expected. Associated with these mountains, in particular the Harz in central Germany, are marine basins contemporaneous with the mountain growth. We explain how those basins came to be as a result of the mountains bending the adjacent plate.
Andreas Eberts, Hamed Fazlikhani, Wolfgang Bauer, Harald Stollhofen, Helga de Wall, and Gerald Gabriel
Solid Earth, 12, 2277–2301, https://doi.org/10.5194/se-12-2277-2021, https://doi.org/10.5194/se-12-2277-2021, 2021
Short summary
Short summary
We combine gravity anomaly and topographic data with observations from thermochronology, metamorphic grades, and the granite inventory to detect patterns of basement block segmentation and differential exhumation along the southwestern Bohemian Massif. Based on our analyses, we introduce a previously unknown tectonic structure termed Cham Fault, which, together with the Pfahl and Danube shear zones, is responsible for the exposure of different crustal levels during late to post-Variscan times.
Christoph Grützner, Simone Aschenbrenner, Petra Jamšek
Rupnik, Klaus Reicherter, Nour Saifelislam, Blaž Vičič, Marko Vrabec, Julian Welte, and Kamil Ustaszewski
Solid Earth, 12, 2211–2234, https://doi.org/10.5194/se-12-2211-2021, https://doi.org/10.5194/se-12-2211-2021, 2021
Short summary
Short summary
Several large strike-slip faults in western Slovenia are known to be active, but most of them have not produced strong earthquakes in historical times. In this study we use geomorphology, near-surface geophysics, and fault excavations to show that two of these faults had surface-rupturing earthquakes during the Holocene. Instrumental and historical seismicity data do not capture the strongest events in this area.
Michael Warsitzka, Prokop Závada, Fabian Jähne-Klingberg, and Piotr Krzywiec
Solid Earth, 12, 1987–2020, https://doi.org/10.5194/se-12-1987-2021, https://doi.org/10.5194/se-12-1987-2021, 2021
Short summary
Short summary
A new analogue modelling approach was used to simulate the influence of tectonic extension and tilting of the basin floor on salt tectonics in rift basins. Our results show that downward salt flow and gravity gliding takes place if the flanks of the rift basin are tilted. Thus, extension occurs at the basin margins, which is compensated for by reduced extension and later by shortening in the graben centre. These outcomes improve the reconstruction of salt-related structures in rift basins.
Frank Zwaan, Pauline Chenin, Duncan Erratt, Gianreto Manatschal, and Guido Schreurs
Solid Earth, 12, 1473–1495, https://doi.org/10.5194/se-12-1473-2021, https://doi.org/10.5194/se-12-1473-2021, 2021
Short summary
Short summary
We used laboratory experiments to simulate the early evolution of rift systems, and the influence of structural weaknesses left over from previous tectonic events that can localize new deformation. We find that the orientation and type of such weaknesses can induce complex structures with different orientations during a single phase of rifting, instead of requiring multiple rifting phases. These findings provide a strong incentive to reassess the tectonic history of various natural examples.
Laurent Jolivet, Laurent Arbaret, Laetitia Le Pourhiet, Florent Cheval-Garabédian, Vincent Roche, Aurélien Rabillard, and Loïc Labrousse
Solid Earth, 12, 1357–1388, https://doi.org/10.5194/se-12-1357-2021, https://doi.org/10.5194/se-12-1357-2021, 2021
Short summary
Short summary
Although viscosity of the crust largely exceeds that of magmas, we show, based on the Aegean and Tyrrhenian Miocene syn-kinematic plutons, how the intrusion of granites in extensional contexts is controlled by crustal deformation, from magmatic stage to cold mylonites. We show that a simple numerical setup with partial melting in the lower crust in an extensional context leads to the formation of metamorphic core complexes and low-angle detachments reproducing the observed evolution of plutons.
Miguel Cisneros, Jaime D. Barnes, Whitney M. Behr, Alissa J. Kotowski, Daniel F. Stockli, and Konstantinos Soukis
Solid Earth, 12, 1335–1355, https://doi.org/10.5194/se-12-1335-2021, https://doi.org/10.5194/se-12-1335-2021, 2021
Short summary
Short summary
Constraining the conditions at which rocks form is crucial for understanding geologic processes. For years, the conditions under which rocks from Syros, Greece, formed have remained enigmatic; yet these rocks are fundamental for understanding processes occurring at the interface between colliding tectonic plates (subduction zones). Here, we constrain conditions under which these rocks formed and show they were transported to the surface adjacent to the down-going (subducting) tectonic plate.
Karsten Reiter
Solid Earth, 12, 1287–1307, https://doi.org/10.5194/se-12-1287-2021, https://doi.org/10.5194/se-12-1287-2021, 2021
Short summary
Short summary
The influence and interaction of elastic material properties (Young's modulus, Poisson's ratio), density and low-friction faults on the resulting far-field stress pattern in the Earth's crust is tested with generic models. A Young's modulus contrast can lead to a significant stress rotation. Discontinuities with low friction in homogeneous models change the stress pattern only slightly, away from the fault. In addition, active discontinuities are able to compensate stress rotation.
Hilmar von Eynatten, Jonas Kley, István Dunkl, Veit-Enno Hoffmann, and Annemarie Simon
Solid Earth, 12, 935–958, https://doi.org/10.5194/se-12-935-2021, https://doi.org/10.5194/se-12-935-2021, 2021
Eline Le Breton, Sascha Brune, Kamil Ustaszewski, Sabin Zahirovic, Maria Seton, and R. Dietmar Müller
Solid Earth, 12, 885–913, https://doi.org/10.5194/se-12-885-2021, https://doi.org/10.5194/se-12-885-2021, 2021
Short summary
Short summary
The former Piemont–Liguria Ocean, which separated Europe from Africa–Adria in the Jurassic, opened as an arm of the central Atlantic. Using plate reconstructions and geodynamic modeling, we show that the ocean reached only 250 km width between Europe and Adria. Moreover, at least 65 % of the lithosphere subducted into the mantle and/or incorporated into the Alps during convergence in Cretaceous and Cenozoic times comprised highly thinned continental crust, while only 35 % was truly oceanic.
Lior Suchoy, Saskia Goes, Benjamin Maunder, Fanny Garel, and Rhodri Davies
Solid Earth, 12, 79–93, https://doi.org/10.5194/se-12-79-2021, https://doi.org/10.5194/se-12-79-2021, 2021
Short summary
Short summary
We use 2D numerical models to highlight the role of basal drag in subduction force balance. We show that basal drag can significantly affect velocities and evolution in our simulations and suggest an explanation as to why there are no trends in plate velocities with age in the Cenozoic subduction record (which we extracted from recent reconstruction using GPlates). The insights into the role of basal drag will help set up global models of plate dynamics or specific regional subduction models.
William Bosworth and Gábor Tari
Solid Earth, 12, 59–77, https://doi.org/10.5194/se-12-59-2021, https://doi.org/10.5194/se-12-59-2021, 2021
Short summary
Short summary
Many of the world's hydrocarbon resources are found in rifted sedimentary basins. Some rifts experience multiple phases of extension and inversion. This results in complicated oil and gas generation, migration, and entrapment histories. We present examples of basins in the Western Desert of Egypt and the western Black Sea that were inverted multiple times, sometimes separated by additional phases of extension. We then discuss how these complex deformation histories impact exploration campaigns.
Samuel Mock, Christoph von Hagke, Fritz Schlunegger, István Dunkl, and Marco Herwegh
Solid Earth, 11, 1823–1847, https://doi.org/10.5194/se-11-1823-2020, https://doi.org/10.5194/se-11-1823-2020, 2020
Short summary
Short summary
Based on thermochronological data, we infer thrusting along-strike the northern rim of the Central Alps between 12–4 Ma. While the lithology influences the pattern of thrusting at the local scale, we observe that thrusting in the foreland is a long-wavelength feature occurring between Lake Geneva and Salzburg. This coincides with the geometry and dynamics of the attached lithospheric slab at depth. Thus, thrusting in the foreland is at least partly linked to changes in slab dynamics.
Paul Angrand, Frédéric Mouthereau, Emmanuel Masini, and Riccardo Asti
Solid Earth, 11, 1313–1332, https://doi.org/10.5194/se-11-1313-2020, https://doi.org/10.5194/se-11-1313-2020, 2020
Short summary
Short summary
We study the Iberian plate motion, from the late Permian to middle Cretaceous. During this time interval, two oceanic systems opened. Geological evidence shows that the Iberian domain preserved the propagation of these two rift systems well. We use geological evidence and pre-existing kinematic models to propose a coherent kinematic model of Iberia that considers both the Neotethyan and Atlantic evolutions. Our model shows that the Europe–Iberia plate boundary was made of two rift systems.
Daniel Pastor-Galán, Gabriel Gutiérrez-Alonso, and Arlo B. Weil
Solid Earth, 11, 1247–1273, https://doi.org/10.5194/se-11-1247-2020, https://doi.org/10.5194/se-11-1247-2020, 2020
Short summary
Short summary
Pangea was assembled during Devonian to early Permian times and resulted in a large-scale and winding orogeny that today transects Europe, northwestern Africa, and eastern North America. This orogen is characterized by an
Sshape corrugated geometry in Iberia. This paper presents the advances and milestones in our understanding of the geometry and kinematics of the Central Iberian curve from the last decade with particular attention paid to structural and paleomagnetic studies.
Richard Spitz, Arthur Bauville, Jean-Luc Epard, Boris J. P. Kaus, Anton A. Popov, and Stefan M. Schmalholz
Solid Earth, 11, 999–1026, https://doi.org/10.5194/se-11-999-2020, https://doi.org/10.5194/se-11-999-2020, 2020
Short summary
Short summary
We apply three-dimensional (3D) thermo-mechanical numerical simulations of the shortening of the upper crustal region of a passive margin in order to investigate the control of 3D laterally variable inherited structures on fold-and-thrust belt evolution and associated nappe formation. The model is applied to the Helvetic nappe system of the Swiss Alps. Our results show a 3D reconstruction of the first-order tectonic evolution showing the fundamental importance of inherited geological structures.
Manfred Lafosse, Elia d'Acremont, Alain Rabaute, Ferran Estrada, Martin Jollivet-Castelot, Juan Tomas Vazquez, Jesus Galindo-Zaldivar, Gemma Ercilla, Belen Alonso, Jeroen Smit, Abdellah Ammar, and Christian Gorini
Solid Earth, 11, 741–765, https://doi.org/10.5194/se-11-741-2020, https://doi.org/10.5194/se-11-741-2020, 2020
Short summary
Short summary
The Alboran Sea is one of the most active region of the Mediterranean Sea. There, the basin architecture records the effect of the Africa–Eurasia plates convergence. We evidence a Pliocene transpression and a more recent Pleistocene tectonic reorganization. We propose that main driving force of the deformation is the Africa–Eurasia convergence, rather than other geodynamical processes. It highlights the evolution and the geometry of the present-day Africa–Eurasia plate boundary.
Cited articles
Anell, I., Thybo, H., and Rasmussen, E.: A synthesis of Cenozoic
sedimentation in the North Sea, Basin Res., 24, 154–179, 2012.
Back, S., Van Gent, H., Reuning, L., Grötsch, J., Niederau, J., and
Kukla, P.: 3D seismic geomorphology and sedimentology of the Chalk Group,
southern Danish North Sea, J. Geol. Soc., 168, 393–406,
2011.
Badley, M. E., Price, J. D., and Backshall, L. C.: Inversion, reactivated faults
and related structures: Seismic examples from the southern North Sea, in:
Inversion Tectonics edited by: Cooper, M. A. and Williams, G. D., Geological
Society Special Publication, 44, 201–219, 1989.
Bertelsen, F.: Lithostratigraphy and depositional history of the Danish
Triassic, Danmarks Geologiske Undersøgelse, Serie B, 4, 1–59, 1980.
Bertram, G. and Milton, N.: Reconstructing basin evolution from sedimentary
thickness; the importance of palaeobathymetric control, with reference to
the North Sea, Basin Res., 1, 247–257, 1989.
Bonini, M., Sani, F., and Antonielli, B.: Basin inversion and contractional
reactivation of inherited normal faults: A review based on previous and new
experimental models, Tectonophysics, 522, 55–88,
https://doi.org/10.1016/j.tecto.2011.11.014, 2012.
Brun, J. P. and Nalpas, T.: Graben inversion in nature and experiments,
Tectonics, 15, 677–687, https://doi.org/10.1029/95TC03853, 1996.
Cartwright, J.: The kinematics of inversion in the Danish Central Graben,
in: Inversion Tectonics, edited by: Cooper, M. A. and Williams, G. D.,
Geological Society, London, Special Publications, 44, 153–175, 1989.
Cartwright, J.: The kinematic evolution of the Coffee Soil Fault, in: The
geometry of normal faults, edited by: Roberts, A. M.,
Yielding, G., and Freeman, B., Geological Society, London, Special
Publications, 56, 29–40, 1991.
Chevron Petroleum Company of Denmark: John-1, Completion Report, 1–57, 1983.
Clausen, O. R. and Korstgård, J. A.: Tertiary Tectonic Evolution along the
Arne-Elin Trend in the Danish Central Trough, Terra Nova, 5, 233–243, 1993a.
Clausen, O. R. and Korstgård, J. A.: Faults and faulting in the Horn Graben
area, Danish North Sea, First Break, 11, 127–143, 1993b.
Clausen, O. R., Nielsen, S. B., Egholm, D. L., and Goledowski, B.: Cenozoic
structures in the eastern North Sea Basin – A case for salt tectonics,
Tectonophysics, 514, 156–167, 2012.
Clausen, O. R., Andresen, K. J., and Rasmussen, J. A.: A Late Paleozoic sill
complex and related paleo-topography in the eastern North Sea analysed using
3D seismic data, Tectonophysics, 674, 76–88, https://doi.org/10.1016/j.tecto.2016.02.010,
2016.
Cooper, M. A., Williams, G. D., de Graciansky, P. C., Murphy, R. W., Needham T., de
Paor, D., Stoneley, R., Todd, S. P., Turner, J. P., and Ziegler, P. A.:
Inversion tectonics – a discussion, in: Inversion tectonics, edited by:
Cooper, M. A. and Williams, G. D., Geological Society, London, Special
Publications, 44, 335–347, 1989.
Coward, M.: Balancing sections through inverted basins, in: Modern
Developments in Structural Interpretation, Validation and Modelling, edited
by: Buchanan, P. G. and Nieuwland, D. A., Geological Society, London, Special
Publications, 99, 51–77, 1996.
Coward, M., Dewey, J., Hempton, M., and Holroyd, J.: Tectonic evolution, in:
The Millennium Atlas: Petroleum Geology of the Central and Northern North
Sea, edited by: Evans, D., Armour, C. G. A., and Bathurst, P., Geological
Society, London, 17–33, 2003.
Crameri, F.: Scientific colour-maps, Zenodo, https://doi.org/10.5281/zenodo.1243862, 2018.
Damtoft, K., Andersen, C., and Thomsen, E.: Prospectivity and hydrocarbon
plays of the Danish Central Trough, in Petroleum geology of north-west
Europe, edited by: Brooks, J. and Glennie, K. W., Proc. 3rd conference London 1986, 1, 403–417, 1987.
Dooley, T. P., and Hudec, M. R.: Extension and inversion of salt-bearing rift systems, Solid Earth, 11, 1187–1204, https://doi.org/10.5194/se-11-1187-2020, 2020.
Duffy, O. B., Gawthorpe, R. L., Docherty, M., and Brocklehurst, S. H.:
Mobile evaporite controls on the structural style and evolution of rift
basins: Danish Central Graben, North Sea, Basin Res., 25, 310–330, https://doi.org/10.1111/bre.12000, 2013.
Eisenstadt, G. and Withjack, M. O.: Estimating inversion: results from clay
models, Basin inversion, 119–136, 1995.
Ferrer, O., Roca, E., and Vendeville, B. C.: The role of salt layers in the
hangingwall deformation of kinked-planar extensional faults: Insights from
3D analogue models and comparison with the Parentis Basin, Tectonophysics,
636, 338–350, 2014.
Ferrer, O., McClay, K., and Sellier, N.: Influence of fault geometries and
mechanical anisotropies on the growth and inversion of hangingwall synclinal
basins: insights from sandbox models and natural examples, in: The Geometry
and Growth of Normal Faults edited by: Childs, C., Holdsworth, R., Jackson,
C. A. L., Manzocchi, T., Walsh, J. J., and Yielding, G., Geological Society,
London, Special Publications, 439, 487–509, 2017.
Geil, K.: The development of salt structures in Denmark and adjacent areas:
the role of basin floor dip and differential pressure, First Break, 9,
458–466, 1991.
Glennie, K. W. and Boegner, P. L. E.: Sole Pit Inversion Tectonics, in: Petroleum Geology of the Continental Shelf of Northwest Europe, edited by: Illing, L. V. and Hobson, G. D., Institute of Petroleum, London, 110–120, 1981.
Glennie, K. W., Higham, J., and Stemmerik, L.: Permian, in: The Millennium
Atlas: Petroleum Geology of the Central and Northern North Sea, edited by:
Evans, D., Armour, C. G. A., and Bathurst, P., The Geological Society of
London, London, 91–103, 2003.
Goldsmith, P., Hudson, G., Van Veen, P., Evans, D., Graham, C., Armour, A.,
and Bathurst, P.: Triassic, in: The Millennium Atlas: Petroleum Geology of
the Central and Northern North Sea, edited by: Evans, D., Armour, C. G. A.,
and Bathurst, P., Geological Society, London, 105–127, 2003.
Gołedowski, B., Nielsen, S. B., and Clausen, O. R.: Patterns of Cenozoic
sediment flux from western Scandinavia, Basin Res., 24, 377–400, 2012.
Gowers, M. B. and Sæbøe, A.: On the structural evolution of the
Central Trough in the Norwegian and Danish sectors of the North Sea, Marine
and Petroleum Geology, 2, 298–318, 1985.
Grimaldi, G. O. and Dorobek, S. L.: Fault framework and kinematic evolution
of inversion structures: Natural examples from the Neuquén Basin,
Argentina, AAPG Bull., 95, 27–60, https://doi.org/10.1306/06301009165, 2011.
Jackson, C. A. L. and Larsen, E.: Temporal constraints on basin inversion
provided by 3D seismic and well data: a case study from the South Viking
Graben, offshore Norway, Basin Res., 20, 397–417,
https://doi.org/10.1111/j.1365-2117.2008.00359.x, 2008.
Jackson, M. P. A. and Talbot, C. J.: External shapes, strain rates, and
dynamics of salt structures, Geol. Soc. Am. Bull., 97,
305–323, https://doi.org/10.1130/0016-7606(1986)97<305:ESSRAD>2.0.CO;2,
1986.
Jackson, C.-L., Chua, S.-T., Bell, R., and Magee, C.: Structural style and
early stage growth of inversion structures: 3D seismic insights from the
Egersund Basin, offshore Norway, J. Struct. Geol., 46, 167–185,
2013.
Jackson, C. A. L., Rodriguez, C. R., Rotevatn, A., and Bell, R. E.:
Geological and geophysical expression of a primary salt weld: An example
from the Santos Basin, Brazil, Interpretation, 2, 77–89,
https://doi.org/10.1190/INT-2014-0066.1, 2014.
Jackson, M. P. A. and Hudec, M. R.: Salt Tectonics: Principles and Practice,
Cambridge University Press, 1–498, 2017.
Jagger, L. J. and McClay, K. R.: Analogue modelling of inverted
domino-style basement fault systems, Basin Res., 30, 363–381, 2018.
Jakobsen, F.: Late Cretaceous stratigraphy and basin development in the
Danish Central Graben, Geological Survey of Denmark and Greenland Rapport
2014, 41, 1–49, 2014.
Jarsve, E. M., Maast, T. E., Gabrielsen, R. H., Faleide, J. I., Nystuen, J.
P., and Sassier, C.: Seismic stratigraphic subdivision of the Triassic
succession in the Central North Sea; integrating seismic reflection and well
data, J. Geol. Soc., 171, 353–374, https://doi.org/10.1144/jgs2013-056,
2014.
Kley, J.: Timing and spatial patterns of Cretaceous and Cenozoic inversion in
the Southern Permian Basin, in: Mesozoic Resource Potential in the Southern
Permian Basin edited by: Kilhams, B., Kukla, P. A., Mazur, S., McKie, T,
Mijnlieff, H. F. and van Ojik, K., Geological Society, London, Special
Publications, 469, 19–31, 2018.
Kockel, F.: Inversion structures in Central Europe - Expressions and
reasons, an open discussion, Neth. J. Geosci., 82, 367–382, 2003.
Koopman, A., Speksnijder, A., and Horsfield, W. T.: Sandbox model studies of
inversion tectonics, Tectonophysics, 137, 379–388,
https://doi.org/10.1016/0040-1951(87)90329-5, 1987.
Korstgård, J. A., Lerche, I., Mogensen, T. E., and Thomsen, R. O.: Salt
and fault interactions in the northeastern Danish Central Graben:
observations and inferences, B. Geol. Soc. Denmark,
40, 197–255, 1993.
Lassen, A. and Thybo, H.: Neoproterozoic and Palaeozoic evolution of SW
Scandinavia based on integrated seismic interpretation, Precambrian
Research, 204, 75–104, 2012.
Letouzey, J.: Fault reactivation, inversion and fold-thrust belt, in: Petroleum and tectonics in mobile belts, edited by: Letouzey, J., Paris, Technip, 101–128, 1990.
Letouzey, J., Werner, P., and Marty, A.: Fault reactivation and structural
inversion. Backarc and intraplate compressive deformations. Example of the
eastern Sunda shelf (Indonesia), Tectonophysics, 183, 341–362,
https://doi.org/10.1016/0040-1951(90)90425-8, 1990.
Letouzey, J., Colletta, B., Vially, R. and Chermette, J. C.: Evolution of
Salt-Related Structures in Compressional Settings, in: Salt Tectonics: A
Global Perspective, edited by: Jackson, M. P. A., Roberts, D. G., and
Snelson, S., Am. Assoc. Petr. Geol. B., AAPG Memoir, 65, 41–60, 1995.
McClay, K. R.: Analogue models of inversion tectonics, in: Inversion
tectonics edited by: Cooper, M. A. and Williams, G. D., Geological Society,
London, Special Publications, 44, 41–59, 1989.
McClay, K. R.: The geometries and kinematics of inverted fault systems: a
review of analogue model studies, in: Basin Inversion edited by: Buchanan,
J. G. and Buchanan, P. G., Geological Society, London, Special Publications,
88, 97–118, 1995.
McKenzie, D.: Some remarks on the development of sedimentary basins, Earth
Planet. Sc. Lett., 40, 25–32, https://doi.org/10.1016/0012-821X(78)90071-7,
1978.
McKie, T., Jolley, S., and Kristensen, M.: Stratigraphic and structural
compartmentalization of dryland fluvial reservoirs: Triassic Heron Cluster,
Central North Sea, in: Reservoir Compartmentalization edited by: Jolley, S.
J., Fisher, Q. J., Ainsworth, R. B., Vrolijk, P. J., and Delisle, S.,
Geological Society, London, Special Publications, 347, 165–198, 2010.
Megson, J.: The North Sea Chalk Play: examples from the Danish Central
Graben, in: Exploration Britain edited by: Brooks, J., Geological Society,
London, Special Publications, 67, 247–282, 1992.
Michelsen, O. and Clausen, O. R.: Detailed stratigraphic subdivision and
regional correlation of the southern Danish Triassic succession, Mar. Petrol. Geol., 19, 563–587, 2002.
Michelsen, O., Nielsen, L. H., Johannessen, P. N., Andsbjerg, J., and
Surlyk, F.: Jurassic lithostratigraphy and stratigraphic development onshore
and offshore Denmark, Geol. Surv. Den. Greenl.,
1, 147–216, 2003.
Mogensen, T. E. and Korstgård, J. A.: Triassic and Jurassic
transtension along part of the Sorgenfrei-Tornquist Zone in the Danish
Kattegat, Geol. Surv. Den. Greenl., 1, 439–458,
2003.
Møller, J. J. and Rasmussen, E. S.: Middle Jurassic-Early Cretaceous
rifting of the Danish Central Graben, Geol. Surv. Den. Greenl., 1, 247–264, 2003.
Nalpas, T. and Brun, J. P.: Salt flow and diapirism related to extension at
crustal scale, Tectonophysics, 228, 349–362, https://doi.org/10.1016/0040-1951(93)90348-N,
1993.
Nalpas, T., Le Douaran, S., Brun, J. P., Unternehr, P., and Richert, J. P.:
Inversion of the Broad Fourteens Basin (offshore Netherlands), a small-scale
model investigation, Sediment. Geol., 95, 237–250,
https://doi.org/10.1016/0037-0738(94)00113-9, 1995.
Nielsen, L. H. and Japsen, P.: Deep wells in Denmark 1935-1990:
Lithostratigraphic subdivision, Danmarks Geologiske Undersøgelse, Serie
A, 31, 1–178, 1991.
Rank-Friend, M. and Elders, C. F.: The evolution and growth of central
graben salt structures, Salt Dome Province, Danish North Sea, in: 3D Seismic
Techonology edited by: Davies, R. J., Cartwright, J. A., Stewart, S. A., Lappin,
M., Underhill, J. R., Geological Society, London, Memoirs, 29, 149–164, 2004.
Reilly, C., Nicol, A., and Walsh, J.: Importance of pre-existing fault size
for the evolution of an inverted fault system, in: The Geometry and Growth
of Normal Faults edited by: Childs, C., Holdsworth, R., Jackson, C. A. L.,
Manzocchi, T., Walsh, J. J., and Yielding, G., Geological Society, London,
Special Publications, 439, 447–463, 2017.
Roberts, A. M., Yielding, G., and Badley, M. E.: A kinematic model for the
orthogonal opening of the late Jurassic North Sea rift system, Denmark-mid
Norway, in: Tectonic evolution of the North Sea rifts edited by:
Blundell, D. J. and Gibbs, A. D., Oxford univ, Oxford, 180–199, 1990.
Roma, M., Ferer, O., McClay, K. R., Muñoz, J. A., Roca i Abella, E.,
Gratacós, O., and Cabello López, P.: Weld kinematics of syn-rift
salt during basement-involved extension and subsequent inversion: Results
from analog models, Geol. Ac., 16, 391–410, 2018a.
Roma, M., Vidal-Royo, O., McClay, K., Ferrer, O., and Muñoz, J. A.:
Tectonic inversion of salt-detached ramp-syncline basins as illustrated by
analog modeling and kinematic restoration, Interpretation, 6, 127–144,
2018b.
Schiøler, P., Andsbjerg, J., Clausen, O. R., Dam, G., Dybkjær, K.,
Hamberg, L., Heilmann-Clausen, C., Johannessen, E. P., Kristensen, L. E.,
and Prince, I.: Lithostratigraphy of the Palaeogene–lower Neogene
succession of the Danish North Sea, Geol. Surv. Den. Greenl., 12, 1–77, 2007.
Sclater, J. G. and Christie, P. A. F.: Continental stretching: An explanation of the Post-Mid-Cretaceous subsidence of the central North Sea
Basin, J. Geophys. Res.-Sol. Ea., 85, 3711–3739, 1980.
Stemmerik, L., Ineson, J. R., and Mitchell, J. G.: Stratigraphy of the
Rotliegend group in the Danish part of the Northern Permian Basin, North
Sea, J. Geol. Soc., 157, 1127–1136, 2000.
Stewart, S. A., Ruffell, A. H., and Harvey, M. J.: Relationship between
basement-linked and gravity-driven fault systems in the UKCS salt basins,
Mar. Petrol. Geol., 14, 581–604, 1997.
Stewart, S. A. and Clark, J. A.: Impact of salt on the structure of the
Central North Sea hydrocarbon fairways, in: Petroleum Geology of Northwest
Europe edited by: Fleet, A. J. and Boldy, S. A. R., Geological Society, London,
Petroleum Geology Conference Series, 5, 179–200, 1999.
Stewart, S. A.: Salt tectonics in the North Sea Basin: A structural style
template for seismic interpreters, in: Deformation of the Continental Crust:
The Legacy of Mike Coward, edited by: Ries, A. C., Butler, R. W. H. and Graham,
R. H., Geological Society Special Publication, 272, 361–396, 2007.
Stewart, S. A.: Detachment-controlled triangle zones in extension and
inversion tectonics, Interpretation, 2, 29–38, 2014.
Surlyk, F., Dons, T., Clausen, C. K., and Higham, J.: Upper cretaceous, The
Millennium Atlas: Petroleum Geology of the Central and Northern North Sea,
in: The Millennium Atlas: Petroleum Geology of the Central and Northern
North Sea, edited by: Evans, D., Armour, C. G. A., and Bathurst, P.,
Geological Society, London, 213–233, 2003.
Sørensen, K.: Danish Basin subsidence by Triassic rifting on a
lithosphere cooling background, Nature, 319, 660–663, 1986.
Tanner, P. W. G.: The flexural-slip mechanism, J. Struct. Geol., 11, 635–655, 1989.
Turner, J. P. and Williams, G. A.: Sedimentary basin inversion and
intra-plate shortening, Earth-Sci. Rev., 65, 277–304, 2004.
Van Buchem, F. S. P., Smit, F. W. H., Buijs, G. J. A., Trudgill, B., and
Larsen, P.-H.: Tectonostratigraphic framework and depositional history of
the Cretaceous–Danian succession of the Danish Central Graben (North
Sea)–new light on a mature area, in Petroleum Geology of NW Europe: 50
Years of Learning – Proceedings of the 8th Petroleum Geology Conference,
edited by: Bowman, M. and Levell, B., Geological Society, London, Petroleum
Geology Conference series, 2018, 9–46, 2018.
Van Hoorn, B.: Structural evolution, timing and tectonic style of the Sole
Pit inversion, Tectonophysics, 137, 239–284, 1987.
Vejbæk, O. V.: Seismic stratigraphy and tectonic evolution of the Lower
Cretaceous in the Danish Central Trough, 11, Danmarks Geologiske
Undersøgelse, Series A, 1–57, 1986.
Vejbæk, O. V. and Andersen, C.: Cretaceous Early Tertiary Inversion
Tectonism in the Danish Central Trough, Tectonophysics, 137, 221–238, 1987.
Vejbæk, O. V. and Andersen, C.: Post mid-Cretaceous inversion tectonics
in the Danish Central Graben – regionally synchronous tectonic events?,
B. Geol. Soc. Denmark, 49, 129–144, 2002.
Vejbæk, O. V.: The Horn Graben, and its relationship to the Oslo Graben
and the Danish Basin, Tectonophysics, 187, 29–49, 1990.
Vejbæk, O. V.: Dybe strukturer i danske sedimentære bassiner,
Geologisk Tidsskrift, 4, 1–31, 1997.
Vendeville, B. C.: Champs de failles et tectonique en extension:
Modélisation expérimentale, Tectonique, Université Rennes 1,
France, 1–395, 1987.
Vendeville, B. C. and Jackson, M. P. A.: The rise of diapirs during
thin-skinned extension, Mar. Petrol. Geol., 9, 331–354, 1992.
Wagner, B. H. and Jackson, M. P. A.: Viscous flow during salt welding,
Tectonophysics, 510, 309–326, 2011.
Williams, G., Powell, C., and Cooper, M.: Geometry and kinematics of
inversion tectonics, in: Inversion Tectonics edited by: Cooper, M. A. and
Williams, G. D., Geological Society, London, Special Publications, 44, 3–15,
1989.
Withjack, M. O. and Callaway, S.: Active normal faulting beneath a salt
layer: an experimental study of deformation patterns in the cover sequence,
AAPG Bull., 84, 627–651, 2000.
Yamada, Y. and McClay, K. R.: 3-D analog modeling of inversion thrust
structures, in: Thrust Tectonics and Hydrocarbon Systems edited by: McClay,
K. R., AAPG Memoir., 82, 276–301, 2004.
Ziegler, P.: Late Cretaceous and Cenozoic intra-plate compressional
deformations in the Alpine foreland – a geodynamic model, Tectonophysics,
137, 389–420, 1987.
Ziegler, P.: Geological Atlas of Western and Central Europe, Shell
Internationale Petroleum Maatschappij B.V., The Hague, 1–238, 1990.
Short summary
We have analysed the role of deep salt layers during tectonic shortening of a group of sedimentary basins buried below the North Sea. Due to the ability of salt to flow over geological timescales, the salt layers are much weaker than the surrounding rocks during tectonic deformation. Therefore, complex structures formed mainly where salt was present in our study area. Our results align with findings from other basins and experiments, underlining the importance of salt tectonics.
We have analysed the role of deep salt layers during tectonic shortening of a group of...
Special issue