Articles | Volume 12, issue 8
https://doi.org/10.5194/se-12-1749-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-12-1749-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Buoyancy versus shear forces in building orogenic wedges
Lorenzo G. Candioti
CORRESPONDING AUTHOR
Institut des sciences de la Terre, Bâtiment Géopolis, Quartier UNIL-Mouline, Université de Lausanne, 1015 Lausanne (VD), Switzerland
Thibault Duretz
Univ Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes, France
Evangelos Moulas
Institute of Geosciences & Mainz Institute of Multiscale Modeling (M³ODEL), Johannes-Gutenberg University, 55128 Mainz, Germany
Stefan M. Schmalholz
Institut des sciences de la Terre, Bâtiment Géopolis, Quartier UNIL-Mouline, Université de Lausanne, 1015 Lausanne (VD), Switzerland
Related authors
Lorenzo G. Candioti, Stefan M. Schmalholz, and Thibault Duretz
Solid Earth, 11, 2327–2357, https://doi.org/10.5194/se-11-2327-2020, https://doi.org/10.5194/se-11-2327-2020, 2020
Short summary
Short summary
With computer simulations, we study the interplay between thermo-mechanical processes in the lithosphere and the underlying upper mantle during a long-term (> 100 Myr) tectonic cycle of extension–cooling–convergence. The intensity of mantle convection is important for (i) subduction initiation, (ii) the development of single- or double-slab subduction zones, and (iii) the forces necessary to initiate subduction. Our models are applicable to the opening and closure of the western Alpine Tethys.
Annalena Stroh, Pascal S. Aellig, and Evangelos Moulas
EGUsphere, https://doi.org/10.5194/egusphere-2025-2511, https://doi.org/10.5194/egusphere-2025-2511, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Crystal growth and diffusion are common processes in geology. Our software MovingBoundaryMinerals.jl calculates compositional profiles in diffusion couples by simulating diffusion-growth processes for geometries with planar/cylindrical/spherical symmetries. Our software has been tested versus various benchmark cases and is provided as an open access software package. This package allows the further use of diffusion/growth phenomena in the calculation of the thermal histories of rocks.
Thomas Geffroy, Philippe Yamato, Philippe Steer, Benjamin Guillaume, and Thibault Duretz
EGUsphere, https://doi.org/10.5194/egusphere-2025-1962, https://doi.org/10.5194/egusphere-2025-1962, 2025
Short summary
Short summary
While erosion's role in mountain building is well known, deformation from valley incision in inactive regions is less understood. Using our numerical models, we show that incision alone can cause significant crustal deformation and drive lower crust exhumation. This is favored in areas with thick crust, weak lower crust, and high plateaux. Our results show surface processes can reshape Earth's surface over time.
Simon Boisserée, Evangelos Moulas, and Markus Bachmayr
EGUsphere, https://doi.org/10.48550/arXiv.2411.14211, https://doi.org/10.48550/arXiv.2411.14211, 2025
Short summary
Short summary
Understanding porous fluid flow is key for many geology applications. Traditional methods cannot resolve cases with sharp discontinuities in hydraulic/mechanical properties across those layers. Here we present a new space-time method that can handle such discontinuities. This approach is coupled with trace element transport. Our study reveals that the layering of rocks significantly influences the formation of fluid-rich channels and the material distribution adjacent to discontinuities.
Nicolas Riel, Boris J. P. Kaus, Albert de Montserrat, Evangelos Moulas, Eleanor C. R. Green, and Hugo Dominguez
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-197, https://doi.org/10.5194/gmd-2024-197, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Our research focuses on improving the way we predict mineral assemblage. Current methods, while accurate, are slowed by complex calculations. We developed a new approach that simplifies these calculations and speeds them up significantly using a technique called the BFGS algorithm. This breakthrough reduces computation time by more than five times, potentially unlocking new horizons in modeling reactive magmatic systems.
Ludovic Räss, Ivan Utkin, Thibault Duretz, Samuel Omlin, and Yuri Y. Podladchikov
Geosci. Model Dev., 15, 5757–5786, https://doi.org/10.5194/gmd-15-5757-2022, https://doi.org/10.5194/gmd-15-5757-2022, 2022
Short summary
Short summary
Continuum mechanics-based modelling of physical processes at large scale requires huge computational resources provided by massively parallel hardware such as graphical processing units. We present a suite of numerical algorithms, implemented using the Julia language, that efficiently leverages the parallelism. We demonstrate that our implementation is efficient, scalable and robust and showcase applications to various geophysical problems.
Lorenzo G. Candioti, Stefan M. Schmalholz, and Thibault Duretz
Solid Earth, 11, 2327–2357, https://doi.org/10.5194/se-11-2327-2020, https://doi.org/10.5194/se-11-2327-2020, 2020
Short summary
Short summary
With computer simulations, we study the interplay between thermo-mechanical processes in the lithosphere and the underlying upper mantle during a long-term (> 100 Myr) tectonic cycle of extension–cooling–convergence. The intensity of mantle convection is important for (i) subduction initiation, (ii) the development of single- or double-slab subduction zones, and (iii) the forces necessary to initiate subduction. Our models are applicable to the opening and closure of the western Alpine Tethys.
Cited articles
Austin, N. J. and Evans, B.: Paleowattmeters: A scaling relation for
dynamically recrystallized grain size, Geology, 35, 343–346, 2007. a
Austrheim, H.: Eclogitization of lower crustal granulites by fluid migration
through shear zones, Earth Planet. Sc. Lett., 81, 221–232, 1987. a
Auzemery, A., Willingshofer, E., Yamato, P., Duretz, T., and Sokoutis, D.:
Strain localization mechanisms for subduction initiation at passive margins,
Global Planet. Change, 195, 103323, https://doi.org/10.1016/j.gloplacha.2020.103323, 2020. a
Barnhoorn, A., Drury, M. R., and van Roermund, H. L.: Evidence for low
viscosity garnet-rich layers in the upper mantle, Earth Planet. Sc.
Lett., 289, 54–67, 2010. a
Bauville, A. and Schmalholz, S. M.: Transition from thin-to thick-skinned
tectonics and consequences for nappe formation: Numerical simulations and
applications to the Helvetic nappe system, Switzerland, Tectonophysics, 665,
101–117, 2015. a
Behr, W. M. and Becker, T. W.: Sediment control on subduction plate speeds,
Earth Planet. Sc. Lett., 502, 166–173, 2018. a
Berger, A. and Bousquet, R.: Subduction-related metamorphism in the Alps:
review of isotopic ages based on petrology and their geodynamic consequences,
Geol. Soc. Lond. Spec. Publ., 298, 117–144, 2008. a
Bessat, A., Duretz, T., Hetényi, G., Pilet, S., and Schmalholz, S. M.:
Stress and deformation mechanisms at a subduction zone: insights from 2D
thermo-mechanical numerical modelling, Geophys. J. Int., 221, 1605–1625, https://doi.org/10.1093/gji/ggaa092,
2020. a
Borderie, S., Graveleau, F., Witt, C., and Vendeville, B. C.: Impact of an
interbedded viscous décollement on the structural and kinematic coupling
in fold-and-thrust belts: Insights from analogue modeling, Tectonophysics,
722, 118–137, 2018. a
Bürgmann, R. and Dresen, G.: Rheology of the lower crust and upper mantle:
Evidence from rock mechanics, geodesy, and field observations, Annu. Rev. Earth Pl. Sc., 36, 531–567, https://doi.org/10.1146/annurev.earth.36.031207.124326, 2008. a
Burov, E. and Watts, A.: The long-term strength of continental
lithosphere: “jelly sandwich” or “crème brûlée”?, GSA Today, 16,
4, https://doi.org/10.1130/1052-5173(2006)016<4:tltSOc>2.0.cO;2, 2006. a
Burov, E., François, T., Agard, P., Le Pourhiet, L., Meyer, B., Tirel,
C., Lebedev, S., Yamato, P., and Brun, J.-P.: Rheological and geodynamic
controls on the mechanisms of subduction and HP/UHP exhumation of crustal
rocks during continental collision: Insights from numerical models,
Tectonophysics, 631, 212–250, 2014. a
Butler, R. W.: Area balancing as a test of models for the deep structure of
mountain belts, with specific reference to the Alps, J. Struct.
Geol., 52, 2–16, 2013. a
Byerlee, J.: Friction of rocks, in: Rock friction and earthquake prediction,
615–626, Springer, 1978. a
Candioti, L. G.: Evolution of numerical simulation REF, TIB, https://doi.org/10.5446/50527,
2020a. a, b
Chapple, W. M.: Mechanics of thin-skinned fold-and-thrust belts, Geol.
Soc. Am. Bull., 89, 1189–1198, 1978. a
Chenin, P., Manatschal, G., Picazo, S., Müntener, O., Karner, G., Johnson,
C., and Ulrich, M.: Influence of the architecture of magma-poor hyperextended
rifted margins on orogens produced by the closure of narrow versus wide
oceans, Geosphere, 13, 559–576, 2017. a
Chenin, P., Picazo, S., Jammes, S., Manatschal, G., Müntener, O., and
Karner, G.: Potential role of lithospheric mantle composition in the Wilson
cycle: a North Atlantic perspective, Geol. Soc. Lond. Spec.
Publ., 470, 157–172, 2019. a
Chernak, L. J. and Hirth, G.: Deformation of antigorite serpentinite at high
temperature and pressure, Earth Planet. Sc. Lett., 296, 23–33,
2010. a
Chopin, C.: Coesite and pure pyrope in high-grade blueschists of the Western
Alps: a first record and some consequences, Contrib. Mineral.
Petr., 86, 107–118, 1984. a
Connolly, J. A.: Computation of phase equilibria by linear programming: a tool
for geodynamic modeling and its application to subduction zone decarbonation,
Earth Planet. Sc. Lett., 236, 524–541, 2005. a
Crameri, F.: Geodynamic diagnostics, scientific visualisation and StagLab 3.0, Geosci. Model Dev., 11, 2541–2562, https://doi.org/10.5194/gmd-11-2541-2018, 2018. a
Crameri, F., Magni, V., Domeier, M., Shephard, G. E., Chotalia, K., Cooper, G.,
Eakin, C. M., Grima, A. G., Gürer, D., Király, Á., Mulyukova, E., Peters, K., Robert, B., and Thielmann, M.: A
transdisciplinary and community-driven database to unravel subduction zone
initiation, Nat. Commun., 11, 1–14, 2020. a
Currie, C. A., Beaumont, C., and Huismans, R. S.: The fate of subducted
sediments: A case for backarc intrusion and underplating, Geology, 35,
1111–1114, 2007. a
Dahlen, F.: Critical taper model of fold-and-thrust belts and accretionary
wedges, Annu. Rev. Earth Planet. Sc., 18, 55–99, 1990. a
Dahlen, F., Suppe, J., and Davis, D.: Mechanics of fold-and-thrust belts and
accretionary wedges: Cohesive Coulomb theory, J. Geophys.
Res.-Sol. Ea., 89, 10087–10101, 1984. a
Dal Zilio, L., Kissling, E., Gerya, T., and van Dinther, Y.: Slab Rollback
Orogeny model: A test of concept, Geophys. Res. Lett., 47,
e2020GL089917, https://doi.org/10.1029/2020GL089917, 2020a. a, b, c
Dannberg, J., Eilon, Z., Faul, U., Gassmöller, R., Moulik, P., and Myhill,
R.: The importance of grain size to mantle dynamics and seismological
observations, Geochem. Geophy. Geosy., 18, 3034–3061, 2017. a
David, E. C., Brantut, N., Hansen, L. N., and Mitchell, T. M.: Absence of
stress-induced anisotropy during brittle deformation in antigorite
serpentinite, J. Geophys. Res.-Sol. Ea., 123, 10616–10644,
2018. a
Duretz, T. and Gerya, T.: Slab detachment during continental collision:
Influence of crustal rheology and interaction with lithospheric delamination,
Tectonophysics, 602, 124–140, 2013. a
Duretz, T., Schmalholz, S., and Gerya, T.: Dynamics of slab detachment,
Geochem. Geophy. Geosy., 13, Q03020, https://doi.org/10.1029/2011GC004024, 2012. a
Duretz, T., May, D. A., and Yamato, P.: A free surface capturing discretization
for the staggered grid finite difference scheme, Geophys. J.
Int., 204, 1518–1530, 2016a. a
Duretz, T., Petri, B., Mohn, G., Schmalholz, S., Schenker, F., and
Müntener, O.: The importance of structural softening for the evolution
and architecture of passive margins, Sci. Rep.-UK, 6, 38704, https://doi.org/10.1038/srep38704,
2016b. a, b
England, P. and McKenzie, D.: A thin viscous sheet model for continental
deformation, Geophys. J. Int., 70, 295–321, 1982. a
Erdős, Z., Huismans, R. S., van der Beek, P., and Thieulot, C.:
Extensional inheritance and surface processes as controlling factors of
mountain belt structure, J. Geophys. Res.-Sol. Ea., 119,
9042–9061, 2014. a
Erdős, Z., Huismans, R. S., and van der Beek, P.: Control of increased sedimentation on orogenic fold-and-thrust belt structure – insights into the evolution of the Western Alps, Solid Earth, 10, 391–404, https://doi.org/10.5194/se-10-391-2019, 2019. a
Forsyth, D. and Uyeda, S.: On the relative importance of the driving forces of
plate motion, Geophys. J. Int., 43, 163–200, 1975. a
Gerya, T.: Introduction to numerical geodynamic modelling, Cambridge University
Press, 2019. a
Gerya, T. V. and Yuen, D. A.: Characteristics-based marker-in-cell method with
conservative finite-differences schemes for modeling geological flows with
strongly variable transport properties, Phys. Earth Planet.
In., 140, 293–318, 2003. a
Gerya, T. V., Stöckhert, B., and Perchuk, A. L.: Exhumation of
high-pressure metamorphic rocks in a subduction channel: A numerical
simulation, Tectonics, 21, 6–1, 2002. a
Gerya, T. V., Perchuk, L. L., Maresch, W. V., and Willner, A. P.: Inherent
gravitational instability of hot continental crust: Implications for doming
and diapirism in granulite facies terrains, SPECIAL PAPERS-GEOLOGICAL SOCIETY
OF AMERICA, 97–116, 2004. a
Graveleau, F., Malavieille, J., and Dominguez, S.: Experimental modelling of
orogenic wedges: A review, Tectonophysics, 538, 1–66, 2012. a
Grool, A. R., Huismans, R. S., and Ford, M.: Salt décollement and rift
inheritance controls on crustal deformation in orogens, Terra Nova, 31,
562–568, 2019. a
Guillot, S., Schwartz, S., Reynard, B., Agard, P., and Prigent, C.: Tectonic
significance of serpentinites, Tectonophysics, 646, 1–19, 2015. a
Gutscher, M.-A., Kukowski, N., Malavieille, J., and Lallemand, S.: Episodic
imbricate thrusting and underthrusting: Analog experiments and mechanical
analysis applied to the Alaskan accretionary wedge, J. Geophys.
Res.-Sol. Ea., 103, 10161–10176, 1998. a
Hacker, B. R., Peacock, S. M., Abers, G. A., and Holloway, S. D.: Subduction
factory 2. Are intermediate-depth earthquakes in subducting slabs linked to
metamorphic dehydration reactions?, J. Geophys. Res.-Sol.
Ea., 108, 2030, https://doi.org/10.1029/2001JB001129, 2003. a
Handy, M. R., Schmid, S. M., Bousquet, R., Kissling, E., and Bernoulli, D.:
Reconciling plate-tectonic reconstructions of Alpine Tethys with the
geological–geophysical record of spreading and subduction in the Alps,
Earth-Sci. Rev., 102, 121–158, 2010. a
Hansen, L. N., David, E. C., Brantut, N., and Wallis, D.: Insight into the
microphysics of antigorite deformation from spherical nanoindentation,
Philos. T. R. Soc. A, 378, 20190197, https://doi.org/10.1098/rsta.2019.0197, 2020. a
Henry, P., Azambre, B., Montigny, R., Rossy, M., and Stevenson, R.: Late mantle
evolution of the Pyrenean sub-continental lithospheric mantle in the light of
new 40Ar–39Ar and Sm–Nd ages on pyroxenites and peridotites (Pyrenees,
France), Tectonophysics, 296, 103–123, 1998. a
Hess, H. H.: Serpentines, orogeny, and epeirogeny, Geol. Soc. Am. Spec. Paper,
62, 391–407, 1955. a
Hetényi, G., Cattin, R., Brunet, F., Bollinger, L., Vergne, J.,
Nábělek, J. L., and Diament, M.: Density distribution of the India
plate beneath the Tibetan plateau: Geophysical and petrological constraints
on the kinetics of lower-crustal eclogitization, Earth Planet. Sc.
Lett., 264, 226–244, 2007. a
Hirauchi, K.-I., Katayama, I., and Kouketsu, Y.: Semi-brittle deformation of
antigorite serpentinite under forearc mantle wedge conditions, J.
Struct. Geol., 140, 104151, https://doi.org/10.1016/j.jsg.2020.104151, 2020. a
Holland, T. and Powell, R.: An internally consistent thermodynamic data set for
phases of petrological interest, J. Metamorph. Geol., 16,
309–343, 1998. a
Idrissi, H., Bollinger, C., Boioli, F., Schryvers, D., and Cordier, P.:
Low-temperature plasticity of olivine revisited with in situ TEM
nanomechanical testing, Sci. Adv., 2, e1501671, https://doi.org/10.1126/sciadv.1501671, 2016. a
Jammes, S. and Huismans, R. S.: Structural styles of mountain building:
Controls of lithospheric rheologic stratification and extensional
inheritance, J. Geophys. Res.-Sol. Ea., 117, B10403, https://doi.org/10.1029/2012JB009376, 2012. a, b
Jammes, S., Manatschal, G., Lavier, L., and Masini, E.: Tectonosedimentary
evolution related to extreme crustal thinning ahead of a propagating ocean:
Example of the western Pyrenees, Tectonics, 28, TC4012, https://doi.org/10.1029/2008TC002406, 2009. a, b
Jammes, S., Huismans, R. S., and Muñoz, J. A.: Lateral variation in
structural style of mountain building: controls of rheological and rift
inheritance, Terra Nova, 26, 201–207, 2014. a
Jaquet, Y. and Schmalholz, S. M.: Spontaneous ductile crustal shear zone
formation by thermal softening and related stress, temperature and strain
rate evolution, Tectonophysics, 746, 384–397, 2018. a
Jaquet, Y., Duretz, T., Grujic, D., Masson, H., and Schmalholz, S. M.:
Formation of orogenic wedges and crustal shear zones by thermal softening,
associated topographic evolution and application to natural orogens,
Tectonophysics, 746, 512–529, 2018. a
Kissling, E.: Deep structure of the Alps – what do we really know?, Phys. Earth Planet. In., 79, 87–112, 1993. a
Kissling, E. and Schlunegger, F.: Rollback orogeny model for the evolution of
the Swiss Alps, Tectonics, 37, 1097–1115, 2018. a
Kronenberg, A. K., Kirby, S. H., and Pinkston, J.: Basal slip and mechanical
anisotropy of biotite, J. Geophys. Res.-Sol. Ea., 95,
19257–19278, 1990. a
Lamb, S. and Davis, P.: Cenozoic climate change as a possible cause for the
rise of the Andes, Nature, 425, 792–797, 2003. a
Lardeaux, J.-M.: Deciphering orogeny: a metamorphic perspective. Examples from
European Alpine and Variscan belts: Part I: Alpine metamorphism in the
western Alps. A review, B. Soc. Géol.
Fr., 185, 93–114, 2014. a
Le Breton, E., Brune, S., Ustaszewski, K., Zahirovic, S., Seton, M., and Müller, R. D.: Kinematics and extent of the Piemont–Liguria Basin – implications for subduction processes in the Alps, Solid Earth, 12, 885–913, https://doi.org/10.5194/se-12-885-2021, 2021. a, b
Li, Z. and Gerya, T. V.: Polyphase formation and exhumation of high-to
ultrahigh-pressure rocks in continental subduction zone: Numerical modeling
and application to the Sulu ultrahigh-pressure terrane in eastern China,
J. Geophys. Res.-Sol. Ea., 114, B09406, https://doi.org/10.1029/2008JB005935, 2009. a
Mackwell, S., Zimmerman, M., and Kohlstedt, D.: High-temperature deformation of
dry diabase with application to tectonics on Venus, J. Geophys.
Res.-Sol. Ea., 103, 975–984, 1998. a
Malinverno, A. and Ryan, W. B.: Extension in the Tyrrhenian Sea and shortening
in the Apennines as result of arc migration driven by sinking of the
lithosphere, Tectonics, 5, 227–245, 1986. a
Malusà, M. G., Faccenna, C., Baldwin, S. L., Fitzgerald, P. G., Rossetti,
F., Balestrieri, M. L., Danišík, M., Ellero, A., Ottria, G., and
Piromallo, C.: Contrasting styles of (U) HP rock exhumation along the
Cenozoic Adria-Europe plate boundary (Western Alps, Calabria, Corsica),
Geochem. Geophy. Geosy., 16, 1786–1824, 2015. a, b, c
Malvoisin, B., Austrheim, H., Hetényi, G., Reynes, J., Hermann, J.,
Baumgartner, L. P., and Podladchikov, Y. Y.: Sustainable densification of the
deep crust, Geology, 48, 673–677, 2020. a
Manatschal, G. and Müntener, O.: A type sequence across an ancient
magma-poor ocean–continent transition: the example of the western Alpine
Tethys ophiolites, Tectonophysics, 473, 4–19, 2009. a
Mancktelow, N. S. and Pennacchioni, G.: Why calcite can be stronger than
quartz, J. Geophys. Res.-Sol. Ea., 115, B01402, https://doi.org/10.1029/2009JB006526, 2010. a
Manzotti, P., Ballevre, M., Zucali, M., Robyr, M., and Engi, M.: The
tectonometamorphic evolution of the Sesia–Dent Blanche nappes (internal
Western Alps): review and synthesis, Swiss J. Geosci., 107,
309–336, 2014. a
McCarthy, A., Chelle-Michou, C., Müntener, O., Arculus, R., and Blundy, J.:
Subduction initiation without magmatism: The case of the missing Alpine
magmatic arc, Geology, 46, 1059–1062, 2018. a
Mohn, G., Manatschal, G., Beltrando, M., and Haupert, I.: The role of
rift-inherited hyper-extension in Alpine-type orogens, Terra Nova, 26,
347–353, 2014. a
Pelletier, L., Müntener, O., Kalt, A., Vennemann, T. W., and Belgya, T.:
Emplacement of ultramafic rocks into the continental crust monitored by light
and other trace elements: An example from the Geisspfad body (Swiss-Italian
Alps), Chem. Geol., 255, 143–159, 2008. a
Popov, A. and Sobolev, S.: SLIM3D: A tool for three-dimensional
thermomechanical modeling of lithospheric deformation with
elasto-visco-plastic rheology, Phys. Earth Planet. In.,
171, 55–75, 2008. a
Raimbourg, H., Jolivet, L., and Leroy, Y.: Consequences of progressive
eclogitization on crustal exhumation, a mechanical study, Geophys. J.
Int., 168, 379–401, 2007. a
Raleigh, C. B. and Paterson, M.: Experimental deformation of serpentinite and
its tectonic implications, J. Geophys. Res., 70, 3965–3985,
1965. a
Ramberg, H.: Gravity, deformation and the earth's crust: in theory, experiments
and geological application, Academic press, 1981. a
Ranalli, G.: Rheology of the Earth, Springer Science & Business Media, 1995. a
Rubie, D. C.: The catalysis of mineral reactions by water and restrictions on
the presence of aqueous fluid during metamorphism, Mineral. Mag.,
50, 399–415, 1986. a
Ruh, J. B., Kaus, B. J., and Burg, J.-P.: Numerical investigation of
deformation mechanics in fold-and-thrust belts: Influence of rheology of
single and multiple décollements, Tectonics, 31, TC3005, https://doi.org/10.1029/2011TC003047, 2012. a
Rummel, L., Baumann, T. S., and Kaus, B. J.: An autonomous petrological
database for geodynamic simulations of magmatic systems, Geophys. J.
Int., 223, 1820–1836, 2020. a
Schenker, F. L., Schmalholz, S. M., Moulas, E., Pleuger, J., Baumgartner,
L. P., Podladchikov, Y., Vrijmoed, J., Buchs, N., and Müntener, O.:
Current challenges for explaining (ultra) high-pressure tectonism in the
Pennine domain of the Central and Western Alps, J. Metamorph.
Geol., 33, 869–886, 2015. a
Schierjott, J., Rozel, A., and Tackley, P.: On the self-regulating effect of grain size evolution in mantle convection models: application to thermochemical piles, Solid Earth, 11, 959–982, https://doi.org/10.5194/se-11-959-2020, 2020. a
Schmalholz, S., Podladchikov, Y., and Schmid, D.: A spectral/finite difference
method for simulating large deformations of heterogeneous, viscoelastic
materials, Geophys. J. Int., 145, 199–208, 2001. a
Schmalholz, S. M. and Fletcher, R. C.: The exponential flow law applied to
necking and folding of a ductile layer, Geophys. J. Int.,
184, 83–89, 2011. a
Schmalholz, S. M., Medvedev, S., Lechmann, S. M., and Podladchikov, Y.:
Relationship between tectonic overpressure, deviatoric stress, driving force,
isostasy and gravitational potential energy, Geophys. J.
Int., 197, 680–696, 2014. a
Schmalholz, S. M., Duretz, T., Hetényi, G., and Medvedev, S.: Distribution
and magnitude of stress due to lateral variation of gravitational potential
energy between Indian lowland and Tibetan plateau, Geophys. J.
Int., 216, 1313–1333, 2019. a
Schmid, S., Boland, J., and Paterson, M.: Superplastic flow in finegrained
limestone, Tectonophysics, 43, 257–291, 1977. a
Shreve, R. L. and Cloos, M.: Dynamics of sediment subduction, melange
formation, and prism accretion, J. Geophys. Res.-Sol. Ea.,
91, 10229–10245, 1986. a
Simpson, G. D.: Mechanical modelling of folding versus faulting in
brittle–ductile wedges, J. Struct. Geol., 31, 369–381, 2009. a
Sizova, E., Gerya, T., and Brown, M.: Contrasting styles of Phanerozoic and
Precambrian continental collision, Gondwana Res., 25, 522–545, 2014. a
Spitz, R., Bauville, A., Epard, J.-L., Kaus, B. J. P., Popov, A. A., and Schmalholz, S. M.: Control of 3-D tectonic inheritance on fold-and-thrust belts: insights from 3-D numerical models and application to the Helvetic nappe system, Solid Earth, 11, 999–1026, https://doi.org/10.5194/se-11-999-2020, 2020. a
Stern, R. J.: Subduction initiation: spontaneous and induced, Earth
Planet. Sc. Lett., 226, 275–292, 2004. a
Stern, R. J. and Gerya, T.: Subduction initiation in nature and models: A
review, Tectonophysics, 746, 173–198, 2018. a
Stixrude, L. and Lithgow-Bertelloni, C.: Thermodynamics of mantle minerals-II.
Phase equilibria, Geophys. J. Int., 184, 1180–1213, 2011. a
Sutra, E., Manatschal, G., Mohn, G., and Unternehr, P.: Quantification and
restoration of extensional deformation along the Western Iberia and
Newfoundland rifted margins, Geochem. Geophy. Geosy., 14,
2575–2597, 2013. a
Thielmann, M. and Kaus, B. J.: Shear heating induced lithospheric-scale
localization: Does it result in subduction?, Earth Planet. Sc.
Lett., 359, 1–13, 2012. a
Toussaint, G., Burov, E., and Jolivet, L.: Continental plate collision:
Unstable vs. stable slab dynamics, Geology, 32, 33–36, 2004. a
Turcotte, D. and Schubert, G.: Geodynamics, Cambridge University Press, 2014. a
van Hunen, J., van den Berg, A. P., and Vlaar, N. J.: Latent heat effects of
the major mantle phase transitions on low-angle subduction, Earth
Planet. Sc. Lett., 190, 125–135, 2001. a
Warren, C. J., Beaumont, C., and Jamieson, R. A.: Formation and exhumation of
ultra-high-pressure rocks during continental collision: Role of detachment in
the subduction channel, Geochem. Geophy. Geosy., 9, Q04019, https://doi.org/10.1029/2007GC001839, 2008. a
Weijermars, R. and Schmeling, H.: Scaling of Newtonian and non-Newtonian fluid
dynamics without inertia for quantitative modelling of rock flow due to
gravity (including the concept of rheological similarity), Phys.
Earth Planet. In., 43, 316–330, 1986. a
Willett, S. D.: Orogeny and orography: The effects of erosion on the structure
of mountain belts, J. Geophys. Res.-Sol. Ea., 104,
28957–28981, 1999. a
Wilson, J. T.: A new class of faults and their bearing on continental drift,
Nature, 207, 343–347, 1965. a
Wilson, R., Houseman, G., Buiter, S., McCaffrey, K., and Doré, A.: Fifty
years of the Wilson Cycle concept in plate tectonics: an overview, Geol.
Soc. Lond. Spec. Publ., 470, 1–17, 2019. a
Winter, J. D.: Principles of igneous and metamorphic petrology, Pearson
education, 2013. a
Workman, R. K. and Hart, S. R.: Major and trace element composition of the
depleted MORB mantle (DMM), Earth Planet. Sc. Lett., 231, 53–72,
2005. a
Yamato, P., Agard, P., Burov, E., Le Pourhiet, L., Jolivet, L., and Tiberi, C.:
Burial and exhumation in a subduction wedge: Mutual constraints from
thermomechanical modeling and natural P-T-t data (Schistes Lustrés,
western Alps), J. Geophys. Res.-Sol. Ea., 112, B07410, https://doi.org/10.1029/2006JB004441, 2007. a, b
Yamato, P., Duretz, T., May, D. A., and Tartese, R.: Quantifying magma
segregation in dykes, Tectonophysics, 660, 132–147, 2015. a
Yamato, P., Duretz, T., and Angiboust, S.: Brittle/ductile deformation of
eclogites: insights from numerical models, Geochem. Geophy.
Geosy., 20, 3116–3133, https://doi.org/10.1029/2019GC008249, 2019. a
Yang, J., Lu, G., Liu, T., Li, Y., Wang, K., Wang, X., Sun, B., Faccenda, M.,
and Zhao, L.: Amagmatic subduction produced by mantle serpentinization and
oceanic crust delamination, Geophys. Res. Lett., 47,
e2019GL086257, https://doi.org/10.1029/2019GL086257, 2020. a
Zhao, L., Malusà, M. G., Yuan, H., Paul, A., Guillot, S., Lu, Y., Stehly,
L., Solarino, S., Eva, E., Lu, G., Bodin, T., CIFALPS Group, and AlpArray Working Group: Evidence for a serpentinized plate
interface favouring continental subduction, Nat. Commun., 11, 1–8,
2020. a
Short summary
We quantify the relative importance of forces driving the dynamics of mountain building using two-dimensional computer simulations of long-term coupled lithosphere–upper-mantle deformation. Buoyancy forces can be as high as shear forces induced by far-field plate motion and should be considered when studying the formation of mountain ranges. The strength of rocks flooring the oceans and the density structure of the crust control deep rock cycling and the topographic elevation of orogens.
We quantify the relative importance of forces driving the dynamics of mountain building using...