Articles | Volume 13, issue 1
https://doi.org/10.5194/se-13-177-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-13-177-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
One-dimensional velocity structure modeling of the Earth's crust in the northwestern Dinarides
Faculty of Natural Sciences and Engineering, University of Ljubljana,
Ljubljana, Slovenia
Josip Stipčević
Department of Geophysics, Faculty of Science, University of Zagreb,
Zagreb, Croatia
Mladen Živčić
Seismology Office, Slovenian Environment Agency, Ljubljana, Slovenia
Marijan Herak
Department of Geophysics, Faculty of Science, University of Zagreb,
Zagreb, Croatia
Andrej Gosar
Faculty of Natural Sciences and Engineering, University of Ljubljana,
Ljubljana, Slovenia
Seismology Office, Slovenian Environment Agency, Ljubljana, Slovenia
A full list of authors appears at the end of the paper.
Related authors
No articles found.
Polona Zupančič, Barbara Šket Motnikar, Michele M. C. Carafa, Petra Jamšek Rupnik, Mladen Živčić, Vanja Kastelic, Gregor Rajh, Martina Čarman, Jure Atanackov, and Andrej Gosar
Nat. Hazards Earth Syst. Sci., 24, 651–672, https://doi.org/10.5194/nhess-24-651-2024, https://doi.org/10.5194/nhess-24-651-2024, 2024
Short summary
Short summary
We considered two parameters that affect seismic hazard assessment in Slovenia. The first parameter we determined is the thickness of the lithosphere's section where earthquakes are generated. The second parameter is the activity of each fault, which is expressed by its average displacement per year (slip rate). Since the slip rate can be either seismic or aseismic, we estimated both components. This analysis was based on geological and seismological data and was validated through comparisons.
Katarina Zailac, Bojan Matoš, Igor Vlahović, and Josip Stipčević
Solid Earth, 14, 1197–1220, https://doi.org/10.5194/se-14-1197-2023, https://doi.org/10.5194/se-14-1197-2023, 2023
Short summary
Short summary
Presently there is no complete crustal model of the Dinarides. Using the compilations of previous studies, we have created vertically and laterally varying crustal models defined on a regular grid for the wider area of the Dinarides, also covering parts of the Adriatic Sea and the SW part of the Pannonian Basin. In addition to the seismic velocities and density, we also defined three interfaces: sedimentary deposit bottom, carbonate rock thickness and crustal thickness.
Konstantinos Michailos, György Hetényi, Matteo Scarponi, Josip Stipčević, Irene Bianchi, Luciana Bonatto, Wojciech Czuba, Massimo Di Bona, Aladino Govoni, Katrin Hannemann, Tomasz Janik, Dániel Kalmár, Rainer Kind, Frederik Link, Francesco Pio Lucente, Stephen Monna, Caterina Montuori, Stefan Mroczek, Anne Paul, Claudia Piromallo, Jaroslava Plomerová, Julia Rewers, Simone Salimbeni, Frederik Tilmann, Piotr Środa, Jérôme Vergne, and the AlpArray-PACASE Working Group
Earth Syst. Sci. Data, 15, 2117–2138, https://doi.org/10.5194/essd-15-2117-2023, https://doi.org/10.5194/essd-15-2117-2023, 2023
Short summary
Short summary
We examine the spatial variability of the crustal thickness beneath the broader European Alpine region by using teleseismic earthquake information (receiver functions) on a large amount of seismic waveform data. We compile a new Moho depth map of the broader European Alps and make our results freely available. We anticipate that our results can potentially provide helpful hints for interdisciplinary imaging and numerical modeling studies.
Pavol Zahorec, Juraj Papčo, Roman Pašteka, Miroslav Bielik, Sylvain Bonvalot, Carla Braitenberg, Jörg Ebbing, Gerald Gabriel, Andrej Gosar, Adam Grand, Hans-Jürgen Götze, György Hetényi, Nils Holzrichter, Edi Kissling, Urs Marti, Bruno Meurers, Jan Mrlina, Ema Nogová, Alberto Pastorutti, Corinne Salaun, Matteo Scarponi, Josef Sebera, Lucia Seoane, Peter Skiba, Eszter Szűcs, and Matej Varga
Earth Syst. Sci. Data, 13, 2165–2209, https://doi.org/10.5194/essd-13-2165-2021, https://doi.org/10.5194/essd-13-2165-2021, 2021
Short summary
Short summary
The gravity field of the Earth expresses the overall effect of the distribution of different rocks at depth with their distinguishing densities. Our work is the first to present the high-resolution gravity map of the entire Alpine orogen, for which high-quality land and sea data were reprocessed with the exact same calculation procedures. The results reflect the local and regional structure of the Alpine lithosphere in great detail. The database is hereby openly shared to serve further research.
Cited articles
Aki, K., Christoffersson, A., and Husebye, E. S.: Determination of
3-dimensional seismic structure of lithosphere, J. Geophys.
Res., 82, 277–296, https://doi.org/10.1029/JB082i002p00277, 1977.
AlpArray Seismic Network: AlpArray Seismic Network (AASN) temporary
component, AlpArray Working [data set], https://doi.org/10.12686/alparray/z3_2015, 2015.
Anderson, H. and Jackson, J.: Active tectonics of the Adriatic Region,
Geophys. J. Int., 91, 937–983, https://doi.org/10.1111/j.1365-246X.1987.tb01675.x, 1987.
Atalić, J., Uroš, M., Šavor Novak, M., Demšić, M., and
Nastev, M.: The Mw 5.4 Zagreb (Croatia) earthquake of March 22, 2020:
impacts and response, B. Earthq. Eng., 19, 3461–3489,
https://doi.org/10.1007/s10518-021-01117-w, 2021.
Battaglia, M., Murray, M. H., Serpelloni, E., and Bürgmann, R.: The
Adriatic region: An independent microplate within the Africa-Eurasia
collision zone, Geophys. Res. Lett., 31, L09605, https://doi.org/10.1029/2004GL019723, 2004.
Behm, M.: 3-D modelling of the crustal S-wave velocity structure from active
source data: application to the Eastern Alps and the Bohemian Massif,
Geophys. J. Int., 179, 265–278, https://doi.org/10.1111/j.1365-246X.2009.04259.x, 2009.
Behm, M., Bruckl, E., Chwatal, W., and Thybo, H.: Application of stacking
and inversion techniques to three-dimensional wide-angle reflection and
refraction seismic data of the Eastern Alps, Geophys. J.
Int., 170, 275–298, https://doi.org/10.1111/j.1365-246X.2007.03393.x, 2007.
Belinić, T., Stipčević, J., Živčić, M., and
AlpArrayWorking, G.: Lithospheric thickness under the Dinarides, Earth
Planet. Sc. Lett., 484, 229–240, https://doi.org/10.1016/j.epsl.2017.12.030, 2018.
Bragato, P. L., Comelli, P., Saraò, A., Zuliani, D., Moratto, L., Poggi,
V., Rossi, G., Scaini, C., Sugan, M., Barnaba, C., Bernardi, P., Bertoni,
M., Bressan, G., Compagno, A., Del Negro, E., Di Bartolomeo, P., Fabris, P.,
Garbin, M., Grossi, M., Magrin, A., Magrin, E., Pesaresi, D., Petrovic, B.,
Linares, M. P. P., Romanelli, M., Snidarcig, A., Tunini, L., Urban, S.,
Venturini, E., and Parolai, S.: The OGS–Northeastern Italy Seismic and
Deformation Network: Current Status and Outlook, Seismol. Res.
Lett., 92, 1704–1716, https://doi.org/10.1785/0220200372,
2021.
Bressan, G., Gentile, G. F., Perniola, B., and Urban, S.: The 1998 and 2004
Bovec-Krn (Slovenia) seismic sequences: aftershock pattern, focal mechanisms
and static stress changes, Geophys. J. Int., 179, 231–253,
https://doi.org/10.1111/j.1365-246X.2009.04247.x, 2009.
Bressan, G., Gentile, G. F., Tondi, R., De Franco, R., and Urban, S.:
Sequential Integrated Inversion of tomographic images and gravity data: an
application to the Friuli area (north-eastern Italy), Bollettino di
Geofisica Teorica ed Applicata, 53, 191–212, 2012.
Brückl, E., Bleibinhaus, F., Gosar, A., Grad, M., Guterch, A., Hrubcova,
P., Keller, G. R., Majdanski, M., Šumanovac, F., Tiira, T., Yliniemi,
J., Hegedus, E., and Thybo, H.: Crustal structure due to collisional and
escape tectonics in the Eastern Alps region based on profiles Alp01 and
Alp02 from the ALP 2002 seismic experiment, J. Geophys.
Res.-Sol. Ea., 112, B06308, https://doi.org/10.1029/2006JB004687, 2007.
Brückl, E., Behm, M., Decker, K., Grad, M., Guterch, A., Keller, G. R.,
and Thybo, H.: Crustal structure and active tectonics in the Eastern Alps,
Tectonics, 29, TC2011, https://doi.org/10.1029/2009TC002491, 2010.
Cecić, I. and Jocif, J.: Idrijski potres 26. marca 1511, Geografski
obzornik, 58, 24–29, 2011.
Cecić, I., Nečak, D., and Berus, M.: Ob 101. obletnici
brežiškega potresa, Ujma, 32, 200–209, 2018.
Crosson, R. S.: Crustal structure modeling of earthquake data: 1.
Simultaneous least squares estimation of hypocenter and velocity parameters,
J. Geophys. Res., 81, 3036–3046, https://doi.org/10.1029/JB081i017p03036, 1976.
Diehl, T., Husen, S., Kissling, E., and Deichmann, N.: High-resolution 3-D
P-wave model of the Alpine crust, Geophys. J. Int.,
179, 1133–1147, https://doi.org/10.1111/j.1365-246X.2009.04331.x, 2009.
Fitzko, F., Suhadolc, P., Aoudia, A., and Panza, G. F.: Constraints on the
location and mechanism of the 1511 Western-Slovenia earthquake from active
tectonics and modeling of macroseismic data, Tectonophysics, 404,
77–90, https://doi.org/10.1016/j.tecto.2005.05.003, 2005.
Fodor, L., Jelen, B., Márton, E., Skaberne, D., Čar, J., and Vrabec,
M.: Miocene-Pliocene tectonic evolution of the Slovenian Periadriatic fault:
Implications for Alpine-Carpathian extrusion models, Tectonics, 17,
690–709, https://doi.org/10.1029/98TC01605, 1998.
Fodor, L., Csontos, L., Bada, G., Györfi, I., and Benkovics, L.:
Tertiary tectonic evolution of the Pannonian Basin system and neighbouring
orogens: a new synthesis of palaeostress data, Geol. Soc. Lond.
Spec. Publ., 156, 295, https://doi.org/10.1144/GSL.SP.1999.156.01.15, 1999.
Gosar, A.: Review of geological and seismotectonic investigations related to
1998 Mw 5.6 and 2004 Mw 5.2 earthquakes in Krn Mountains, Geologija,
62/1, 61–73, https://doi.org/10.5474/geologija.2019.002, 2019a.
Gosar, A.: Review of seismological investigations related to 1998 Mw 5.6
and 2004 Mw 5.2 earthquakes in Krn Mountains, Geologija, 62/1, 75–88,
https://doi.org/10.5474/geologija.2019.003, 2019b.
Gosar, A., Cecić, I., Čarman, M., Godec, M., Jesenko, T., Sinčič, P., Šket Motnikar, B., Tasič, I., Zupančič, P., and Živčić, M. (Eds.): Potresi v letu 2019 = Earthquakes in 2019, Ministry of the Environment and Spatial Planning, Slovenian Environment Agency, Ljubljana, Slovenia, ISSN 1318-4792, 2021.
Grenerczy, G., Sella, G., Stein, S., and Kenyeres, A.: Tectonic implications
of the GPS velocity field in the northern Adriatic region, Geophys.
Res. Lett., 32, L16311, https://doi.org/10.1029/2005GL022947, 2005.
Guidarelli, M., Aoudia, A., and Costa, G.: 3-D structure of the crust and
uppermost mantle at the junction between the Southeastern Alps and External
Dinarides from ambient noise tomography, Geophys. J. Int.,
211, 1509–1523, https://doi.org/10.1093/gji/ggx379,
2017.
Handy, M. R., Schmid, S. M., Bousquet, R., Kissling, E., and Bernoulli, D.:
Reconciling plate-tectonic reconstructions of Alpine Tethys with the
geological-geophysical record of spreading and subduction in the Alps,
Earth-Sci. Rev., 102, 121–158, https://doi.org/10.1016/j.earscirev.2010.06.002, 2010.
Handy, M. R., Ustaszewski, K., and Kissling, E.: Reconstructing the
Alps-Carpathians-Dinarides as a key to understanding switches in subduction
polarity, slab gaps and surface motion, Int. J. Earth
Sci., 104, 1–26, https://doi.org/10.1007/s00531-014-1060-3, 2015.
Haslinger, F., Kissling, E., Ansorge, J., Hatzfeld, D., Papadimitriou, E.,
Karakostas, V., Makropoulos, K., Kahle, H. G., and Peter, Y.: 3D crustal
structure from local earthquake tomography around the Gulf of Arta (Ionian
region, NW Greece), Tectonophysics, 304, 201–218, https://doi.org/10.1016/S0040-1951(98)00298-4, 1999.
Herak, M., Herak, D., and Markušić, S.: Revision of the earthquake
catalogue and seismicity of Croatia, 1908–1992, Terra Nova, 8,
86–94, https://doi.org/10.1111/j.1365-3121.1996.tb00728.x,
1996.
Herak, D., Sović, I., Cecić, I., Živčić, M.,
Dasović, I., and Herak, M.: Historical Seismicity of the Rijeka Region
(Northwest External Dinarides, Croatia) – Part I: Earthquakes of 1750, 1838,
and 1904 in the Bakar Epicentral Area, Seismol. Res. Lett.,
88, 904–915, https://doi.org/10.1785/0220170014, 2017.
Herak, M., Živčić, M., Sović, I., Cecić, I.,
Dasović, I., Stipčević, J., and Herak, D.: Historical Seismicity
of the Rijeka Region (Northwest External Dinarides, Croatia) – Part II: The
Klana Earthquakes of 1870, Seismol. Res. Lett., 89,
1524–1536, https://doi.org/10.1785/0220180064, 2018.
Horváth, F. and Cloetingh, S.: Stress-induced late-stage subsidence
anomalies in the Pannonian basin, Tectonophysics, 266, 287–300,
https://doi.org/10.1016/S0040-1951(96)00194-1, 1996.
Hunter, J. D.: Matplotlib: A 2D graphics environment, Comput. Sci. Eng., 9, 90–95, https://doi.org/10.1109/MCSE.2007.55, 2007 (code available at: https://matplotlib.org, last access: 24 January 2022).
Husen, S., Kissling, E., Flueh, E., and Asch, G.: Accurate hypocentre
determination in the seismogenic zone of the subducting Nazca Plate in
northern Chile using a combined on-/offshore network, Geophys. J.
Int., 138, 687–701, https://doi.org/10.1046/j.1365-246x.1999.00893.x, 1999.
Husen, S., Kissling, E., and Clinton, J. F.: Local and regional minimum 1D
models for earthquake location and data quality assessment in complex
tectonic regions: application to Switzerland, Swiss J. Geosci.,
104, 455–469, https://doi.org/10.1007/s00015-011-0071-3, 2011.
INGV Seismological Data Centre: Rete Sismica Nazionale (RSN), Istituto
Nazionale di Geofisica e Vulcanologia (INGV) [data set], Italy, https://doi.org/10.13127/SD/X0FXnH7QfY, 2006.
Jesenko, T. and Živčić, M.: Nekateri rezultati prenove
državne mreže potresnih opazovalnic, in: Potresi v letu
2016/Earthquakes in 2016, edited by: Gosar, A., Slovenian Environment Agency
(ARSO), Ljubljana, Slovenia, 53–68, ISSN 1318-4792, 2018.
Kapuralić, J., Šumanovac, F., and Markušić, S.: Crustal
structure of the northern Dinarides and southwestern part of the Pannonian
basin inferred from local earthquake tomography, Swiss J.
Geosci., 112, 181–198, https://doi.org/10.1007/s00015-018-0335-2, 2019.
Kissling, E.: Geotomography with local earthquake data, Rev.
Geophys., 26, 659–698, https://doi.org/10.1029/RG026i004p00659, 1988.
Kissling, E., Ellsworth, W. L., Eberhart-Phillips, D., and Kradolfer, U.:
Initial reference models in local earthquake tomography, J.
Geophys. Res.-Sol. Ea., 99, 19635–19646, https://doi.org/10.1029/93JB03138, 1994 (code available at: https://seg.ethz.ch/software/velest.html, last access: 24 January 2022).
Kissling, E., Kradolfer, U., and Maurer, H.: VELEST User's Guide – Short
Introduction, Institute of geophysics and Swiss seismological service, User
Guide, ETH, Zürich, 1995.
Kissling, E., Schmid, S. M., Lippitsch, R., Ansorge, J., and Fügenschuh,
B.: Lithosphere structure and tectonic evolution of the Alpine arc: new
evidence from high-resolution teleseismic tomography, Geol. Soc. Mem., 32, 129, https://doi.org/10.1144/GSL.MEM.2006.032.01.08, 2006.
Korbar, T.: Orogenic evolution of the External Dinarides in the NE Adriatic
region: a model constrained by tectonostratigraphy of Upper Cretaceous to
Paleogene carbonates, Earth-Sci. Rev., 96, 296–312,
https://doi.org/10.1016/j.earscirev.2009.07.004, 2009.
Lapajne, J.: Veliki potresi na Slovenskem – III, Ujma, 3, 55–61, 1989.
Lienert, B. R. and Havskov, J.: A Computer Program for Locating Earthquakes
Both Locally and Globally, Seismol. Res. Lett., 66, 26–36,
https://doi.org/10.1785/gssrl.66.5.26, 1995 (code available at: http://www.seisan.info, last access: 24 January 2022).
Magrin, A. and Rossi, G.: Deriving a New Crustal Model of Northern Adria: The Northern Adria Crust (NAC) Model, Front. Earth Sci., 8, 89, https://doi.org/10.3389/feart.2020.00089, 2020.
Márton, E.: Paleomagnetic evidence for Tertiary counterclockwise
rotation of adria with respect to africa, in: The Adria Microplate: GPS
Geodesy, Tectonics and Hazards, edited by: Pinter, N., Gyula, G., Weber, J.,
Stein, S., and Medak, D., NATO Science Series, IV: Earth and Environmental
Sciences, Dordrecht, the Netherlands, 61, 71–80, https://doi.org/10.1007/1-4020-4235-3_05, 2006.
Márton, E., Drobne, K., Ćosović, V., and Moro, A.:
Palaeomagnetic evidence for Tertiary counterclockwise rotation of Adria,
Tectonophysics, 377, 143–156, https://doi.org/10.1016/j.tecto.2003.08.022, 2003.
Maurer, V., Kissling, E., Husen, S., and Quintero, R.: Detection of
Systematic Errors in Travel-Time Data Using a Minimum 1D Model: Application
to Costa Rica Seismic Tomography, B. Seismol. Soc.
Am., 100, 629–639, https://doi.org/10.1785/0120090032, 2010.
MedNet Project Partner Institutions: Mediterranean Very Broadband
Seismographic Network (MedNet), Istituto Nazionale di Geofisica e
Vulcanologia (INGV) [data set], https://doi.org/10.13127/SD/fBBBtDtd6q,
1990.
Met Office: Cartopy: a cartographic Python library with a matplotlib interface, Zenodo [code], https://doi.org/10.5281/zenodo.1182735, 2021.
Métois, M., D'Agostino, N., Avallone, A., Chamot-Rooke, N., Rabaute, A., Duni, L., Kuka, N., Koci, R., and Georgiev, I.: Insights on continental collisional processes from GPS data: Dynamics of the peri-Adriatic belts, J. Geophys. Res.-Sol. Ea., 120, 8701–8719, https://doi.org/10.1002/2015JB012023, 2015.
Michelini, A., Živčić, M., and Suhadolc,
P.: Simultaneous inversion for velocity structure and hypocenters in
Slovenia, J. Seismol., 2, 257–265, https://doi.org/10.1023/A:1009723017040, 1998.
Molinari, I., Clinton, J., Kissling, E., Hetényi, G., Giardini, D., Stipčević, J., Dasović, I., Herak, M., Šipka, V., Wéber, Z., Gráczer, Z., Solarino, S., the Swiss-AlpArray Field Team, and the AlpArray Working Group: Swiss-AlpArray temporary broadband seismic stations deployment and noise characterization, Adv. Geosci., 43, 15–29, https://doi.org/10.5194/adgeo-43-15-2016, 2016.
OGS (Istituto Nazionale di Oceanografia e di Geofisica Sperimentale) and
University of Trieste: North-East Italy Broadband Network, International
Federation of Digital Seismograph Networks [data set], https://doi.org/10.7914/SN/NI, 2002.
OGS (Istituto Nazionale di Oceanografia e di Geofisica Sperimentale):
North-East Italy Seismic Network, International Federation of Digital
Seismograph Networks [data set], https://doi.org/10.7914/SN/OX, 2016.
Pamić, J., Gušić, I., and Jelaska, V.: Geodynamic evolution of
the central Dinarides, Tectonophysics, 297, 251–268, https://doi.org/10.1016/S0040-1951(98)00171-1, 1998.
Picha, F. J.: Late orogenic strike-slip faulting and escape tectonics in
frontal Dinafides-Hellenides, Croatia, Yugoslavia, Albania, and Greece, AAPG
Bulletin, 86, 1659–1671, https://doi.org/10.1306/61EEDD32-173E-11D7-8645000102C1865D, 2002.
Placer, L., Vrabec, M., and Celarc, B.: The bases for understanding of the
NW Dinarides and Istria Peninsula tectonics, Geologija, 53/1, 55–86, 2010.
Ratschbacher, L., Merle, O., Davy, P., and Cobbold, P.: Lateral extrusion in
the eastern Alps, Part 1: Boundary conditions and experiments scaled for
gravity, Tectonics, 10, 245–256, https://doi.org/10.1029/90TC02622, 1991a.
Ratschbacher, L., Frisch, W., Linzer, H. G., and Merle, O.: Lateral
extrusion in the eastern Alps, Part 2: Structural analysis, Tectonics,
10, 257–271, https://doi.org/10.1029/90TC02623, 1991b.
Schmid, S. M., Fügenschuh, B., Kissling, E., and Schuster, R.: Tectonic
map and overall architecture of the Alpine orogen, Eclogae Geol.
Helv., 97, 93–117, https://doi.org/10.1007/s00015-004-1113-x, 2004.
Schmid, S. M., Bernoulli, D., Fügenschuh, B., Matenco, L., Schefer, S.,
Schuster, R., Tischler, M., and Ustaszewski, K.: The
Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of
tectonic units, Swiss J. Geosci., 101, 139–183,
https://doi.org/10.1007/s00015-008-1247-3, 2008.
Slovenian Environment Agency: Seismic Network of the Republic of Slovenia,
International Federation of Digital Seismograph Networks [data set], https://doi.org/10.7914/SN/SL, 2001.
Stipčević, J., Tkalčić, H., Herak, M., Markušić, S.,
and Herak, D.: Crustal and uppermost mantle structure beneath the External
Dinarides, Croatia, determined from teleseismic receiver functions,
Geophys. J. Int., 185, 1103–1119, https://doi.org/10.1111/j.1365-246X.2011.05004.x, 2011.
Stipčević, J., Herak, M., Molinari, I., Dasović, I.,
Tkalčić, H., and Gosar, A.: Crustal Thickness Beneath the Dinarides
and Surrounding Areas from Receiver Functions, Tectonics, 39,
15, e2019TC005872, https://doi.org/10.1029/2019TC005872, 2020.
Šumanovac, F.: Lithosphere structure at the contact of the Adriatic
microplate and the Pannonian segment based on the gravity modelling,
Tectonophysics, 485, 94–106, https://doi.org/10.1016/j.tecto.2009.12.005, 2010.
Šumanovac, F., Orešković, J., Grad, M., and ALP 2002 Working
Group: Crustal structure at the contact of the Dinarides and Pannonian
basin based on 2-D seismic and gravity interpretation of the Alp07 profile
in the ALP 2002 experiment, Geophys. J. Int., 179, 615–633,
https://doi.org/10.1111/j.1365-246X.2009.04288.x, 2009.
Tari, V.: Evolution of the northern and western Dinarides: a
tectonostratigraphic approach, EGU Stephan Mueller Special Publication
Series, 1, 223–236, https://doi.org/10.5194/smsps-1-223-2002,
2002.
Tiberi, L., Costa, G., Rupnik, P. J., Cecić, I., and Suhadolc, P.: The
1895 Ljubljana earthquake: can the intensity data points discriminate which
one of the nearby faults was the causative one?, J. Seismol.,
22, 927–941, https://doi.org/10.1007/s10950-018-9743-z, 2018.
Tondi, E., Blumetti, A. M., Čičak, M., Di Manna, P., Galli, P.,
Invernizzi, C., Mazzoli, S., Piccardi, L., Valentini, G., Vittori, E., and
Volatili, T.: “Conjugate” coseismic surface faulting related with the 29
December 2020, Mw 6.4, Petrinja earthquake (Sisak-Moslavina, Croatia),
Sci. Rep.-UK, 11, 9150, https://doi.org/10.1038/s41598-021-88378-2, 2021.
University of Zagreb: Croatian Seismograph Network, International Federation
of Digital Seismograph Networks [data set], https://doi.org/10.7914/SN/CR,
2001.
Ustaszewski, K., Kounov, A., Schmid, S. M., Schaltegger, U., Krenn, E.,
Frank, W., and Fügenschuh, B.: Evolution of the Adria-Europe plate
boundary in the northern Dinarides: From continent-continent collision to
back-arc extension, Tectonics, 29, TC6017, https://doi.org/10.1029/2010TC002668, 2010.
Vičič, B., Aoudia, A., Javed, F., Foroutan, M., and Costa, G.:
Geometry and mechanics of the active fault system in western Slovenia,
Geophys. J. Int., 217, 1755–1766, https://doi.org/10.1093/gji/ggz118, 2019.
Vidrih, R. and Ribičič, M.: Potres 12. julija 2004 v zgornjem
Posočju – preliminarne geološke in seizmološke značilnosti,
Geologija, 47, 199–220, 2004.
Vidrih, R., Sinčič, P., Tasič, I., Gosar, A., Godec, M., and
Živčić, M.: Državna mreža potresnih opazovalnic = Seismic network of Slovenia, edited by: Vidrih, R., Environmental Agency of
the Republic of Slovenia, Seismology and Geology office, 287 pp., ISBN 978-961-6024-29-7, 2006.
Vignaroli, G., Faccenna, C., Jolivet, L., Piromallo, C., and Rossetti, F.:
Subduction polarity reversal at the junction between the Western Alps and
the Northern Apennines, Italy, Tectonophysics, 450, 34–50,
https://doi.org/10.1016/j.tecto.2007.12.012, 2008.
Weber, G., Vrabec, M., Pavlovčič-Prešeren, P., Dixon, T., Jiang,
Y., and Stopar, B.: GPS-derived motion of the Adriatic microplate from
Istria Peninsula and Po Plain sites, and geodynamic implications,
Tectonophysics, 483, 214–222, https://doi.org/10.1016/j.tecto.2009.09.001, 2010.
ZAMG – Zentralanstalt für Meteorologie und Geodynamik: Austrian Seismic
Network, International Federation of Digital Seismograph Networks [data set],
https://doi.org/10.7914/SN/OE, 1987.
Živčić, M., Bondar, I., and Panza, G. F.: Upper crustal velocity
structure in Slovenia from Rayleigh wave dispersion, Pure Appl.
Geophys., 157, 131–146, https://doi.org/10.1007/PL00001091, 2000.
Zupančič, P., Cecić, I., Gosar, A., Placer, L., Poljak, M., and
Živčić, M.: The earthquake of 12 April 1998 in the Krn Mountains
(Upper Soča Valley, Slovenia) and its seismotectonic characteristics,
Geologija, 44, 169–192, 2001.
Short summary
We investigated the 1-D velocity structure of the Earth's crust in the NW Dinarides with inversion of arrival times from earthquakes. The obtained velocity models give a better insight into the crustal structure and show velocity variations among different parts of the study area. In addition to general structural implications and a potential for improving further work, the results of our study can also be used for routine earthquake location and for detecting errors in seismological bulletins.
We investigated the 1-D velocity structure of the Earth's crust in the NW Dinarides with...