Articles | Volume 14, issue 5
https://doi.org/10.5194/se-14-529-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-14-529-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Probing environmental and tectonic changes underneath Mexico City with the urban seismic field
Department of Earth and Space Sciences, University of Washington, Seattle WA, USA
now at: Swiss Seismological Service, ETH Zürich, Zürich, Switzerland
Enrique Cabral-Cano
Instituto de Geofísica, Universidad Nacional Autónoma de México, CDMX 04510, Mexico
Estelle Chaussard
independent researcher
Darío Solano-Rojas
Facultad de Ingeniería, Universidad Nacional Autónoma de México, CDMX 04510, Mexico
Luis Quintanar
Instituto de Geofísica, Universidad Nacional Autónoma de México, CDMX 04510, Mexico
Diana Morales Padilla
Facultad de Ingeniería, Universidad Nacional Autónoma de México, CDMX 04510, Mexico
Enrique A. Fernández-Torres
Instituto de Geofísica, Universidad Nacional Autónoma de México, CDMX 04510, Mexico
Marine A. Denolle
Department of Earth and Space Sciences, University of Washington, Seattle WA, USA
Related authors
Laura Anna Ermert, Maria Koroni, and Naiara Korta Martiartu
Solid Earth, 14, 485–498, https://doi.org/10.5194/se-14-485-2023, https://doi.org/10.5194/se-14-485-2023, 2023
Short summary
Short summary
We investigate women's representation in seismology to raise awareness of existing gender disparities.
By analysing the authorship of peer-reviewed articles, we identify lower representation of women among single authors, high-impact authors, and highly productive authors. Seismology continues to be a male-dominated field, and trends suggest that parity is decades away. These gaps are an obstacle to women’s career advancement and, if neglected, may perpetuate the leaky-pipeline problem.
Laura Anna Ermert, Maria Koroni, and Naiara Korta Martiartu
Solid Earth, 14, 485–498, https://doi.org/10.5194/se-14-485-2023, https://doi.org/10.5194/se-14-485-2023, 2023
Short summary
Short summary
We investigate women's representation in seismology to raise awareness of existing gender disparities.
By analysing the authorship of peer-reviewed articles, we identify lower representation of women among single authors, high-impact authors, and highly productive authors. Seismology continues to be a male-dominated field, and trends suggest that parity is decades away. These gaps are an obstacle to women’s career advancement and, if neglected, may perpetuate the leaky-pipeline problem.
Xyoli Pérez-Campos, Víctor H. Espíndola, Daniel González-Ávila, Betty Zanolli Fabila, Víctor H. Márquez-Ramírez, Raphael S. M. De Plaen, Juan Carlos Montalvo-Arrieta, and Luis Quintanar
Solid Earth, 12, 1411–1419, https://doi.org/10.5194/se-12-1411-2021, https://doi.org/10.5194/se-12-1411-2021, 2021
Short summary
Short summary
Mexican seismic stations witnessed a reduction in noise level as a result of the COVID-19 lockdown strategies. The largest drop was observed in Hermosillo, which is also the city with the fastest noise-level recovery and a quick increase in confirmed COVID-19 cases. Since 1 June 2020, a traffic-light system has modulated the re-opening of economic activities for each state, which is reflected in noise levels. Noise reduction has allowed the identification and perception of smaller earthquakes.
Cited articles
Ajo-Franklin, J., Dou, S., Daley, T., Freifeld, B., Robertson, M., Ulrich, C., Wood, T., Eckblaw, I., Lindsey, N., Martin, E., and Wagner, A.: Time-lapse surface
wave monitoring of permafrost thaw using distributed acoustic sensing and a
permanent automated seismic source, in: 2017 SEG International Exposition and
Annual Meeting, September 2017, Houston, Texas, OnePetro, paper number SEG-2017-17774027, 2017. a
Alberto, Y., Otsubo, M., Kyokawa, H., Kiyota, T., and Towhata, I.:
Reconnaissance of the 2017 Puebla, Mexico earthquake, Soils and Foundations,
58, 1073–1092, https://doi.org/10.1016/j.sandf.2018.06.007, 2018. a
Andajani, R. D., Tsuji, T., Snieder, R., and Ikeda, T.: Spatial and temporal
influence of rainfall on crustal pore pressure based on seismic velocity
monitoring, Earth Planet. Space, 72, 1–17, 2020. a
Anderson, J. G., Bodin, P., Brune, J. N., Prince, J., Singh, S. K., Quaas, R.,
and Onate, M.: Strong Ground Motion from the Michoacan, Mexico, Earthquake,
Science, 233, 1043–1049, https://doi.org/10.1126/science.233.4768.1043, 1986. a
Arce, J. L., Layer, P. W., Macías, J. L., Morales-Casique, E., García-Palomo,
A., Jiménez-Domínguez, F. J., Benowitz, J., and Vásquez-Serrano, A.:
Geology and stratigraphy of the Mexico Basin (Mexico City), central
Trans-Mexican Volcanic Belt, J. Maps, 15, 320–332,
https://doi.org/10.1080/17445647.2019.1593251, 2019. a
Arroyo, D., Ordaz, M., Ovando-Shelley, E., Guasch, J. C., Lermo, J., Perez, C.,
Alcantara, L., and Ramírez-Centeno, M. S.: Evaluation of the change in
dominant periods in the lake-bed zone of Mexico City produced by ground
subsidence through the use of site amplification factors, Soil Dyn. Earthq.
Eng., 44, 54–66, 2013. a, b
Asimaki, D., Mohammadi, K., Ayoubi, P., Mayoral, J. M., and Montalva, G.:
Investigating the spatial variability of ground motions during the 2017 Mw
7.1 Puebla-Mexico City earthquake via idealized simulations of basin
effects, Soil Dyn. Earthq. Eng., 132, 106073, https://doi.org/10.1016/j.soildyn.2020.106073, 2020. a
Assi Hagmaier, H.: Seasonal variations of seismic velocities and
vibration periods in the Valley of Mexico observed with seismic noise
processing, Master's thesis, Centro de Investigación Científica y de
Educación Superior de Ensenada (CICESE), 2022. a
Beresnev, I. A. and Wen, K.-L.: Nonlinear soil response—A reality?, B. Seismol. Soc. Am., 86, 1964–1978, 1996. a
Bergamo, P., Dashwood, B., Uhlemann, S., Swift, R., Chambers, J. E., Gunn,
D. A., and Donohue, S.: Time-lapse monitoring of climate effects on
earthworks using surface wavesTime-lapse seismic monitoring with SW,
Geophysics, 81, EN1–EN15, 2016. a
Berger, J.: A note on thermoelastic strains and tilts, J. Geophys. Res., 80,
274–277, 1975. a
Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., and Wassermann,
J.: ObsPy: A Python Toolbox for Seismology, Seismol. Res. Lett.,
81, 530–533, https://doi.org/10.1785/gssrl.81.3.530, 2010. a
Bondár, I. and Storchak, D.: Improved location procedures at the
International Seismological Centre, Geophys. J. Int., 186, 1220–1244,
https://doi.org/10.1111/j.1365-246X.2011.05107.x, 2011. a
Bonilla, L. F. and Ben-Zion, Y.: Detailed space–time variations of the
seismic response of the shallow crust to small earthquakes from analysis of
dense array data, Geophys. J. Int., 225, 298–310,
https://doi.org/10.1093/gji/ggaa544, 2020. a
Bonilla, L. F., Guéguen, P., and Ben‐Zion, Y.: Monitoring Coseismic
Temporal Changes of Shallow Material during Strong Ground Motion with
Interferometry and Autocorrelation, Bull. Seismol. Soc. Am., 109, 187–198,
https://doi.org/10.1785/0120180092, 2019. a, b, c, d
Brenguier, F., Campillo, M., Hadziioannou, C., Shapiro, N. M., Nadeau, R. M.,
and Larose, É.: Postseismic relaxation along the San Andreas fault at
Parkfield from continuous seismological observations, Science, 321,
1478–1481, 2008a. a
Brenguier, F., Shapiro, N. M., Campillo, M., Ferrazzini, V., Duputel, Z.,
Coutant, O., and Nercessian, A.: Towards forecasting volcanic eruptions using
seismic noise, Nat. Geosci., 1, 126–130, 2008b. a
Chaussard, E., Havazli, E., Fattahi, H., Cabral-Cano, E., and Solano-Rojas, D.:
Over a Century of Sinking in Mexico City: No Hope for Significant Elevation
and Storage Capacity Recovery, J. Geophys. Res., 126, e2020JB020648,
https://doi.org/10.1029/2020JB020648, 2021. a, b, c
Chavez-Garcia, F. J. and Bard, P.-Y.: Site effects in Mexico City eight years
after the September 1985 Michoacan earthquakes, Soil Dyn. Earthq. Eng., 13,
229–247, 1994. a
Cigna, F. and Tapete, D.: Present-day land subsidence rates, surface faulting
hazard and risk in Mexico City with 2014–2020 Sentinel-1 IW InSAR, Remote
Sens. Environ., 253, 112161, https://doi.org/10.1016/j.rse.2020.112161, 2021. a
Clements, T. and Denolle, M. A.: Tracking groundwater levels using the ambient
seismic field, Geophys. Res. Lett., 45, 6459–6465, 2018. a
Crameri, F., Shephard, G. E., and Heron, P. J.: The misuse of colour in science
communication, Nat. Commun., 11, 1–10, 2020. a
De Plaen, R. S., Cannata, A., Cannavo, F., Caudron, C., Lecocq, T., and
Francis, O.: Temporal changes of seismic velocity caused by volcanic activity
at Mt. Etna revealed by the autocorrelation of ambient seismic noise, Front.
Earth Sci., 6, 251, https://doi.org/10.3389/feart.2018.00251, 2019. a
Donaldson, C., Winder, T., Caudron, C., and White, R. S.: Crustal seismic
velocity responds to a magmatic intrusion and seasonal loading in Iceland’s
Northern Volcanic Zone, Sci. Adv., 5, eaax6642, https://doi.org/10.1126/sciadv.aax6642, 2019. a, b, c, d
Ekström, G.: Time domain analysis of Earth's long-period background seismic
radiation, J. Geophys. Res., 106, 26483–26493,
https://doi.org/10.1029/2000JB000086, 2001. a
Ermert, L.: lermert/ruido: release 0: testing (v0.0.0-alpha), Zenodo [code], https://doi.org/10.5281/zenodo.7766436, 2023. a
Ermert, L. and Kaestle, E.: ants_2 – a lightweight ambient noise processing tool (Version prelim), Zenodo [software], https://doi.org/10.5281/zenodo.7930764, 2023. a
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S.,
Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S.,
Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf, D.:
The shuttle radar topography mission, Rev. Geophys., 45, 2005RG000183, https://doi.org/10.1029/2005RG000183, 2007. a, b, c, d
Feng, K.-F., Huang, H.-H., Hsu, Y.-J., and Wu, Y.-M.: Controls on Seasonal
Variations of Crustal Seismic Velocity in Taiwan Using Single-Station
Cross-Component Analysis of Ambient Noise Interferometry, J. Geophys. Res.,
126, e2021JB022650, https://doi.org/10.1029/2021JB022650, 2021. a, b, c
Fernández-Torres, E. A., Cabral-Cano, E., Novelo-Casanova, D. A.,
Solano-Rojas, D., Havazli, E., and Salazar-Tlaczani, L.: Risk assessment of
land subsidence and associated faulting in Mexico City using InSAR, Nat.
Hazards, 112, 37–55, 2022. a
Fichtner, A.: surf, GitHub [code], https://github.com/afichtner/surf, 2020. a
Field, E. H., T. S. P. I. W. G.: Accounting for Site Effects in
Probabilistic Seismic Hazard Analyses of Southern California: Overview of the
SCEC Phase III Report, Bull. Seismol. Soc. Am., 90, S1–S31,
https://doi.org/10.1785/0120000512, 2000. a
Fokker, E., Ruigrok, E., Hawkins, R., and Trampert, J.: Physics-Based
Relationship for Pore Pressure and Vertical Stress Monitoring Using Seismic
Velocity Variations, Remote Sens., 13, 2684, https://doi.org/10.3390/rs13142684, 2021. a, b, c
Folk, M., Heber, G., Koziol, Q., Pourmal, E., and Robinson, D.: An overview of
the HDF5 technology suite and its applications, in: Proceedings of the
EDBT/ICDT 2011 Workshop on Array Databases, 36–47, ACM, 2011. a
Foreman-Mackey, D., Hogg, D. W., Lang, D., and Goodman, J.: emcee: the MCMC
hammer, Publ. Astron. Soc. Pac., 125, 306, https://doi.org/10.1086/670067,
2013. a
Foti, S., Aimar, M., Ciancimino, A., and Passeri, F.: Recent developments in
seismic site response evaluation and microzonation, in: Proceedings of the
XVII ECSMGE, 223–248, European Conference on soil mechanics and
geotechnical engineering, September 2019, Reykjavik, Iceland, https://doi.org/10.32075/17ECSMGE-2019-1117, 2019. a
Froment, B., Campillo, M., Chen, J., and Liu, Q.: Deformation at depth
associated with the 12 May 2008 Mw 7.9 Wenchuan earthquake from seismic
ambient noise monitoring, Geophys. Res. Lett., 40, 78–82, 2013. a
Groos, J. and Ritter, J.: Time domain classification and quantification of
seismic noise in an urban environment, Geophys. J. Int., 179, 1213–1231,
2009. a
Hadziioannou, C., Larose, E., Baig, A., Roux, P., and Campillo, M.: Improving
temporal resolution in ambient noise monitoring of seismic wave speed, J.
Geophys. Res., 116, B07304, https://doi.org/10.1029/2011JB008200, 2011. a
Hobiger, M., Wegler, U., Shiomi, K., and Nakahara, H.: Single-station
cross-correlation analysis of ambient seismic noise: application to stations
in the surroundings of the 2008 Iwate-Miyagi Nairiku earthquake,
Geophys. J. Int., 198, 90–109, https://doi.org/10.1093/gji/ggu115,
2014. a, b
Illien, L., Andermann, C., Sens-Schönfelder, C., Cook, K., Baidya, K.,
Adhikari, L., and Hovius, N.: Subsurface moisture regulates Himalayan
groundwater storage and discharge, AGU Advances, 2, e2021AV000398, https://doi.org/10.1029/2021AV000398, 2021. a, b
Illien, L., Sens-Schönfelder, C., Andermann, C., Marc, O., Cook, K. L.,
Adhikari, L. B., and Hovius, N.: Seismic velocity recovery in the subsurface:
transient damage and groundwater drainage following the 2015 Gorkha
earthquake, Nepal, J. Geophys. Res., 127, e2021JB023402, https://doi.org/10.1029/2021JB023402, 2022. a, b, c, d
Institut de physique du globe de Paris (IPGP) and Ecole et Observatoire des Sciences de la Terre de Strasbourg (EOST): GEOSCOPE, French global network of broad band seismic stations, Institut de physique du globe de Paris (IPGP), Université de Paris [data set], https://doi.org/10.18715/GEOSCOPE.G, 1982. a
Instituto de Ciencias de la Atmósfera y Cambio Climatico: Programa de
Estaciones Meteorológicas del Bachillerato Universitario,
https://www.ruoa.unam.mx/pembu/index.php?page=home (last access: 13 May 2023), 2022. a
Instituto de Ingeneria, UNAM, Grupo de Procesamiento y Analisis Sismico: Archivo Estandar de Aceleracion [data set]. https://aplicaciones.iingen.unam.mx/AcelerogramasRSM/, last access: 21 July 2021. a
International Seismological Centre: On-line Bulletin,
http://www.isc.ac.uk/iscbulletin/search/ (last access: 15 April
2022), 2022. a
James, S., Knox, H., Abbott, R., Panning, M., and Screaton, E.: Insights into
permafrost and seasonal active-layer dynamics from ambient seismic noise
monitoring, J. Geophys. Res., 124, 1798–1816, 2019. a
Jiang, C. and Denolle, M.: NoisePy: a new high-performance python tool for seismic ambient noise seismology, Seismol. Res. Lett., 91, 1853–1866, https://doi.org/10.1785/0220190364, 2020 (code available at: https://github.com/mdenolle/NoisePy, last access: 12 May 2023). a
Kasahara, K., Sakai, S., Morita, Y., Hirata, N., Tsuruoka, H., Nakagawa, S.,
Nanjo, K. Z., and Obara, K.: Development of the Metropolitan Seismic
Observation Network (MeSO-net) for detection of mega-thrust beneath Tokyo
metropolitan area, Bull. Earthq. Res. Inst. Univ. Tokyo, 84, 71–88, 2009. a
Kennet, B.: IASPEI 1991 seismological tables, Terra Nova, 3, 122–122, 1991. a
Krischer, L., Megies, T., Barsch, R., Beyreuther, M., Lecocq, T., Caudron, C.,
and Wassermann, J.: ObsPy: a bridge for seismology into the scientific
Python ecosystem, Computational Science & Discovery, 8, 014003,
https://doi.org/10.1088/1749-4699/8/1/014003, 2015. a
Larose, E., Planes, T., Rossetto, V., and Margerin, L.: Locating a small change
in a multiple scattering environment, Appl. Phys. Lett., 96, 204101, https://doi.org/10.1063/1.3431269, 2010. a
Lindner, F., Wassermann, J., and Igel, H.: Seasonal Freeze-Thaw Cycles and
Permafrost Degradation on Mt. Zugspitze (German/Austrian Alps) Revealed by
Single-Station Seismic Monitoring, Geophys. Res. Lett., 48, e2021GL094659, https://doi.org/10.1029/2021GL094659,
2021. a
Mao, S., Lecointre, A., van der Hilst, R. D., and Campillo, M.: Space-time monitoring of groundwater fluctuations with passive seismic interferometry, Nat. Commun., 13, 4643, https://doi.org/10.1038/s41467-022-32194-3, 2022. a
Mavko, G., Mukerji, T., and Dvorkin, J. (Eds.): The rock physics handbook, Cambridge
University Press, https://doi.org/10.1017/9781108333016, 2020. a
Mordret, A., Courbis, R., Brenguier, F., Chmiel, M., Garambois, S., Mao, S.,
Boué, P., Campman, X., Lecocq, T., Van der Veen, W., and Hollis, D.: Noise-based
ballistic wave passive seismic monitoring–Part 2: surface waves, Geophys.
J. Int., 221, 692–705, 2020. a
Nakata, N. and Snieder, R.: Near-surface weakening in Japan after the 2011
Tohoku-Oki earthquake, Geophys. Res. Lett., 38, L17302, https://doi.org/10.1029/2011GL048800, 2011. a
NASA JPL: NASA Shuttle Radar Topography Mission Global 1 arc second, NASA EOSDIS Land Processes DAAC
[data set],
https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL1.003, 2013. a, b, c, d
Obermann, A. and Hillers, G.: Seismic time-lapse interferometry across scales,
Adv. Geophys., 60, 65–143, 2019. a
Oral, E., Gélis, C., and Bonilla, L. F.: 2-D P-SV and SH spectral element
modelling of seismic wave propagation in non-linear media with pore-pressure
effects, Geophys. J. Int., 217, 1353–1365, 2019. a
Osmanoglu, B., Dixon, T. H., Wdowinski, S., Cabral-Cano, E., and Jiang, Y.:
Mexico City subsidence observed with persistent scatterer InSAR,
Int. J. Appl. Earth Obs., 13,
1–12, https://doi.org/10.1016/j.jag.2010.05.009, 2011. a
Ostrovsky, L., Lebedev, A., Riviere, J., Shokouhi, P., Wu, C., Stuber Geesey,
M. A., and Johnson, P. A.: Long-time relaxation induced by dynamic forcing in
geomaterials, J. Geophys. Res., 124, 5003–5013, 2019. a
Ovando-Shelley, E., Ossa, A., and Romo, M. P.: The sinking of Mexico City: Its
effects on soil properties and seismic response, Soil Dyn. Earthq. Eng., 27,
333–343, 2007. a
Pérez-Campos, X., Espíndola, V. H., González-Ávila, D., Zanolli Fabila, B., Márquez-Ramírez, V. H., De Plaen, R. S. M., Montalvo-Arrieta, J. C., and Quintanar, L.: The effect of confinement due to COVID-19 on seismic noise in Mexico, Solid Earth, 12, 1411–1419, https://doi.org/10.5194/se-12-1411-2021, 2021. a
Peterson, J.: Observations and modeling of seismic background noise, USGS
Open File Report, 93-322, 94 pp., 1993. a
Quaas, R., Alcántara, L., Espinosa, J. M., Mena, E., Otero, J. A., Javier, C., López, B., Perez, C., Vázquez, R., Flores, J. A., and González, F.: Base Mexicana de datos de sismos fuertes. Un Sistema que integra la información acelerográfica registrada en México en los últimos 35 años, Revista de Ingenería Sísmica, No. 51, 1–12, 1995. a
Quintanar, L., Cárdenas‐Ramírez, A., Bello‐Segura, D. I., Espíndola,
V. H., Pérez‐Santana, J. A., Cárdenas‐Monroy, C., Carmona‐Gallegos,
A. L., and Rodríguez‐Rasilla, I.: A Seismic Network for the Valley of
Mexico: Present Status and Perspectives, Seismol. Res. Lett., 89, 356–362,
https://doi.org/10.1785/0220170198, 2018. a, b, c, d
Rodríguez Tribaldos, V. and Ajo-Franklin, J. B.: Aquifer monitoring using
ambient seismic noise recorded with distributed acoustic sensing (DAS)
deployed on dark fiber, J. Geophys. Res., 126, e2020JB021004, https://doi.org/10.1029/2020JB021004, 2021. a, b, c, d
Roten, D., Fäh, D., Olsen, K. B., and Giardini, D.: A comparison of observed
and simulated site response in the Rhône valley, Geophys. J. Int., 173,
958–978, https://doi.org/10.1111/j.1365-246X.2008.03774.x, 2008. a
Roult, G., Montagner, J.-P., Romanowicz, B., Cara, M., Rouland, D., Pillet, R.,
Karczewski, J.-F., Rivera, L., Stutzmann, E., and Maggi, A.: The GEOSCOPE
Program: Progress and challenges during the past 30 years, Seismol.
Res. Lett., 81, 427–452, 2010. a
Sahakian, V. J., Melgar, D., Quintanar, L., Ramírez-Guzmán, L.,
Pérez-Campos, X., and Baltay, A.: Ground motions from the 7 and 19
September 2017 Tehuantepec and Puebla-Morelos, Mexico, earthquakes, Bull.
Seismol. Soc. Am., 108, 3300–3312, 2018. a
Sánchez-Pastor, P., Obermann, A., Schimmel, M., Weemstra, C., Verdel, A.,
and Jousset, P.: Short-and long-term variations in the Reykjanes geothermal
reservoir from seismic noise interferometry, Geophys. Res. Lett.,
46, 5788–5798, 2019. a
Saul, M. and Lumley, D.: A new velocity–pressure–compaction model for
uncemented sediments, Geophys. J. Int., 193, 905–913, 2013. a
Sawazaki, K., Saito, T., Ueno, T., and Shiomi, K.: Estimation of seismic
velocity changes at different depths associated with the 2014 Northern Nagano
Prefecture earthquake, Japan (MW 6.2) by joint interferometric analysis of
NIED Hi-net and KiK-net records, Prog. Earth Planet. Sci., 3, 1–15, 2016. a
Schimmel, M., Stutzmann, E., and Gallart, J.: Using instantaneous phase
coherence for signal extraction from ambient noise data at a local to a
global scale, Geophys. J. Int., 184, 494–506, 2011. a
Schippkus, S., Garden, M., and Bokelmann, G.: Characteristics of the ambient
seismic field on a large-N seismic array in the Vienna basin, Seismol.
Soc. Am., 91, 2803–2816, 2020. a
Sens-Schönfelder, C. and Eulenfeld, T.: Probing the in situ elastic
nonlinearity of rocks with earth tides and seismic noise, Phys. Rev.
Lett., 122, 138501, https://doi.org/10.1103/PhysRevLett.122.138501, 2019. a, b
Sens-Schönfelder, C. and Wegler, U.: Passive image interferometry and
seasonal variations of seismic velocities at Merapi Volcano, Indonesia,
Geophys. Res. Lett., 33, l21302, https://doi.org/10.1029/2006GL027797, 2006. a, b, c
Sens-Schönfelder, C., Pomponi, E., and Peltier, A.: Dynamics of Piton de la
Fournaise volcano observed by passive image interferometry with multiple
references, J. Geophys. Res., 276, 32–45, 2014. a
Sens-Schönfelder, C., Snieder, R., and Li, X.: A model for nonlinear
elasticity in rocks based on friction of internal interfaces and contact
aging, Geophys. J. Int., 216, 319–331, https://doi.org/10.1093/gji/ggy414, 2018. a
Shapiro, N. M., Singh, S. K., Almora, D., and Ayala, M.: Evidence of the
dominance of higher-mode surface waves in the lake-bed zone of the Valley of
Mexico, Geophys. J. Int., 147, 517–527,
https://doi.org/10.1046/j.0956-540x.2001.01508.x, 2001. a, b
Shokouhi, P., Rivière, J., Guyer, R. A., and Johnson, P. A.: Slow dynamics
of consolidated granular systems: Multi-scale relaxation, Appl. Phys. Lett.,
111, 251604, https://doi.org/10.1063/1.5010043, 2017. a, b
Singh, S. K., Lermo, J., Domínguez, T., Ordaz, M., Espinosa, J. M., Mena, E.,
and Quaas, R.: The Mexico Earthquake of September 19, 1985—A Study of
Amplification of Seismic Waves in the Valley of Mexico with Respect to a Hill
Zone Site, Earthquake Spectra, 4, 653–673, https://doi.org/10.1193/1.1585496,
1988a. a, b
Singh, S. K., Mena, E. A., and Castro, R.: Some aspects of source
characteristics of the 19 September 1985 Michoacan earthquake and ground
motion amplification in and near Mexico City from strong motion data, Bull.
Seismol. Soc. Am., 78, 451–477, 1988b. a
Solano-Rojas, D., Cabral-Cano, E., Hernández-Espriú, A., Wdowinski, S.,
DeMets, C., Salazar-Tlaczani, L., Falorni, G., and Bohane, A.: La
relación de subsidencia del terreno InSAR-GPS y el abatimiento del nivel
estático en pozos de la zona Metropolitana de la Ciudad de México,
Boletín de la Sociedad Geológica Mexicana, 67, 273–283, 2015. a, b, c, d, e, f
Solano-Rojas, D., Cabral-Cano, E., Fernández-Torres, E., Havazli, E.,
Wdowinski, S., and Salazar-Tlaczani, L.: Remotely triggered subsidence
acceleration in Mexico City induced by the September 2017 Mw 7.1 Puebla and
the Mw 8.2 Tehuantepec September 2017 earthquakes, P.
Int. Ass. Hydrol. Sci., 382, 683–687, 2020. a
Taira, T., Nayak, A., Brenguier, F., and Manga, M.: Monitoring reservoir
response to earthquakes and fluid extraction, Salton Sea geothermal field,
California, Sci. Adv., 4, e1701536, https://doi.org/10.1126/sciadv.1701536, 2018. a, b
Takano, T., Brenguier, F., Campillo, M., Peltier, A., and Nishimura, T.:
Noise-based passive ballistic wave seismic monitoring on an active volcano,
Geophys. J. Int., 220, 501–507, 2020. a
Takeuchi, H. and Saito, M.: Seismic surface waves, Methods in Computational
Physics, 11, 217–295, 1972. a
Talwani, P., Chen, L., and Gahalaut, K.: Seismogenic permeability, ks, J.
Geophys. Res., 112, B07309, https://doi.org/10.1029/2006JB004665, 2007. a
TenCate, J. A.: Slow dynamics of earth materials: An experimental overview,
Pure Appl. Geophys., 168, 2211–2219, 2011. a
Tozer, B., Sandwell, D. T., Smith, W. H. F., Olson, C., Beale, J. R., and Wessel, P.: Global bathymetry and topography at 15 arc sec: SRTM15+, Earth Space Sci., 6, 1847–1864, https://doi.org/10.1029/2019EA000658, 2019 (data available at: https://www.generic-mapping-tools.org/remote-datasets/earth-relief.html, last access: 12 May 2023). a
Tsai, V. C.: A model for seasonal changes in GPS positions and seismic wave
speeds due to thermoelastic and hydrologic variations, J. Geophys. Res.,
116, 1–9, https://doi.org/10.1029/2010JB008156, 2011.
a
Uieda, L., Tian, D., Leong, W., Toney, L., Schlitzer, W., Grund, M., Newton,
D., Ziebarth, M., Jones, M., and Wessel, P.: PyGMT: A Python interface for the Generic Mapping Tools (v0.9.0), Zenodo [code], https://doi.org/10.5281/zenodo.7772533, 2021. a
Vargas, C. and Ortega-Guerrero, A.: Fracture hydraulic conductivity in the
Mexico City clayey aquitard: Field piezometer rising-head tests, Hydrogeol.
J., 12, 336–344, 2004. a
Viens, L. and Iwata, T.: Improving the retrieval of offshore-onshore
correlation functions with machine learning, J. Geophys. Res., 125,
e2020JB019730, https://doi.org/10.1029/2020JB019730, 2020 (code available at: https://github.com/lviens/2020_Clustering, last access: 15 May 2023). a, b
Voisin, C., Garambois, S., Massey, C., and Brossier, R.: Seismic noise
monitoring of the water table in a deep-seated, slow-moving landslide,
Interpretation, 4, SJ67–SJ76, 2016. a
Wang, Q.-Y., Campillo, M., Brenguier, F., Lecointre, A., Takeda, T., and
Hashima, A.: Evidence of changes of seismic properties in the entire crust
beneath Japan after the M w 9.0, 2011 Tohoku-oki earthquake, J. Geophys.
Res., 124, 8924–8941, 2019. a
Wu, C., Delorey, A., Brenguier, F., Hadziioannou, C., Daub, E. G., and Johnson,
P.: Constraining depth range of S wave velocity decrease after large
earthquakes near Parkfield, California, Geophys. Res. Lett., 43, 6129–6136,
https://doi.org/10.1002/2016GL069145, 2016. a, b
Short summary
Mexico City is built on a unique ground containing the clay-rich sediments of the ancient lake Texcoco. Continuous imperceptible shaking of these deposits by city traffic and other sources allows us to monitor changes in the subsurface seismic wave speed. Wave speed varies seasonally, likely due to temperature and rain effects; it temporarily drops after large earthquakes then starts to recover. Throughout the studied period, it increased on average, which may be related to soil compaction.
Mexico City is built on a unique ground containing the clay-rich sediments of the ancient lake...