Articles | Volume 15, issue 8
https://doi.org/10.5194/se-15-1029-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-15-1029-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Post-Caledonian tectonic evolution of the Precambrian and Paleozoic platform boundary zone offshore Poland based on the new and vintage multi-channel reflection seismic data
Institute of Geophysics, Polish Academy of Sciences, 01-452 Warsaw, Poland
Michal Malinowski
Institute of Geophysics, Polish Academy of Sciences, 01-452 Warsaw, Poland
Geological Survey of Finland, 02151 Espoo, Finland
Stanisław Mazur
Institute of Geological Sciences, Polish Academy of Sciences, 31-002 Kraków, Poland
Sergiy Stovba
Institute of Geological Sciences, Polish Academy of Sciences, 31-002 Kraków, Poland
S. I. Subbotin Institute of Geophysics, National Academy of Sciences of Ukraine, 02000 Kyiv, Ukraine
Małgorzata Ponikowska
Institute of Geological Sciences, Polish Academy of Sciences, 31-002 Kraków, Poland
Christian Hübscher
Institute of Geophysics, University of Hamburg, 20146 Hamburg, Germany
Related authors
Małgorzata Ponikowska, Sergiy Mykolayovych Stovba, Michał Malinowski, Quang Nguyen, and Stanisław Mazur
EGUsphere, https://doi.org/10.5194/egusphere-2025-3107, https://doi.org/10.5194/egusphere-2025-3107, 2025
This preprint is open for discussion and under review for Solid Earth (SE).
Short summary
Short summary
Transition zone between the Precambrian East European Craton and the Palaeozoic Platform, by integrating seismic interpretation with two-dimensional gravity and magnetic modelling. The combined data provide new insights into the complex tectonic evolution of the region.
Małgorzata Ponikowska, Sergiy Mykolayovych Stovba, Michał Malinowski, Quang Nguyen, and Stanisław Mazur
EGUsphere, https://doi.org/10.5194/egusphere-2025-3107, https://doi.org/10.5194/egusphere-2025-3107, 2025
This preprint is open for discussion and under review for Solid Earth (SE).
Short summary
Short summary
Transition zone between the Precambrian East European Craton and the Palaeozoic Platform, by integrating seismic interpretation with two-dimensional gravity and magnetic modelling. The combined data provide new insights into the complex tectonic evolution of the region.
Michal Malinowski, Tuomo Karinen, Uula Autio, Suvi Heinonen, Brij Singh, Andrzej Górszczyk, Lukasz Sito, and the SEEMS DEEP Working Group
EGUsphere, https://doi.org/10.5194/egusphere-2025-3111, https://doi.org/10.5194/egusphere-2025-3111, 2025
Short summary
Short summary
We acquired and processed novel 3D seismic data to reveal the hidden structure of a deep rock formation in northeastern Finland. This study uncovered a complex, layered system rather than a simple magma channel, and identified a major fault that may influence mineral deposits. Our findings offer new tools and insights for exploring valuable underground resources in hard rock environments.
Brij Singh, Andrzej Górszczyk, Michał Malinowski, Suvi Heinonen, Uula Autio, Tuomo Karinen, Marek Wojdyła, and the SEEMS DEEP Working Group
EGUsphere, https://doi.org/10.5194/egusphere-2025-496, https://doi.org/10.5194/egusphere-2025-496, 2025
Short summary
Short summary
Two reflection seismic (semi-)regional profiles were acquired to map the regional reflectivity of the Koillismaa Layered Igneous Complex in north-eastern Finland. Several reflections up to a depth of 5–6 km are mapped. The top of the magma conduit associated with KLIC is successfully revealed and it is interpreted that there might be a second magma conduit below the exposed intrusion. The study helped in better understanding of the regional structural geology of the area.
Brij Singh, Michał Malinowski, Andrzej Górszczyk, Alireza Malehmir, Stefan Buske, Łukasz Sito, and Paul Marsden
Solid Earth, 13, 1065–1085, https://doi.org/10.5194/se-13-1065-2022, https://doi.org/10.5194/se-13-1065-2022, 2022
Short summary
Short summary
Fast depletion of shallower deposits is pushing the mining industry to look for cutting-edge technologies for deep mineral targeting. We demonstrated a joint workflow including two state-of-the-art technologies: full-waveform inversion and reverse time migration. We produced Earth images with significant details which can help with better estimation of areas with high mineralisation, better mine planning and safety measures.
Felix Hloušek, Michal Malinowski, Lena Bräunig, Stefan Buske, Alireza Malehmir, Magdalena Markovic, Lukasz Sito, Paul Marsden, and Emma Bäckström
Solid Earth, 13, 917–934, https://doi.org/10.5194/se-13-917-2022, https://doi.org/10.5194/se-13-917-2022, 2022
Short summary
Short summary
Methods for mineral exploration play an important role within the EU. Exploration must be environmentally friendly, cost effective, and feasible in populated areas. Seismic methods have the potential to deliver detailed images of mineral deposits but suffer from these demands. We show the results for a sparse 3D seismic dataset acquired in Sweden. The 3D depth image allows us to track the known mineralizations beyond the known extent and gives new insights into the geometry of the deposit.
Michal Chamarczuk, Michal Malinowski, Deyan Draganov, Emilia Koivisto, Suvi Heinonen, and Sanna Rötsä
Solid Earth, 13, 705–723, https://doi.org/10.5194/se-13-705-2022, https://doi.org/10.5194/se-13-705-2022, 2022
Short summary
Short summary
In passive seismic measurement, all noise sources from the environment, such as traffic, vibrations caused by distant excavation, and explosive work from underground mines, are utilized. In the Kylylahti experiment, receivers recorded ambient noise sources for 30 d. These recordings were subjected to data analysis and processing using novel methodology developed in our study and used for imaging the subsurface geology of the Kylylahti mine area.
Piotr Krzywiec, Mateusz Kufrasa, Paweł Poprawa, Stanisław Mazur, Małgorzata Koperska, and Piotr Ślemp
Solid Earth, 13, 639–658, https://doi.org/10.5194/se-13-639-2022, https://doi.org/10.5194/se-13-639-2022, 2022
Short summary
Short summary
Legacy 2-D seismic data with newly acquired 3-D seismic data were used to construct a new model of geological evolution of NW Poland over last 400 Myr. It illustrates how the destruction of the Caledonian orogen in the Late Devonian–early Carboniferous led to half-graben formation, how they were inverted in the late Carboniferous, how the study area evolved during the formation of the Permo-Mesozoic Polish Basin and how supra-evaporitic structures were inverted in the Late Cretaceous–Paleogene.
Dariusz Botor, Stanisław Mazur, Aneta A. Anczkiewicz, István Dunkl, and Jan Golonka
Solid Earth, 12, 1899–1930, https://doi.org/10.5194/se-12-1899-2021, https://doi.org/10.5194/se-12-1899-2021, 2021
Short summary
Short summary
The thermal evolution of the East European Platform is reconstructed by means of thermal maturity and low-temperature thermochronometry. Results showed that major heating occurred before the Permian, with maximum paleotemperatures in the earliest and latest Carboniferous for Baltic–Podlasie and Lublin basins, respectively. The Mesozoic thermal history was characterized by gradual cooling from peak temperatures at the transition from Triassic to Jurassic due to decreasing heat flow.
Cited articles
Ahlrichs, N., Hübscher, C., Noack, V., Schnabel, M., Damm, V., and Krawczyk, C. M.: Structural Evolution at the Northeast North German Basin Margin: From Initial Triassic Salt Movement to Late Cretaceous-Cenozoic Remobilization, Tectonics, 39, e2019TC005927, https://doi.org/10.1029/2019TC005927, 2020.
Ahlrichs, N., Noack, V., Hübscher, C., Seidel, E., Warwel, A., and Kley, J.: Impact of Late Cretaceous inversion and Cenozoic extension on salt structure growth in the Baltic sector of the North German Basin, Basin Res., 34, 220–250, https://doi.org/10.1111/bre.12617, 2022.
Al Hseinat, M. and Hübscher, C.: Late Cretaceous to recent tectonic evolution of the North German Basin and the transition zone to the Baltic Shield/southwest Baltic Sea, Tectonophysics, 708, 28–55, https://doi.org/10.1016/j.tecto.2017.04.021, 2017.
Antonowicz, L., Iwanowska, E., and Rendak, A.: Tensional tectonics in the Pomeranian section of the TT Zone and the implications for hydrocarbon exploration, Geol. Q., 38, 289–306, 1994.
Babel Working Group: Deep Seismic Reflection/Refraction Interpretation of Crustal Structure along Babel Profiles A and B in the Southern Baltic Sea, Geophys. J. Int., 112, 325–343, https://doi.org/10.1111/j.1365-246X.1993.tb01173.x, 1993.
Bayer, U., Grad, M., Pharaoh, T. C., Thybo, H., Guterch, A., Banka, D., Lamarche, J., Lassen, A., Lewerenz, B., Scheck, M., and Marotta, A.-M.: The southern margin of the East European Craton: new results from seismic sounding and potential fields between the North Sea and Poland, Tectonophysics, 360, 301–314, https://doi.org/10.1016/S0040-1951(02)00359-1, 2002.
Beier, H. and Katzung, G.: Lithologie und Strukturgeologie des Altpaläozoikums in der Offshore-Bohrung G 14-1/86 (südliche Ostsee), Greifswalder Geowissenschaftliche Beiträge, 6, 327–345, 1999.
Berthelsen, A.: The Tornquist Zone northwest of the Carpathians: An intraplate pseudosuture, GFF, 120, 223–230, https://doi.org/10.1080/11035899801202223, 1998.
Botor, D., Mazur, S., Anczkiewicz, A. A., Dunkl, I., and Golonka, J.: Thermal history of the East European Platform margin in Poland based on apatite and zircon low-temperature thermochronology, Solid Earth, 12, 1899–1930, https://doi.org/10.5194/se-12-1899-2021, 2021.
Claerbout, J. F. and Doherty, S. M.: Downward continuation of moveout-corrected seismograms, Geophysics, 37, 741–768, https://doi.org/10.1190/1.1440298, 1972.
Dadlez, R., Narkiewicz, M., Stephenson, R. A., Visser, M. T. M., and van Wees, J.-D.: Tectonic evolution of the Mid-Polish Trough: modelling implications and significance for central European geology, Tectonophysics, 252, 179–195, https://doi.org/10.1016/0040-1951(95)00104-2, 1995.
Dallmeyer, R. D., Giese, U., Glasmacher, U., and Pickel, W.: First 40Ar/39Ar age constraints for the Caledonian evolution of the Trans–European Suture Zone in NE Germany, J. Geol. Soc., 156, 279–290, https://doi.org/10.1144/gsjgs.156.2.0279, 1999.
DEKORP-BASIN Research Group: Deep crustal structure of the Northeast German basin: New DEKORP-BASIN '96 deep-profiling results, Geology, 27, 55–58, https://doi.org/10.1130/0091-7613(1999)027<0055:DCSOTN>2.3.CO;2, 1999.
Erlström, M., Thomas, S. A., Deeks, N., and Sivhed, U.: Structure and tectonic evolution of the Tornquist Zone and adjacent sedimentary basins in Scania and the southern Baltic Sea area, Tectonophysics, 271, 191–215, https://doi.org/10.1016/S0040-1951(96)00247-8, 1997.
Franke, D., Gründel, J., Lindert, W., Meissner, B., Schulz, E., Zagora, I., and Zagora, K.: Die Ostseebohrung G 14–eine Profilübersicht, Z. Geol. Wissenschaft., 22, 235–240, 1994.
Gągała, Ł., Vergés, J., Saura, E., Malata, T., Ringenbach, J.-C., Werner, P., and Krzywiec, P.: Architecture and orogenic evolution of the northeastern Outer Carpathians from cross-section balancing and forward modelling, Tectonophysics, 532–535, 223–241, https://doi.org/10.1016/j.tecto.2012.02.014, 2012.
Graversen, O.: Upper Triassic–Lower Cretaceous seismic sequence stratigraphy and basin tectonics at Bornholm, Denmark, Tornquist Zone, NW Europe, Mar. Petrol. Geol., 21, 579–612, https://doi.org/10.1016/j.marpetgeo.2003.12.001, 2004.
Guterch, A., Grad, M., Janik, T., Materzok, R., Luosto, U., Yliniemi, J., Luck, E., Schulze, A., and Forste, K.: Crustal structure of the transition zone between Precambrian and Variscan Europe from new seismic data along LT-7 profile (NW Poland and eastern Germany), CR Acad. Sci. II A, 319, 1489–1496, 1994.
Hansen, M. and Poulsen, V.: Ekskursionsfører nr. 1, Geologi på Bornholm, VARV, København, 96 pp., ISBN 87-87624-05-2, 1977.
Harlan, W. S.: Regularization by model reparameterization, http://www.billharlan.com/papers/regularization.pdf (last access: 25 April 2024), 1995.
Hübscher, C.: Geophysical profiles during Maria S. Merian cruise MSM52, Inst. Für Geophys. Univ. Hamburg, https://doi.org/10.1594/PANGAEA.890870, 2018.
Hübscher, C., Ahlrichs, H., Allum, G., Behrens, T., Bülow, J., Krawczyk, C., Damm, V., Demir, Ü., Engels, M., Frahm, L., Grzyb, G., Hahn, B., Heyde, I., Juhlin, C., Knevels, K., Lange, G., Bruun Lydersen, I., Malinowski, M., Noack, V., Preine, J., Rampersad, K., Schnabel, M., Seidel, E., Sopher, D., Stakemann, Jo., and Stakemann, Ja.: BalTec – Cruise No. MSM52 – March 1 – March 28, 2016 – Rostock (Germany) – Kiel (Germany), Maria S. Merian-Berichte, MSM52, 46 pp., DFG Senatskommission für Ozeanographie, https://doi.org/10.2312/cr_msm52, 2017.
Janik, T., Wójcik, D., Ponikowska, M., Mazur, S., Skrzynik, T., Malinowski, M., and Hübscher, C.: Crustal structure across the Teisseyre-Tornquist Zone offshore Poland based on a new refraction/wide-angle reflection profile and potential field modelling, Tectonophysics, 828, 229271, https://doi.org/10.1016/j.tecto.2022.229271, 2022.
Jaworowski, K., Wagner, R., Modliski, Z., Pokorski, J., Sokołowski, J., and Sokołowski, A.: Marine ecogeology in semi-closed basin: case study on a threat of geogenic pollution of the southern Baltic Sea (Polish Exclusive Economic Zone), Geol. Q., 54, 267–288, 2010.
Karnkowski, P. H., Pikulski, L., and Wolnowski, T.: Petroleum geology of the Polish part of the Baltic region – an overview, Geol. Q., 54, 143–158, 2010.
Katzung, G.: The Caledonides at the southern margin of the East European Craton, Neues Jahrb. Geol. P.-A., 222, 3–53, https://doi.org/10.1127/njgpa/222/2001/3, 2001.
Katzung, G., Giese, U., Walter, R., and Winterfeld, C. V.: The Rügen Caledonides, northeast Germany, Geol. Mag., 130, 725–730, https://doi.org/10.1017/S0016756800021038, 1993.
Kramarska, R., Krzywiec, P., Dadlez, R., Jegliński, W., Papiernik, B., Przezdziecki, P., and Zientara, P.: Geological map of the Baltic Sea bottom without Quaternary deposits, Państwowy Instytut Geologiczny, Gdansk-Warszawa, 1999.
Krawczyk, C. M., Eilts, F., Lassen, A., and Thybo, H.: Seismic evidence of Caledonian deformed crust and uppermost mantle structures in the northern part of the Trans-European Suture Zone, SW Baltic Sea, Tectonophysics, 360, 215–244, https://doi.org/10.1016/S0040-1951(02)00355-4, 2002.
Krzywiec, P.: Contrasting tectonic and sedimentary history of the central and eastern parts of the Polish Carpathian foredeep basin – results of seismic data interpretation, Mar. Petrol. Geol., 18, 13–38, https://doi.org/10.1016/S0264-8172(00)00037-4, 2001.
Krzywiec, P.: Mid-Polish Trough inversion – seismic examples, main mechanisms, and its relationship to the Alpine-Carpathian collision, Stephan Mueller Spec. Publ. Ser., 1, 151–165, https://doi.org/10.5194/smsps-1-151-2002, 2002.
Krzywiec, P., Kramarska, R., and Zientara, P.: Strike-slip tectonics within the SW Baltic Sea and its relationship to the inversion of the Mid-Polish Trough – evidence from high-resolution seismic data, Tectonophysics, 373, 93–105, https://doi.org/10.1016/S0040-1951(03)00286-5, 2003.
Krzywiec, P., Kufrasa, M., Poprawa, P., Mazur, S., Koperska, M., and Ślemp, P.: Together but separate: decoupled Variscan (late Carboniferous) and Alpine (Late Cretaceous–Paleogene) inversion tectonics in NW Poland, Solid Earth, 13, 639–658, https://doi.org/10.5194/se-13-639-2022, 2022a.
Krzywiec, P., Stachowska, A., Grzybowski, Ł., Nguyen, Q., Słonka, Ł., Malinowski, M., Kramarska, R., Ahlrichs, N., and Huebscher, C.: The Late Cretaceous inversion of the Polish Basin and surrounding area – a current perspective based on seismic data, in: Cretaceous of Poland and of Adjacent Areas, 11th International Cretaceous Symposium, edited by: Jagt, J. W. M., Jagt-Yazykova, E., Walaszczyk, I., and Żylińska, A., Faculty of Geology, University of Warsaw, Warsaw, Poland, 9–23, 2022b.
Lassen, A., Thybo, H., and Berthelsen, A.: Reflection seismic evidence for Caledonian deformed sediments above Sveconorwegian basement in the southwestern Baltic Sea, Tectonics, 20, 268–276, https://doi.org/10.1029/2000TC900028, 2001.
Liboriussen, J., Ashton, P., and Tygesen, T.: The tectonic evolution of the Fennoscandian Border Zone in Denmark, Tectonophysics, 137, 21–29, https://doi.org/10.1016/0040-1951(87)90310-6, 1987.
Mazur, S., Scheck-Wenderoth, M., and Krzywiec, P.: Different modes of the Late Cretaceous–Early Tertiary inversion in the North German and Polish basins, Int. J. Earth Sci., 94, 782–798, https://doi.org/10.1007/s00531-005-0016-z, 2005.
Mazur, S., Mikolajczak, M., Krzywiec, P., Malinowski, M., Buffenmyer, V., and Lewandowski, M.: Is the Teisseyre-Tornquist Zone an ancient plate boundary of Baltica?, Tectonics, 34, 2465–2477, https://doi.org/10.1002/2015TC003934, 2015.
Mazur, S., Mikolajczak, M., Krzywiec, P., Malinowski, M., Lewandowski, M., and Buffenmyer, V.: Pomeranian Caledonides, NW Poland – A collisional suture or thin-skinned fold-and-thrust belt?, Tectonophysics, 692, 29–43, https://doi.org/10.1016/j.tecto.2016.06.017, 2016.
Nguyen, Q., Malinowski, M., Kramarska, R., Kaulbarsz, D., Mil, L., and Hübscher, C.: Gas-Escape features along the Trzebiatów fault offshore Poland: Evidence for a leaking petroleum system, Mar. Petrol. Geol., 156, 106431, https://doi.org/10.1016/j.marpetgeo.2023.106431, 2023.
Pan, Y., Seidel, E., Juhlin, C., Hübscher, C., and Sopher, D.: Inversion tectonics in the Sorgenfrei–Tornquist Zone: insight from new marine seismic data at the Bornholm Gat, SW Baltic Sea, GFF, 144, 71–88, https://doi.org/10.1080/11035897.2022.2071335, 2022.
Pharaoh, T. C.: Palaeozoic terranes and their lithospheric boundaries within the Trans-European Suture Zone (TESZ): a review, Tectonophysics, 314, 17–41, https://doi.org/10.1016/S0040-1951(99)00235-8, 1999.
Pietsch, K. and Krzywiec, P.: Application of seismic methods for hydrocarbon exploration within the Devonian and Carboniferous series of the Western Pomerania (Białogard-Jamno area), Oil and Gas News from Poland, 6, 175–186, 1996.
Piske, J., Rasch, H. J., Neumann, E., and Zagora, K.: Geologischer Bau und Entwicklung des Präperms der Insel Rügen und des angrenzenden Seegebietes, Z. Geol. Wissenschaft., 22, 211–226, 1994.
Podhalańska, T. and Modliński, Z.: Outline of the lithology and depositional features of the lower Paleozoic strata in the Polish part of the Baltic region, Geol. Q., 54, 109–121, 2010.
Pokorski, J.: Geological section through the lower Paleozoic strata of the Polish part of the Baltic region, Geol. Q., 54, 123–130, 2010.
Ponikowska, M., Stovba, S. M., Mazur, S., Malinowski, M., Krzywiec, P., Nguyen, Q., and Hübscher, C.: Crustal-scale pop-up structure at the junction of two continental-scale deformation zones in the southern Baltic Sea, Tectonics, 43, e2023TC008066, https://doi.org/10.1029/2023TC008066, 2024.
Rempel, H.: Erdölgeologische Bewertung der Arbeiten der Gemeinsamen Organisation Petrobaltic im deutschen Schelfbereich, Geologisches Jahrbuch. Reihe D. Mineralogie, Petrographie, Geochemie, Lagerstättenkunde, 99, 3–32, 1992.
Schlüter, H., Best, G., Jürgens, U., and Binot, F.: Interpretation reflexionsseismischer Profile zwischen baltischer Kontinentalplatte und kaledonischem Becken in der südlichen Ostsee – erste Ergebnisse, Zeitschrift der Deutschen Geologischen Gesellschaft, 148, 1–32, 1997.
Schlüter, H. U., Jürgens, U., Binot, F., and Best, G.: The importance of geological structures as natural sources of potentially hazardous substances in the southern part of the Baltic Sea, Z. Angew. Geol., 44, 26–32, 1998.
Seidel, E., Meschede, M., and Obst, K.: The Wiek Fault System east of Rügen Island: origin, tectonic phases and its relationship to the Trans-European Suture Zone, Geol. Soc. Lond. Spec. Publ., 469, 59–82, https://doi.org/10.1144/SP469.10, 2018.
Smit, J., van Wees, J.-D., and Cloetingh, S.: Early Carboniferous extension in East Avalonia: 350 My record of lithospheric memory, Mar. Petrol. Geol., 92, 1010–1027, https://doi.org/10.1016/j.marpetgeo.2018.01.004, 2018.
Sopher, D., Erlström, M., Bell, N., and Juhlin, C.: The structure and stratigraphy of the sedimentary succession in the Swedish sector of the Baltic Basin: New insights from vintage 2D marine seismic data, Tectonophysics, 676, 90–111, https://doi.org/10.1016/j.tecto.2016.03.012, 2016.
Thomas, S. A., Sivhed, U., Erlström, M., and Seifert, M.: Seismostratigraphy and structural framework of the SW Baltic Sea, Terra Nova, 5, 364–374, https://doi.org/10.1111/j.1365-3121.1993.tb00270.x, 1993.
Thybo, H.: Crustal structure and tectonic evolution of the Tornquist Fan region as revealed by geophysical methods, B. Geol. Soc. Denmark, 46, 145–160, https://doi.org/10.37570/bgsd-1999-46-12, 1999.
Thybo, H.: Crustal structure along the EGT profile across the Tornquist Fan interpreted from seismic, gravity and magnetic data, Tectonophysics, 334, 155–190, https://doi.org/10.1016/S0040-1951(01)00055-5, 2001.
Torsvik, T. H. and Rehnström, E. F.: The Tornquist Sea and Baltica–Avalonia docking, Tectonophysics, 362, 67–82, https://doi.org/10.1016/S0040-1951(02)00631-5, 2003.
van Wees, J.-D., Stephenson, R. A., Ziegler, P. A., Bayer, U., McCann, T., Dadlez, R., Gaupp, R., Narkiewicz, M., Bitzer, F., and Scheck, M.: On the origin of the Southern Permian Basin, Central Europe, Mar. Petrol. Geol., 17, 43–59, https://doi.org/10.1016/S0264-8172(99)00052-5, 2000.
Vejbaek, O. V., Stouge, S., and Damtoft Poulsen, K.: Palaeozoic tectonic and sedimentary evolution and hydrocarbon prospectivity in the Bornholm area, https://www.osti.gov/etdeweb/biblio/49079 (last access: 25 April 2024), 1994.
Verschuur, D. J.: Seismic Multiple Removal Techniques: Past, present and future (EET 1), Earthdoc, https://doi.org/10.3997/9789073834965, 2013.
Short summary
Our work demonstrates the following: (1) an efficient seismic data-processing strategy focused on suppressing shallow-water multiple reflections. (2) An improvement in the quality of legacy marine seismic data. (3) A seismic interpretation of sedimentary successions overlying the basement in the transition zone from the Precambrian to Paleozoic platforms. (4) The tectonic evolution of the Koszalin Fault and its relation to the Caledonian Deformation Front offshore Poland.
Our work demonstrates the following: (1) an efficient seismic data-processing strategy focused...