Articles | Volume 15, issue 12
https://doi.org/10.5194/se-15-1407-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-15-1407-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Earthquakes triggered by the subsurface undrained response to reservoir impoundment at Irapé, Brazil
Seismological Observatory, Graduate Program in Geology, Institute of Geosciences, University of Brasília, Campus Darcy Ribeiro, 70297-400 Brasília, Brazil
Institute of Astronomy, Geophysics and Atmospheric Sciences, University of São Paulo, 05508-090 São Paulo, Brazil
Global Change Research Group (GCRG), IMEDEA, CSIC-UIB, 07190 Esporles, Spain
George Sand França
Seismological Observatory, Graduate Program in Geology, Institute of Geosciences, University of Brasília, Campus Darcy Ribeiro, 70297-400 Brasília, Brazil
Institute of Astronomy, Geophysics and Atmospheric Sciences, University of São Paulo, 05508-090 São Paulo, Brazil
Eveline Sayão
Seismological Observatory, Graduate Program in Geology, Institute of Geosciences, University of Brasília, Campus Darcy Ribeiro, 70297-400 Brasília, Brazil
Victor Vilarrasa
CORRESPONDING AUTHOR
Global Change Research Group (GCRG), IMEDEA, CSIC-UIB, 07190 Esporles, Spain
Related authors
No articles found.
Tian Guo, Dmitry Alexandrov, Leo Eisner, Zuzana Jechumtalova, Sherilyn Coretta Williams-Stroud, Umair Bin Waheed, and Víctor Vilarrasa
EGUsphere, https://doi.org/10.5194/egusphere-2025-1384, https://doi.org/10.5194/egusphere-2025-1384, 2025
Short summary
Short summary
We have studied the stress conditions at the Decatur CO2 storage site that would induce the observed microseismicity. Initial estimates suggested that faults required higher pressure to slip than the injection pressure, but refining pressure and friction assumptions led to more realistic scenarios. Our study highlights the importance of accurate stress state measurements and high-quality data to better predict reservoir response to injection and improve the safety and reliability of CO2 storage.
Iman R. Kivi, Auregan Boyet, Haiqing Wu, Linus Walter, Sara Hanson-Hedgecock, Francesco Parisio, and Victor Vilarrasa
Earth Syst. Sci. Data, 15, 3163–3182, https://doi.org/10.5194/essd-15-3163-2023, https://doi.org/10.5194/essd-15-3163-2023, 2023
Short summary
Short summary
Induced seismicity has posed significant challenges to secure deployment of geo-energy projects. Through a review of published documents, we present a worldwide, multi-physical database of injection-induced seismicity. The database contains information about in situ rock, tectonic and geologic characteristics, operational parameters, and seismicity for various subsurface energy-related activities. The data allow for an improved understanding and management of injection-induced seismicity.
Estanislao Pujades, Laura Scheiber, Marc Teixidó, Rotman Criollo, Olha Nikolenko, Victor Vilarrasa, Enric Vázquez-Suñé, and Anna Jurado
Adv. Geosci., 59, 9–15, https://doi.org/10.5194/adgeo-59-9-2022, https://doi.org/10.5194/adgeo-59-9-2022, 2022
Short summary
Short summary
This paper explores the impact of low enthalpy geothermal energy (LEGE) on the behaviour of organic contaminants of emerging concern (CECs). Specifically, we investigate the impact of LEGE on phenazone that is an analgesic drug commonly reported in urban aquifers. CECs pose a risk for the environment and human health, and thus, they must be eliminated to increase the available fresh-water resources in urban areas, where water scarcity is a matter of concern due to the population growth.
George Sand França, Ricardo Cruccioli Ribeiro, Luana Rosa Soares, João Calmoni, Gabriel B. de França, and Paulo Eduardo Brito
Geosci. Commun., 4, 297–301, https://doi.org/10.5194/gc-4-297-2021, https://doi.org/10.5194/gc-4-297-2021, 2021
Short summary
Short summary
Absurd theories have been gaining adherents without any criticism and, worse, consolidating. Thus, in order to find solutions for a better understanding of our real theories, the project "The Earth is Flat! Isn’t it?" was created, Which aims to use performing art as the main communicator to spread science. The first was of integration between science and art. The second was dramaturgy along with the creative process, and the third stage was the spectacle.
Cited articles
Almeida, F. F. M.: The São Francisco Craton, Brazilian Journal of Geosciences, 7, 349–364, 1977.
API: Recommend Practices for Core Analysis, RP40, American Petroleum Institute, 2nd Edition, https://energistics.org/sites/default/files/2022-10/rp40.pdf (last access: 17 November 2024), 1998.
Araujo Filho, J. O., Silva, G. F., Lima, E. A. M., Ferreiara, V. N., Batista, O. C. A., and Franca, G. S.: Mapeamento Geoestrutural da área de influência da Usina Hidrelétrica de Irapé, Grão Mogol, MG, Anais do 45° Congresso Brasileiro de Geologia, Sociedade Brasileira de Geologia, https://doi.org/10.22564/5simbgf2012.160, 2010.
Arora, K., Srinu, Y., Gopinadh, D., Chadha, R. K., Raza, H., Mikhailov, V., Ponomarev, A., Kiseleva, E., and Smirnov, V.: Lineaments in Deccan Basalts: The Basement Connection in the Koyna–Warna RTS Region, Bull. Seismol. Soc. Am., 108, 2919–2932, https://doi.org/10.1785/0120180011, 2018.
Assumpçao, M., James, D., and Snoke, A.: Crustal thicknesses in SE Brazilian Shield by receiver function analysis: Implications for isostatic compensation, J. Geophys. Res., 107, ESE 2-1–ESE 2-14, https://doi.org/10.1029/2001JB000422, 2002.
Assumpção, M., Feng, M., Tassara, A., and Julia, J.: Models of crustal thickness for South America from seismic refraction, receiver functions and surface wave tomography, Tectonophysics, 609, 82–96, 2012.
Bell, M. L. and Nur, A.: Strength changes due to reservoir-induced pore pressure, stresses, and application to Lake Oro-Berrocal, J. Geophys. Res., 83, 4469–4483, 1978.
Bondarenko, N., Podladchikov, Y., and Makhnenko, R.: Hydromechanical impact of basement rock on injection-induced seismicity in Illinois Basin, Sci. Rep., 12, 15639, https://doi.org/10.1038/s41598-022-19775-4, 2022.
Boyet, A., De Simone, S., Ge, S., and Vilarrasa V.: Poroelastic stress relaxation, slip stress transfer and friction weakening controlled post-injection seismicity at the Basel Enhanced Geothermal System, Commun. Earth Environ., 4, 104, https://doi.org/10.1038/s43247-023-00764-y, 2023a.
Boyet, A., De Simone, S., and Vilarrasa, V.: Physics-Based Modeling to Understand and to Propose Forecasting Methods of Induced Seismicity, Seismol. Res. Lett., 94, 2666–2678, https://doi.org/10.1785/0220230109, 2023b.
Carder, D. S.: Seismic investigation in the Boulder Dam area, 1940–1944, and the influence of reservoir loading on earthquake activity, B. Seismol. Soc. Am., 35, 175–192, 1945.
Ceia, M., Missagia, R., Fasolo, R., and Neto, I. L.: Relationship between porosity, permeability, and pore compressibility, https://doi.org/10.22564/16cisbgf2019.287, 2019.
Cesca, S., Braun, T., Maccaferri, F., Passarelli, L., Rivalta, E., and Dahm, T.: Source modelling of the M5–6 Emilia-Romagna, Italy, earthquakes (2012 May 20–29), Geophys. J. Int., 193, 1658–1672, https://doi.org/10.1093/gji/ggt069, 2013.
Cesca, S., Grigoli, F., Heimann, S., González, Á, Buforn, E., Maghsoudi, S., Blanch, E., and Dahm, T.: The 2013 September–October seismic sequence offshore Spain: a case of seismicity triggered by gas injection?, Geophys. J. Int., 198, 941–953, https://doi.org/10.1093/gji/ggu172, 2014.
Chen, L. and Talwani, P.: Mechanism of initial seismicity following impoundment of the Monticello Reservoir, South Carolina, B. Seismol. Soc. Am., 91, 1582–1594, 2001.
Chimpliganond, C., França, G. S., Bandeira, A. E., and Bevilaqua, L.: Reservoir-triggered seismicity at the highest Brazilian dam, AGU 2007 – Meeting of Americas Joint Assembly Abstract, Acapulco, Mexico, Acapulco, Mexico, 22–25 May, https://ui.adsabs.harvard.edu/abs/2007AGUSM.S51B..03C/abstract (last access: 18 November 2024), 2007.
Cocco, M. and Rice, J. M.: Pore pressure and poroelasticity effects in Coulomb stress analysis of earthquake interactions, J. Geophys. Res., 107, 2069, https://doi.org/10.1029/2000JB000138, 2002.
Ellsworth, W. L.: Injection-induced earthquakes, Science, 341, 1225942, https://doi.org/10.1126/science.1225942, 2013.
Foulger, G. R., Wilson, M., Gluyas, J., Julian, B. R., and Davies, R.: Global review of human-induced earthquakes, Earth-Sci. Rev., 178, 438–514, 2018.
França, G. S., Assumpção, M., Ribotta, L. C., Von Huelsen, M. G., and Chimpliganond, E. C. N.: Updated compilation of reservoir triggered seismicity in Brazil, in 2010 The Meeting of the Americas (AGU – American Geophysical Union), Foz do Iguaçu, Paraná, Brazil, https://repositorio.usp.br/item/002193775 (last access: 18 November 2024), 2010.
González, P. J., Tiampo, K. F., Palano, M., Cannavó, F., and Fernández, J.: The 2011 Lorca earthquake slip distribution controlled by groundwater crustal unloading, Nat. Geosci., 5, 821–825, https://doi.org/10.1038/ngeo1610, 2012.
Golstein, P. and Snoke, A.: Sac Avaliability for the Iris Community, Incorporated Institutions for Seismology Data Management Center Eletronic Newsletter, https://www.scirp.org/reference/referencespapers?referenceid=1195449 (last access: 15 December 2013), 2005.
Grigoli, F., Cesca, S., Rinaldi, A. P., Manconi, A., López, Comino, J. A., Clinton, J. F.,Westaway, R., Cauzzi, C., Dahm, T., and Wiemer, S.: The November 2017 Mw 5.5 Pohang earthquake: a possible case of induced seismicity in South Korea, Science, 360, 1003–1006, https://doi.org/10.1126/science.aat2010, 2018.
Gupta, H. K.: A review of recent studies of triggered earthquakes by artificial water reservoirs with special emphasis on earthquakes in Koyna, India, Earth-Sci. Rev. 58, 279–310, doi.org/10.1016/S0012-8252(02)00063-6, 2002.
Gupta, H. K., Arora, K., Purnachandra Rao, N., Roy, S., Tiwari, V. M., Patro, P. K., Satyanarayana, H. V. S., Shashidhar, D., Mahato, C. R., Srinivas, K. N. S. S. S., Srihari, M., Satyavani, N., Srinu, Y., Gopinadh, D., Raza, H., Jana, M., Akkiraju, V. V., Goswami, D., Vyas, D., Dubey, C. P., Raju, D. C. V., Borah, U., Raju, K., Chinna Reddy, K., Babu, N., Bansal, B. K., and Nayak, S.: Investigations of continued reservoir triggered seismicity at Koyna, India, Geol. Soc. Lond. Spec. Publ., 445, 151–188, 2016.
Keranen, K. M., Savage, H. M., Abers, G. A., and Cochran, E. S.: Potentially induced earthquakes in Oklahoma, USA: Links between wastewater injection and the 2011 Mw 5.7 earthquake sequence, Geology, 41, 699–702, 2013.
Keranen, K. M., Weingarten, M., Abers, G. A., Bekins, B. A., and Ge, S.: Sharp increase in central Oklahoma seismicity since 2008 induced by massive wastewater injection, Science, 345, 448–451, https://doi.org/10.1126/science.1255802, 2014.
Kim, K.-H., Ree, J.-H., Kim, Y., Kim, S., Kang, S. Y., and Seo, W.: Assessing whether the 2017 Mw 5.4 Pohang earthquake in South Korea was an induced event, Science, 360, 1007–1009, https://doi.org/10.1126/science.aat6081, 2018.
Kivi, I. R., Boyet, A., Wu, H., Walter, L., Hanson-Hedgecock, S., Parisio, F., and Vilarrasa, V.: Global physics-based database of injection-induced seismicity, Earth Syst. Sci. Data, 15, 3163–3182, https://doi.org/10.5194/essd-15-3163-2023, 2023.
Lee, W. H. K., and Lahr, J. C.: HYPO 1971 (revised a computer program for determining hypocentre, magnitude and first motion pattern of local earthquakes. USGS, Open file report, 64 pp., https://doi.org/10.3133/ofr75311, 1975.
Lima, S. A. A., Martins-Neto, M. A., Predrosa-Soares, A. C., Cordani, U. G., and Nutman, A.: The Salinas Formation in the Type Area, NE of Minas Gerais: a proposal to review the stratigraphy of the Araçuaí Belt based on sedimentary and metamorphic evidence and U-Pb SHRIMP ages, Braz. J. Geosci., 34, 491–500, 2002.
Marshak, S., Alkmim, F. F., Whittington, A., and Pedrosa-Soares, A. C.: Extensional collapse in the Neoproterozoic Araçuaí orogen, eastern Brazil: a setting for reactivation of asymmetric crenulation cleavage., J. Struct. Geol., 28, 129–114, 2006.
McGarr, A., Simpson, D., and Seeber, L.: 40 – Case Histories of Induced and Triggered Seismicity, Int. Geophys., 81, 647–661, https://doi.org/10.1016/s0074-6142(02)80243-1, 2002.
Neuzil, C. E.: Groundwater flow in low-permeability environments, Water Resour. Res., 22, 1163–1195, 1986.
Raza, H., Kivi, I. R., França, G. S., and Vilarrasa V.: Reservoir impoundment-triggered seismicity in Brazil: the case of M4.0 Nova Ponte earthquake, Sci. Rep., 13, 22226, https://doi.org/10.1038/s41598-023-48924-6, 2023.
Rice, J. R. and Cleary, M. P.: Some basic stress-diffusion solutions for fluid-saturated elastic porous media with compressible constituents, Rev. Geophys. Space Ge., 14, 227–241, 1976.
Roeloffs, E. A.: Fault stability changes induced beneath a reservoir with cyclic variations in water level, J. Geophys. Res., 93, 2107–212, 1988.
Rutqvist, J.: The geomechanics of CO2 storage in deep sedimentary formations, Geotechnical and Geological Engineering, 30, 525–551, 2012.
Sayão, E., França, G. S., Holanda, M., and Gonçalves, A.: Spatial database and website for reservoir-triggered seismicity in Brazil, Nat. Hazards Earth Syst. Sci., 20, 2001–2019, https://doi.org/10.5194/nhess-20-2001-2020, 2020.
Silva, G. F., Araújo Filho, J. O., Von Huelsen, M. G., Chimpliganond, C. N., and França, G. S.: Influence of Brazilian structures on the reservoir-induced seismicity case of Irapé Hydroelectric Plant, Minas Gerais, Brazil, Braz. J. Geol., 44, 375–386, https://doi.org/10.5327/Z2317-4889201400030004, 2014.
Simpson, D. W.: Seismicity change associated with the reservoir loading, Eng. Geol., 10, 123–150, 1976.
Simpson, D. W., Leith, W. S., and Scholz, C. H.: Two types of reservoirs induced seismicity, B. Seismol. Soc. Am., 78, 2025–2040, 1988.
Talwani, P. and Acree, S.: Pore pressure diffusion and mechanism of reservoir induced seismicity, Pure Appl. Geophys., 122, 947–965, 1985.
Vilarrasa, V., Carrera, J., Olivella, S., Rutqvist, J., and Laloui, L.: Induced seismicity in geologic carbon storage, Solid Earth, 10, 871–892, https://doi.org/10.5194/se-10-871-2019, 2019.
Vilarrasa, V., De Simone, S., Carrera, J., and Villaseñor, A.: Unravelling the causes of the seismicity induced by underground gas storage at Castor, Spain, Geophys. Res. Lett., 48, e2020GL092038, https://doi.org/10.1029/2020GL092038, 2021.
Vilarrasa, V., De Simone, S., Carrera, J., and Villaseñor, A.: Multiple induced seismicity mechanisms at Castor underground gas storage illustrate the need for thorough monitoring, Nat. Commun., 13, 3447, https://doi.org/10.1038/s41467-022-30903-6, 2022.
Vilarrasa, V., Raza, H., Kivi, I. R., and França, G. S.: Understanding the triggering mechanisms of reservoir-triggered seismicity at Nova Ponte, Brazil, through hydro-mechanical modeling, EGU General Assembly 2023, Vienna, Austria, 24–28 April 2023, EGU23-11711, https://doi.org/10.5194/egusphere-egu23-11711, 2023.
Wilson, M. P., Foulger, G. R., Gluyas, J. G., Davies, R. J., and Julian, B. R.: HiQuake: The Human‐Induced Earthquake Database, Seismol. Res. Lett., 88, 1560–1565, https://doi.org/10.1785/0220170112, 2017.
Yeck, W. L., Weingarten, M., Benz, H. M., McNamara, D. E., Bergman, E. A., Herrmann, R. B., Rubinstein, J. L., and Earle, P. S.: Far-field pressurization likely caused one of the largest injections induced earthquakes by reactivating a large preexisting basement fault structure, Geophys. Res. Lett., 43, 10198–10207, https://doi.org/10.1002/2016GL070861, 2016.
Short summary
Hydropower dams associated with a large reservoir, a key renewable, face challenges like reservoir-triggered seismicity (RTS). Here, rock samples show 6.3 %–14.7 % porosity and a maximum permeability of 0.0098 mD. A 136 m reservoir rise causes a 0.61 MPa pore pressure increase. Vertical stress rises by 0.75 MPa, and horizontal stress falls by 0.48 MPa, which leads to fault destabilization, causing RTS. These facts urge the adoption of sustainable energy strategies and future dam development.
Hydropower dams associated with a large reservoir, a key renewable, face challenges like...