Articles | Volume 15, issue 8
https://doi.org/10.5194/se-15-965-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-15-965-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Interseismic and long-term deformation of southeastern Sicily driven by the Ionian slab roll-back
Amélie Viger
CORRESPONDING AUTHOR
CNRS, Montpellier Université – Géosciences Montpellier, Montpellier, France
Stéphane Dominguez
CNRS, Montpellier Université – Géosciences Montpellier, Montpellier, France
Stéphane Mazzotti
CNRS, Montpellier Université – Géosciences Montpellier, Montpellier, France
Michel Peyret
CNRS, Montpellier Université – Géosciences Montpellier, Montpellier, France
Maxime Henriquet
CEREGE, Aix-Marseille Université, Aix-en-Provence, France
Giovanni Barreca
Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Sezione di Science della Terra, Università di Catania, Catania, Italy
CRUST – Interuniversity Center for 3D Seismotectonics with territorial applications, Chieti, Italy
Istituto Nazionale di Geofisica e Vulcanologia – Osservatorio Etneo, Catania, Italy
Carmelo Monaco
Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Sezione di Science della Terra, Università di Catania, Catania, Italy
CRUST – Interuniversity Center for 3D Seismotectonics with territorial applications, Chieti, Italy
Istituto Nazionale di Geofisica e Vulcanologia – Osservatorio Etneo, Catania, Italy
Adrien Damon
CNRS, Montpellier Université – Géosciences Montpellier, Montpellier, France
Related authors
No articles found.
Jean Chéry, Michel Peyret, Cedric Champollion, and Bijan Mohammadi
EGUsphere, https://doi.org/10.5194/egusphere-2025-3421, https://doi.org/10.5194/egusphere-2025-3421, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
While early scientists believed forests attract rain, later research provided conflicting views, and modern climate models remain inconclusive on natural forests' role in regional pluviometry. Using a parsimony model, we show that continental forests strongly enhance pluviometry if they are connected to underground aquifers. We conclude that natural afforestation should be an efficient way to reactivate precipitation and aquifers recharge.
Oswald Malcles, Stéphane Mazzotti, Philippe Vernant, and Vincent Godard
Earth Surf. Dynam., 13, 629–645, https://doi.org/10.5194/esurf-13-629-2025, https://doi.org/10.5194/esurf-13-629-2025, 2025
Short summary
Short summary
The Armorican region (NW France) is marked by several old coastal and marine markers that are today located several tens of meters above sea level. This fact is commonly explained by sea-level variations and complex tectonic processes (e.g., mantle dynamics). In this study, we test the role of the erosion and the associated flexural (lithospheric bending) response. We show that this simple model of flexural adjustment is to be taken into account to explain the regional evolution.
Océane Foix, Stéphane Mazzotti, Hervé Jomard, Didier Bertil, and the Lesser Antilles Working Group
Nat. Hazards Earth Syst. Sci., 25, 1881–1900, https://doi.org/10.5194/nhess-25-1881-2025, https://doi.org/10.5194/nhess-25-1881-2025, 2025
Short summary
Short summary
By analyzing historical and instrumental seismic data, fault knowledge, and geodetic measurements, we provide a new understanding of seismic hazard in the Lesser Antilles via seismotectonic zoning. We propose new models that can have a significant impact on seismic hazard assessment, such as the inclusion of mantle wedge seismicity, the inclusion of volcanic seismicity, and a complete revision of the subduction interface zoning.
Melody Philippon, Jean Roger, Jean-Frédéric Lebrun, Isabelle Thinon, Océane Foix, Stéphane Mazzotti, Marc-André Gutscher, Leny Montheil, and Jean-Jacques Cornée
Nat. Hazards Earth Syst. Sci., 24, 3129–3154, https://doi.org/10.5194/nhess-24-3129-2024, https://doi.org/10.5194/nhess-24-3129-2024, 2024
Short summary
Short summary
Using novel geophysical datasets, we reassess the slip rate of the Morne Piton fault (Lesser Antilles) at 0.2 mm yr−1 by dividing by four previous estimations and thus increasing the earthquake time recurrence and lowering the associated hazard. We evaluate a plausible magnitude for a potential seismic event of Mw 6.5 ± 0.5. Our multi-segment tsunami model representative of the worst-case scenario gives an overview of tsunami generation if all the fault segments ruptured together.
Juliette Grosset, Stéphane Mazzotti, and Philippe Vernant
Solid Earth, 14, 1067–1081, https://doi.org/10.5194/se-14-1067-2023, https://doi.org/10.5194/se-14-1067-2023, 2023
Short summary
Short summary
In glaciated regions, induced lithosphere deformation is proposed as a key process contributing to fault activity and seismicity. We study the impact of this effect on fault activity in the Western Alps. We show that the response to the last glaciation explains a major part of the geodetic strain rates but does not drive or promote the observed seismicity. Thus, seismic hazard studies in the Western Alps require detailed modeling of the glacial isostatic adjustment (GIA) transient impact.
Juliette Grosset, Stéphane Mazzotti, and Philippe Vernant
Solid Earth Discuss., https://doi.org/10.5194/se-2021-141, https://doi.org/10.5194/se-2021-141, 2021
Publication in SE not foreseen
Short summary
Short summary
Glacial Isostatic Adjustment is considered as a major process of seismicity in intraplate regions such as Scandinavia and eastern North America. We show that GIA associated with the alpine icecap induces a present-day response in vertical motion and horizontal deformation seen in GNSS strain rate field. We show that GIA induced stress is opposite to strain rate, with the paradoxical consequence that postglacial rebound in the Western Alps can explain the strain rate field but not the seismicity.
Cited articles
Adam, J., Reuther, C. D., Grasso, M., and Torelli, L.: Active fault kinematics and crustal stresses along the Ionian margin of southeastern Sicily, Tectonophysics, 326, 217–239, https://doi.org/10.1016/S0040-1951(00)00141-4, 2000. a, b, c
Afilhado, A., Moulin, M., Aslanian, D., Schnürle, P., Klingelhoefer, F., Nouzé, H., Rabineau, M., Leroux, E., and Beslier, M.-O.: Deep crustal structure across a young passive margin from wide-angle and reflection seismic data (The SARDINIA Experiment) – II. Sardinia's margin, Bulletin de la Société Géologique de France, 186, 331–351, https://doi.org/10.2113/gssgfbull.186.4-5.331, 2015. a
Almeida, J., Riel, N., Rosas, F. M., Duarte, J. C., and Schellart, W. P.: Polarity-reversal subduction zone initiation triggered by buoyant plateau obstruction, Earth Planet. Sc. Lett., 577, 117195, https://doi.org/10.1016/j.epsl.2021.117195, 2022. a
Altamimi, Z., Rebischung, P., Métivier, L., and Collilieux, X.: ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions, J. Geophys. Res.-Solid, 121, 6109–6131, https://doi.org/10.1002/2016JB013098, 2016. a, b
Anzidei, M., Scicchitano, G., Scardino, G., Bignami, C., Tolomei, C., Vecchio, A., Serpelloni, E., De Santis, V., Monaco, C., Milella, M., Piscitelli, A., and Mastronuzzi, G.: Relative Sea-Level Rise Scenario for 2100 along the Coast of South Eastern Sicily (Italy) by InSAR Data, Satellite Images and High-Resolution Topography, Remote Sens., 13, 1108, https://doi.org/10.3390/rs13061108, 2021. a
APAT: Carta geologica d'Italia Scala 1:1 250 000, https://www.isprambiente.gov.it/images/progetti/progetto-1250-ita.jpg (last access: 19 September 2023), 2005. a
Argnani, A.: Commentary: Deformation Pattern of the Northern Sector of the Malta Escarpment (Offshore SE Sicily, Italy): Fault Dimension, Slip Prediction, and Seismotectonic Implications, Front. Earth Sci., 9, 770364, https://doi.org/10.3389/feart.2021.770364, 2021. a
Argnani, A., Armigliato, A., Pagnoni, G., Zaniboni, F., Tinti, S., and Bonazzi, C.: Active tectonics along the submarine slope of south-eastern Sicily and the source of the 11 January 1693 earthquake and tsunami, Nat. Hazards Earth Syst. Sci., 12, 1311–1319, https://doi.org/10.5194/nhess-12-1311-2012, 2012. a, b
Barreca, G.: Geological and geophysical evidences for mud diapirism in south-eastern Sicily (Italy) and geodynamic implications, J. Geodynam., 82, 168–177, https://doi.org/10.1016/j.jog.2014.02.003, 2014. a
Behncke, B.: Late Pliocene volcanic island growth and flood basalt-like lava emplacement in the Hyblean Mountains (SE Sicily): Late Pliocene Hyblean Volcanism, J. Geophys. Res.-Solid, 109, B09201, https://doi.org/10.1029/2003JB002937, 2004. a
Bigi, G., Cosentino, D., Parlotto, M., and Sartori, R.: Structural model of Italy, sheet 6, National Council of Researches Roma, https://www.socgeol.it/438/structural-model-of-italy-scale-1-500-000.html, (last access: 17 July 2024), 1991. a
Blewitt, G., Hammond, W., and Kreemer, C.: Harnessing the GPS Data Explosion for Interdisciplinary Science, Eos, 99, https://doi.org/10.1029/2018eo104623, 2018. a
Burgmann, R. and Thatcher, W.: Space geodesy: A revolution in crustal deformation measurements of tectonic processes, Special Paper of the Geological Society of America, 500, 397–430, https://doi.org/10.1130/2013.2500(12), 2013. a
Canova, F., Tolomei, C., Salvi, S., Toscani, G., and Seno, S.: Land subsidence along the Ionian coast of SE Sicily (Italy), detection and analysis via Small Baseline Subset (SBAS) multitemporal differential SAR interferometry: Land Subsidence Along The Ionian Coast Of SE Silicy (Italy), Earth Surf. Proc. Land., 37, 273–286, https://doi.org/10.1002/esp.2238, 2012. a, b
Carafa, M. M. C., Kastelic, V., Bird, P., Maesano, F. E., and Valensise, G.: A “Geodetic Gap” in the Calabrian Arc: Evidence for a Locked Subduction Megathrust?, Geophys. Res. Lett., 45, 1794–1804, https://doi.org/10.1002/2017GL076554, 2018. a
Carminati, E. and Doglioni, C.: Mediterranean Tectonics, in: Encyclopedia of Geology, 135–146, https://doi.org/10.1016/B0-12-369396-9/00135-0, 2005. a
Carminati, E., Lustrino, M., and Doglioni, C.: Geodynamic evolution of the central and western Mediterranean: Tectonics vs. igneous petrology constraints, Tectonophysics, 579, 173–192, https://doi.org/10.1016/j.tecto.2012.01.026, 2012. a
Catalano, R., Doglioni, C., and Merlini, S.: On the Mesozoic Ionian Basin, Geophys. J. Int., 144, 49–64, https://doi.org/10.1046/j.0956-540X.2000.01287.x, 2001. a
Chen, Y.-G., Lai, K.-Y., Lee, Y.-H., Suppe, J., Chen, W.-S., Lin, Y.-N. N., Wang, Y., Hung, J.-H., and Kuo, Y.-T.: Coseismic fold scarps and their kinematic behavior in the 1999 Chi-Chi earthquake Taiwan, J. Geophys. Res.-Solid, 112, B03S02, https://doi.org/10.1029/2006JB004388, 2007. a
Civello, S. and Margheriti, L.: Toroidal mantle flow around the Calabrian slab (Italy) from SKS splitting: Toroidal Flow Around The Calabrian Slab, Geophys. Res. Lett., 31, L10601, https://doi.org/10.1029/2004GL019607, 2004. a
Cloetingh, S., Ziegler, P., Beekman, F., Burov, E., Garcia-Castellanos, D., and Matenco, L.: Tectonic Models for the Evolution of Sedimentary Basins, in: Treatise on Geophysics, Elsevier, 513–592, ISBN 978-0-444-53803-1, https://doi.org/10.1016/B978-0-444-53802-4.00117-2, 2015. a
Cultrera, F., Barreca, G., Scarfì, L., and Monaco, C.: Fault reactivation by stress pattern reorganization in the Hyblean foreland domain of SE Sicily (Italy) and seismotectonic implications, Tectonophysics, 661, 215–228, https://doi.org/10.1016/j.tecto.2015.08.043, 2015. a, b, c
D'Agostino, N., D'Anastasio, E., Gervasi, A., Guerra, I., Nedimović, M. R., Seeber, L., and Steckler, M.: Forearc extension and slow rollback of the Calabrian Arc from GPS measurements, Geophys. Res. Lett., 38, L17304, https://doi.org/10.1029/2011GL048270, 2011. a, b
D'Agostino, N., Silverii, F., Amoroso, O., Convertito, V., Fiorillo, F., Ventafridda, G., and Zollo, A.: Crustal Deformation and Seismicity Modulated by Groundwater Recharge of Karst Aquifers, Geophys. Res. Lett., 45, 12253–12262, https://doi.org/10.1029/2018GL079794, 2018. a
Dellong, D., Klingelhoefer, F., Kopp, H., Graindorge, D., Margheriti, L., Moretti, M., Murphy, S., and Gutscher, M.-A.: Crustal Structure of the Ionian Basin and Eastern Sicily Margin: Results From a Wide-Angle Seismic Survey, J. Geophys. Res.-Solid, 123, 2090–2114, https://doi.org/10.1002/2017JB015312, 2018. a, b, c, d, e, f, g, h, i, j, k, l
Dellong, D., Klingelhoefer, F., Dannowski, A., Kopp, H., Murphy, S., Graindorge, D., Margheriti, L., Moretti, M., Barreca, G., Scarfì, L., Polonia, A., and Gutscher, M.-A.: Geometry of the Deep Calabrian Subduction (Central Mediterranean Sea) From Wide-Angle Seismic Data and 3-D Gravity Modeling, Geochem. Geophy. Geosy., 21, 2019GC008586, https://doi.org/10.1029/2019GC008586, 2020. a, b, c, d, e, f, g, h, i, j, k
Dominguez, S. and Viger, A.: Interseismic and long-term deformation of southeastern sicily driven by the ionian slab roll-back, EaSy Data [data set], 2024. a
Faccenna, C., Becker, T. W., Lucente, F. P., Jolivet, L., and Rossetti, F.: History of subduction and back-arc extension in the Central Mediterranean, Geophys. J. Int., 145, 809–820, https://doi.org/10.1046/j.0956-540x.2001.01435.x, 2001. a
Faccenna, C., Civetta, L., D'Antonio, M., Funiciello, F., Margheriti, L., and Piromallo, C.: Constraints on mantle circulation around the deforming Calabrian slab, Geophys. Res. Lett., 32, L06311, https://doi.org/10.1029/2004GL021874, 2005. a
Faccenna, C., Molin, P., Orecchio, B., Olivetti, V., Bellier, O., Funiciello, F., Minelli, L., Piromallo, C., and Billi, A.: Topography of the Calabria subduction zone (southern Italy): Clues for the origin of Mt. Etna, Tectonics, 30, 2010TC002694, https://doi.org/10.1029/2010TC002694, 2011. a
Ferranti, L., Antonioli, F., Mauz, B., Amorosi, A., Dai Pra, G., Mastronuzzi, G., Monaco, C., Orrù, P., Pappalardo, M., Radtke, U., Renda, P., Romano, P., Sansò, P., and Verrubbi, V.: Markers of the last interglacial sea-level high stand along the coast of Italy: Tectonic implications, Quatern. Int., 145–146, 30–54, https://doi.org/10.1016/j.quaint.2005.07.009, 2006. a, b, c
Ferranti, L., Antonioli, F., Anzidei, M., Monaco, C., and Stocchi, P.: The timescale and spatial extent of recent vertical tectonic motions in Italy: insights from relative sea-level changes studies, J. Virt. Explor., 36, 23, https://doi.org/10.3809/jvirtex.2010.00255, 2010. a
Finetti, I. R., Lentini, F., Carbone, S., Del Ben, A., Di Stefano, A., Forlin, E., Guarnieri, P., Pipan, M., and Prizzon, A.: Geological outline of Sicily and lithospheric tectono-dynamics of its Tyrrhenian margin from new CROP seismic data, CROP Project: deep seismic exploration of the central Mediterranean and Italy, https://hdl.handle.net/11368/1746186, 319–375, 2005. a, b
Frizon De Lamotte, D., Raulin, C., Mouchot, N., Wrobel-Daveau, J.-C., Blanpied, C., and Ringenbach, J.-C.: The southernmost margin of the Tethys realm during the Mesozoic and Cenozoic: Initial geometry and timing of the inversion processes, Tectonics, 30, 2010TC002691, https://doi.org/10.1029/2010TC002691, 2011. a
Funiciello, R., Parotto, M., Praturlon, A., and Bigi, G.: Carta tettonica d'Italia alla scala 1:1.500.000, CNR Progetto Finalizzato Geodinamica, Publ., 269 pp. https://www.scirp.org/reference/referencespapers?referenceid=1556836 (last access: 15 April 2020), 1981. a
Gallen, S. F., Seymour, N. M., Glotzbach, C., Stockli, D. F., and O'Sullivan, P.: Calabrian forearc uplift paced by slab–mantle interactions during subduction retreat, Nat. Geosci., 16, 513–520, https://doi.org/10.1038/s41561-023-01185-4, 2023. a
Gambino, S., Barreca, G., Gross, F., Monaco, C., Krastel, S., and Gutscher, M.-A.: Deformation Pattern of the Northern Sector of the Malta Escarpment (Offshore SE Sicily, Italy): Fault Dimension, Slip Prediction, and Seismotectonic Implications, Front. Earth Sci., 8, 594176, https://doi.org/10.3389/feart.2020.594176, 2021. a, b, c, d, e, f, g, h, i, j, k
Gambino, S., Barreca, G., Bruno, V., De Guidi, G., Ferlito, C., Gross, F., Mattia, M., Scarfì, L., and Monaco, C.: Transtension at the Northern Termination of the Alfeo-Etna Fault System (Western Ionian Sea, Italy): Seismotectonic Implications and Relation with Mt. Etna Volcanism, Geosciences, 12, 128, https://doi.org/10.3390/geosciences12030128, 2022a. a, b
Gambino, S., Barreca, G., Gross, F., Monaco, C., Gutscher, M.-A., and Alsop, G. I.: Assessing the rate of crustal extension by 2D sequential restoration analysis: A case study from the active portion of the Malta Escarpment, Basin Res., 34, 321–341, https://doi.org/10.1111/bre.12621, 2022b. a, b, c, d, e, f, g
Goes, S., Giardini, D., Jenny, S., Hollenstein, C., Kahle, H. G., and Geiger, A.: A recent tectonic reorganization in the south-central Mediterranean, Earth Planet. Sc. Lett., 226, 335–345, https://doi.org/10.1016/j.epsl.2004.07.038, 2004. a
Grasso, M. t. and Lentini, F.: Sedimentary and tectonic evolution of the eastern Hyblean Plateau (southeastern Sicily) during late Cretaceous to Quaternary time, Palaeogeogr. Palaeoclim. Palaeoecol., 39, 261–280, 1982. a
Grillo, B., Braitenberg, C., Devoti, R., and Nagy, I.: The study of karstic aquifers by geodetic measurements in Bus de la Genziana station – Cansiglio plateau (Northeastern Italy), Acta Carsolog., 40, 161–173, https://doi.org/10.3986/ac.v40i1.35, 2011. a
Gueguen, E., Doglioni, C., and Fernandez, M.: On the post-25 Ma geodynamic evolution of the western Mediterranean, Tectonophysics, 298, 259–269, https://doi.org/10.1016/S0040-1951(98)00189-9, 1998. a, b
Gutscher, M.-A., Roger, J., Baptista, M.-A., Miranda, J. M., and Tinti, S.: Source of the 1693 Catania earthquake and tsunami (southern Italy): New evidence from tsunami modeling of a locked subduction fault plane, Geophys. Res. Lett., 33, L08309, https://doi.org/10.1029/2005GL025442, 2006. a
Gutscher, M.-A., Dominguez, S., de Lepinay, B. M., Pinheiro, L., Gallais, F., Babonneau, N., Cattaneo, A., Le Faou, Y., Barreca, G., Micallef, A., and Rovere, M.: Tectonic expression of an active slab tear from high-resolution seismic and bathymetric data offshore Sicily (Ionian Sea), Tectonics, 35, 39–54, https://doi.org/10.1002/2015TC003898, 2016. a, b, c, d, e, f, g, h, i
Handy, M. R., M. Schmid, S., Bousquet, R., Kissling, E., and Bernoulli, D.: Reconciling plate-tectonic reconstructions of Alpine Tethys with the geological–geophysical record of spreading and subduction in the Alps, Earth-Sci. Rev., 102, 121–158, https://doi.org/10.1016/j.earscirev.2010.06.002, 2010. a, b
Handy, M. R., Ustaszewski, K., and Kissling, E.: Reconstructing the Alps–Carpathians–Dinarides as a key to understanding switches in subduction polarity, slab gaps and surface motion, Int. J. Earth Sci., 104, 1–26, https://doi.org/10.1007/s00531-014-1060-3, 2015. a
Henriquet, M., Dominguez, S., Barreca, G., Malavieille, J., and Monaco, C.: Structural and tectono-stratigraphic review of the Sicilian orogen and new insights from analogue modeling, Earth-Sci. Rev., 208, 103257, https://doi.org/10.1016/j.earscirev.2020.103257, 2020. a, b, c
INGV – Istituto Nazionale di Geofisica e Vulcanologia: Rete Sismica Nazionale (RSN), approx. 27 GB per day of new waveform data, approx. 415 active seismic stations, the archive totals to more than 600 distinct seismic stations, https://doi.org/10.13127/SD/X0FXNH7QFY, 2005. a
Jolivet, L.: Tethys and Apulia (Adria), 100 years of reconstructions, Comptes Rendus Géoscience, 355, 9–28, https://doi.org/10.5802/crgeos.198, 2023. a
Klingelhoefer, F., Déverchère, J., Graindorge, D., Aïdi, C., Badji, R., Bouyahiaoui, B., Leprêtre, A., Mihoubi, A., Beslier, M.-O., Charvis, P., Schnurle, P., Sage, F., Medaouri, M., Arab, M., Bracene, R., Yelles-Chaouche, A., Badsi, M., Galvé, A., and Géli, L.: Formation, segmentation and deep crustal structure variations along the Algerian margin from the SPIRAL seismic experiment, J. Afr. Earth Sci., 186, 104433, https://doi.org/10.1016/j.jafrearsci.2021.104433, 2022. a
Kreemer, C., Blewitt, G., and Klein, E. C.: A geodetic plate motion and Global Strain Rate Model, Geochem. Geophy. Geosy., 15, 3849–3889, https://doi.org/10.1002/2014GC005407, 2014. a
Lallemand, S., Heuret, A., Faccenna, C., and Funiciello, F.: Subduction dynamics as revealed by trench migration: Subduction Dynamics, Tectonics, 27, TC3014, https://doi.org/10.1029/2007TC002212, 2008. a
Levandowski, W., Herrmann, R. B., Briggs, R., Boyd, O., and Gold, R.: An updated stress map of the continental United States reveals heterogeneous intraplate stress, Nat. Geosci., 11, 433–437, https://doi.org/10.1038/s41561-018-0120-x, 2018. a, b
Li, T., Chen, J., Thompson, J. A., Burbank, D. W., and Yang, H.: Hinge-migrated fold-scarp model based on an analysis of bed geometry: A study from the Mingyaole anticline, southern foreland of Chinese Tian Shan, J. Geophys. Res.-Solid, 120, 6592–6613, https://doi.org/10.1002/2015JB012102, 2015. a
Lipparini, L., Chiacchieri, D., Bencini, R., and Micallef, A.: Extensive freshened groundwater resources emplaced during the Messinian sea-level drawdown in southern Sicily, Italy, Commun. Earth Environ., 4, 430, https://doi.org/10.1038/s43247-023-01077-w, 2023. a, b, c
Maesano, F. E., Tiberti, M. M., and Basili, R.: The Calabrian Arc: three-dimensional modelling of the subduction interface, Sci. Rep., 7, 8887, https://doi.org/10.1038/s41598-017-09074-8, 2017. a, b, c
Maesano, F. E., Tiberti, M. M., and Basili, R.: Deformation and fault propagation at the lateral termination of a subduction zone: the Alfeo Fault System in the Calabrian Arc, southern Italy, Front. Earth Sci., 8, 107, https://doi.org/10.3389/feart.2020.00107, 2020. a
Masson, C., Mazzotti, S., and Vernant, P.: Precision of continuous GPS velocities from statistical analysis of synthetic time series, Solid Earth, 10, 329–342, https://doi.org/10.5194/se-10-329-2019, 2019. a
Mastrolembo Ventura, B., Serpelloni, E., Argnani, A., Bonforte, A., Burgmann, R., Anzidei, M., Baldi, P., and Puglisi, G.: Fast geodetic strain-rates in eastern Sicily (southern Italy): New insights into block tectonics and seismic potential in the area of the great 1693 earthquake, Earth Planet. Sc. Lett., 404, 77–88, https://doi.org/10.1016/j.epsl.2014.07.025, 2014. a
Mazzotti, S., James, T. S., Henton, J., and Adams, J.: GPS crustal strain, postglacial rebound, and seismic hazard in eastern North America: The Saint Lawrence valley example: Crustal Strain In Saint Lawrence Valley, J. Geophys. Res.-Solid, 110, B11301, https://doi.org/10.1029/2004JB003590, 2005. a
Meschis, M., Scicchitano, G., Roberts, G. P., Robertson, J., Barreca, G., Monaco, C., Spampinato, C., Sahy, D., Antonioli, F., Mildon, Z. K., and Scardino, G.: Regional Deformation and Offshore Crustal Local Faulting as Combined Processes to Explain Uplift Through Time Constrained by Investigating Differentially Uplifted Late Quaternary Paleoshorelines: The Foreland Hyblean Plateau, SE Sicily, Tectonics, 39, e2020TC006187, https://doi.org/10.1029/2020TC006187, 2020. a, b, c, d, e, f, g, h, i
Michael, A. J.: Determination of stress from slip data: Faults and folds, J. Geophys. Res.-Solid, 89, 11517–11526, https://doi.org/10.1029/JB089iB13p11517, 1984. a
Milano, M., Kelemework, Y., La Manna, M., Fedi, M., Montanari, D., and Iorio, M.: Crustal structure of Sicily from modelling of gravity and magnetic anomalies, Sci. Rep., 10, 16019, https://doi.org/10.1038/s41598-020-72849-z, 2020. a
Minelli, L. and Faccenna, C.: Evolution of the Calabrian accretionary wedge (central Mediterranean): Calabrian Accretionary Wedge, Tectonics, 29, TC4004, https://doi.org/10.1029/2009TC002562, 2010. a
Mogi, K.: Relations between the eruptions of various volcanoes and the deformations of the ground surfaces around them, Earthquake Research Institute, 36, 99–134, 1958. a
Monaco, C. and Tortorici, L.: Active faulting in the Calabrian arc and eastern Sicily, J. Geodynam., 29, 407–424, 2000. a
Palano, M., Ferranti, L., Monaco, C., Mattia, M., Aloisi, M., Bruno, V., Cannavò, F., and Siligato, G.: GPS velocity and strain fields in Sicily and southern Calabria, Italy: Updated geodetic constraints on tectonic block interaction in the central Mediterranean, J. Geophys. Res.-Solid, 117, B07401, https://doi.org/10.1029/2012JB009254, 2012. a
Polonia, A., Torelli, L., Artoni, A., Carlini, M., Faccenna, C., Ferranti, L., Gasperini, L., Govers, R., Klaeschen, D., Monaco, C., Neri, G., Nijholt, N., Orecchio, B., and Wortel, R.: The Ionian and Alfeo–Etna fault zones: New segments of an evolving plate boundary in the central Mediterranean Sea?, Tectonophysics, 675, 69–90, https://doi.org/10.1016/j.tecto.2016.03.016, 2016. a
Prada, M., Sallarès, V., Ranero, C. R., Vendrell, M. G., Grevemeyer, I., Zitellini, N., and de Franco, R.: Seismic stucture of the Central Tyrrhenian basin: Geophysical constraints on the nature of the main crustal domains, J. Geophys. Res.-Sol. Ea., 119, 52–70, https://doi.org/10.1002/2013JB010527, 2014. a
Rosenbaum, G., Lister, G. S., and Duboz, C.: Reconstruction of the tectonic evolution of the western Mediterranean since the Oligocene, J. Virt. Explor., 8, 107–130, https://doi.org/10.3809/jvirtex.2002.00053, 2002. a
Rovida, A., Locati, M., Camassi, R., Lolli, B., Gasperini, P., and Antonucci, A.: Catalogo Parametrico dei Terremoti Italiani (CPTI15), versione 4.0, INGV, https://doi.org/10.13127/CPTI/CPTI15.4, 2022. a, b, c
Sapin, F., Ringenbach, J.-C., and Clerc, C.: Rifted margins classification and forcing parameters, Sci. Rep., 11, 8199, https://doi.org/10.1038/s41598-021-87648-3, 2021. a
Scandone, P., Patacca, E., Radoicic, R., Ryan, W. B. F., Cita, M. B., Rawson, M., Chezar, H., Miller, E., McKenzie, J., and Rossi, S.: Mesozoic and Cenozoic rocks from Malta escarpment (central Mediterranean), AAPG Bull., 65, 1299–1319, 1981. a
Schmincke, H.-U., Behncke, B., Grasso, M., and Raffi, S.: Evolution of the northwestern Iblean Mountains, Sicily: uplift, Plicocene/Pleistocene sea-level changes, paleoenvironment, and volcanism, Geol. Rundsch., 86, 637–669, 1997. a
Scicchitano, G., Antonioli, F., Berlinghieri, E. F. C., Dutton, A., and Monaco, C.: Submerged archaeological sites along the Ionian coast of southeastern Sicily (Italy) and implications for the Holocene relative sea-level change, Quatern. Res., 70, 26–39, https://doi.org/10.1016/j.yqres.2008.03.008, 2008. a, b
Scicchitano, G., Gambino, S., Scardino, G., Barreca, G., Gross, F., Mastronuzzi, G., and Monaco, C.: The enigmatic 1693 AD tsunami in the eastern Mediterranean Sea: new insights on the triggering mechanisms and propagation dynamics, Sci. Rep., 12, 9573, https://doi.org/10.1038/s41598-022-13538-x, 2022. a
Scognamiglio, L., Tinti, E., and Quintiliani, M.: Time Domain Moment Tensor (TDMT), Instituto Nazionale Di Geofisica E Vulcanologia, https://doi.org/10.13127/TDMT, 2006. a
Sgroi, T., de Nardis, R., and Lavecchia, G.: Crustal structure and seismotectonics of central Sicily (southern Italy): new constraints from instrumental seismicity, Geophys. J. Int., 189, 1237–1252, 2012. a
Silverii, F., D'Agostino, N., Métois, M., Fiorillo, F., and Ventafridda, G.: Transient deformation of karst aquifers due to seasonal and multiyear groundwater variations observed by GPS in southern Apennines (Italy), J. Geophys. Res.-Solid, 121, 8315–8337, https://doi.org/10.1002/2016JB013361, 2016. a
S.I.T.R. regione Siciliana: Scheda metadato DATASET Modello digitale del terreno (MDT) 2 m, Volo ATA 2012 2013, Regione Siciliana, S.I.T.R. Infrastruttura Dati Territoriali, https://www.sitr.regione.sicilia.it/geoportale/it/metadata/details/946 (last access: 8 April 2024), 2013. a
Spampinato, C. R., Braitenberg, C., Monaco, C., and Scicchitano, G.: Analysis of vertical movements in eastern Sicily and southern Calabria (Italy) through geodetic leveling data, J. Geodynam., 66, 1–12, https://doi.org/10.1016/j.jog.2012.12.002, 2013. a, b, c, d
Speranza, F., Minelli, L., Pignatelli, A., and Chiappini, M.: The Ionian Sea: The oldest in situ ocean fragment of the world: Magnetic Modelling Of The Ionian Sea, J. Geophys. Res.-Solid, 117, B12101, https://doi.org/10.1029/2012JB009475, 2012. a
Stampfli, G., Borel, G., Marchant, R., and Mosar, J.: Western Alps geological constraints on western Tethyan reconstructions, J. Virt. Explor., 08, 75–104, https://doi.org/10.3809/jvirtex.2002.00057, 2002. a
Stephenson, O. L., Liu, Y.-K., Yunjun, Z., Simons, M., Rosen, P., and Xu, X.: The Impact of Plate Motions on Long-Wavelength InSAR-Derived Velocity Fields, Geophys. Res. Lett., 49, e2022GL099835, https://doi.org/10.1029/2022GL099835, 2022. a
Tesauro, M., Audet, P., Kaban, M. K., Bürgmann, R., and Cloetingh, S.: The effective elastic thickness of the continental lithosphere: Comparison between rheological and inverse approaches: Te Of The Continental Litosphere, Geochem. Geophy. Geosy., 13, Q09001, https://doi.org/10.1029/2012GC004162, 2012. a
Toda, S., Stein, R. S., Sevilgen, V., and Lin, J.: Coulomb 3.3 Graphic-rich deformation and stress-change software for earthquake, tectonic, and volcano research and teaching – user guide, US Geological Survey open-file report 1060, US Geological Survey, 63 pp. https://pubs.usgs.gov/of/2011/1060/ (last access: 17 July 2024), 2011. a, b, c
Trua, T., Serri, G., and Marani, M. P.: Lateral flow of African mantle below the nearby Tyrrhenian plate: geochemical evidence, Terra Nova, 15, 433–440, https://doi.org/10.1046/j.1365-3121.2003.00509.x, 2003. a
Tugend, J., Chamot-Rooke, N., Arsenikos, S., Blanpied, C., and Frizon De Lamotte, D.: Geology of the Ionian Basin and Margins: A Key to the East Mediterranean Geodynamics, Tectonics, 38, 2668–2702, https://doi.org/10.1029/2018TC005472, 2019. a, b
Van Hinsbergen, D. J., Torsvik, T. H., Schmid, S. M., Maţenco, L. C., Maffione, M., Vissers, R. L., Gürer, D., and Spakman, W.: Orogenic architecture of the Mediterranean region and kinematic reconstruction of its tectonic evolution since the Triassic, Gondwana Res., 81, 79–229, https://doi.org/10.1016/j.gr.2019.07.009, 2020. a, b, c
Vavryčuk, V.: Iterative joint inversion for stress and fault orientations from focal mechanisms, Geophys. J. Int., 199, 69–77, https://doi.org/10.1093/gji/ggu224, 2014. a, b
Vilardo, G., Ventura, G., Terranova, C., Matano, F., and Nardò, S.: Ground deformation due to tectonic, hydrothermal, gravity, hydrogeological, and anthropic processes in the Campania Region (Southern Italy) from Permanent Scatterers Synthetic Aperture Radar Interferometry, Remote Sens. Environ., 113, 197–212, https://doi.org/10.1016/j.rse.2008.09.007, 2009. a
Vollrath, A., Zucca, F., Bekaert, D., Bonforte, A., Guglielmino, F., Hooper, A., and Stramondo, S.: Decomposing DInSAR Time-Series into 3-D in Combination with GPS in the Case of Low Strain Rates: An Application to the Hyblean Plateau, Sicily, Italy, Remote Sens., 9, 33, https://doi.org/10.3390/rs9010033, 2017. a, b, c, d
Watts, A. B. and Zhong, S.: Observations of flexure and the rheology of oceanic lithosphere, Geophys. J. Int., 142, 855–875, https://doi.org/10.1046/j.1365-246x.2000.00189.x, 2000. a
Wells, D. L. and Coppersmith, K. J.: New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement, Bull. Seismol. Soc. Am., 84, 974–1002, 1994. a
Wessel, P. and Smith, W. H. F.: New, improved version of generic mapping tools released, Eos Trans. Am. Geophys. Union, 79, 579–579, https://doi.org/10.1029/98EO00426, 1998 (code available at: https://github.com/GenericMappingTools/gmt/releases, last access: 17 July 2024). a, b
White, A. M., Gardner, W. P., Borsa, A. A., Argus, D. F., and Martens, H. R.: A Review of GNSS/GPS in Hydrogeodesy: Hydrologic Loading Applications and Their Implications for Water Resource Research, Water Resour. Res., 58, e2022WR032078, https://doi.org/10.1029/2022WR032078, 2022. a
Wickert, A. D.: Open-source modular solutions for flexural isostasy: gFlex v1.0, Geosci. Model Dev., 9, 997–1017, https://doi.org/10.5194/gmd-9-997-2016, 2016. a, b
Wickert, A., cpaola, Beucher, R., and Hutton, E.: awickert/gFlex: gFlex version 1.1.1 (v1.1.1), Zenodo [code], https://doi.org/10.5281/zenodo.5034652, 2021. a
Wortel, M. J. R. and Spakman, W.: Subduction and Slab Detachment in the Mediterranean-Carpathian Region, Science, 290, 1910–1917, https://doi.org/10.1126/science.290.5498.1910, 2000. a
Zitellini, N., Ranero, C. R., Loreto, M. F., Ligi, M., Pastore, M., D'Oriano, F., Sallares, V., Grevemeyer, I., Moeller, S., and Prada, M.: Recent inversion of the Tyrrhenian Basin, Geology, 48, 123–127, https://doi.org/10.1130/G46774.1, 2020. a
Short summary
New satellite geodetic data (PS-InSAR) evidence a generalized subsidence and an eastward tilting of southeastern Sicily combined with a local relative uplift along its eastern coast. We perform flexural and elastic modeling and show that the slab pull force induced by the Ionian slab roll-back and extrado deformation reproduce the measured surface deformation. Finally, we propose an original seismic cycle model that is mainly driven by the southward migration of the Ionian slab roll-back.
New satellite geodetic data (PS-InSAR) evidence a generalized subsidence and an eastward tilting...