Articles | Volume 16, issue 4/5
https://doi.org/10.5194/se-16-391-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/se-16-391-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The 3D QP model of the China Seismic Experimental Site (CSES-Q1.0) and its tectonic implications
Mengqiao Duan
Institute of Earthquake Forecasting, China Earthquake Administration, Beijing 100036, China
Institute of Earthquake Forecasting, China Earthquake Administration, Beijing 100036, China
Ying Fu
Sichuan Earthquake Administration, Chengdu, 61004, China
Yanru An
China Earthquake Networks Center, China Earthquake Administration, Beijing 100045, China
Jingqiong Yang
Yunnan Earthquake Administration, Kunming, 650224, China
Xiaodong Zhang
Institute of Earthquake Forecasting, China Earthquake Administration, Beijing 100036, China
Related authors
No articles found.
Feng Liu, Sijie Zhao, Xinyu Gu, Fenghua Ling, Peiqin Zhuang, Yaxing Li, Rui Su, Lihua Fang, Lianqing Zhou, Jianping Huang, and Lei Bai
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-502, https://doi.org/10.5194/essd-2025-502, 2025
Preprint under review for ESSD
Short summary
Short summary
We introduce a large and diverse dataset that supports the development of machine learning methods for studying Earth structures through surface wave dispersion curves. Existing research has been limited by the absence of such benchmark data. Our dataset includes both computer-generated and real-world examples, allowing models to be tested and compared in a consistent way. By making these resources openly available, we aim to advance research on the shallow and deep Earth.
Cited articles
Bai, D., Unsworth, M. J., Meju, M. A., Ma, X., Teng, J., Kong, X., Sun, Y., Sun, J., Wang, L., Jiang, C., Zhao, C., Xiao, P., and Liu, M.: Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging, Nat. Geosci., 3, 358–362, https://doi.org/10.1038/ngeo830, 2010.
Bao, X., Sun, X., Xu, M., Eaton, D. W., Song, X., Wang, L., Ding, Z., Mi, N., Li, H., Yu, D., Huang, Z., and Wang, P.: Two crustal low-velocity channels beneath SE Tibet revealed by joint inversion of Rayleigh wave dispersion and receiver functions, Earth Planet. Sci. Lett., 415, 16–24, https://doi.org/10.1016/j.epsl.2015.01.020, 2015.
Bao, X., Song, X., Eaton, D. W., Xu, Y., and Chen, H.: Episodic Lithospheric Deformation in Eastern Tibet Inferred From Seismic Anisotropy, Geophys. Res. Lett., 47, e2019GL085721, https://doi.org/10.1029/2019GL085721, 2020.
Brune, J. N.: Tectonic stress and the spectra of seismic shear waves from earthquakes, J. Geophys. Res., 75, 4997–5009, https://doi.org/10.1029/JB075i026p04997, 1970.
CENC: The earthquake catalogues and phase reports. China Earthquake networks center, National Earthquake Data Center, http://data.earthquake.cn (last access: January 2025), 2025.
Chen, Y., Gu, Y. J., Mohammed, F., Wang, J., Sacchi, M. D., Wang, R., and Nguyen, B.: Crustal attenuation beneath western North America: Implications for slab subduction, terrane accretion and arc magmatism of the Cascades, Earth Planet. Sci. Lett., 560, 116783, https://doi.org/10.1016/j.epsl.2021.116783, 2021.
Corel: CorelDRAW Official Website, https://www.corel.com/ (last access: January 2020), 2020.
Dai, A., Tang, C.-C., Liu, L., and Xu, R.: Seismic attenuation tomography in southwestern China: Insight into the evolution of crustal flow in the Tibetan Plateau, Tectonophysics, 792, 228589, https://doi.org/10.1016/j.tecto.2020.228589, 2020.
Deng, Y., Byrnes, J. S., and Bezada, M.: New Insights Into the Heterogeneity of the Lithosphere-Asthenosphere System Beneath South China From Teleseismic Body-Wave Attenuation, Geophys. Res. Lett., 48, e2020GL091654, https://doi.org/10.1029/2020GL091654, 2021.
Diao, F., Wang, R., Wang, Y., Xiong, X., and Walter, T. R.: Fault behavior and lower crustal rheology inferred from the first seven years of postseismic GPS data after the 2008 Wenchuan earthquake, Earth Planet. Sci. Lett., 495, 202–212, https://doi.org/10.1016/j.epsl.2018.05.020, 2018.
Duan, M., Zhou, L., Zhao, C., Liu, Z., and Zhang, X.: High-Resolution 3D QP and QS Models of the Middle Eastern Boundary of the Sichuan–Yunnan Rhombic Block: New Insight into Implication for Seismogenesis, Seismol. Res. Lett., 95, 1759–1775, https://doi.org/10.1785/0220230232, 2024.
Eberhart-Phillips, D.: Three-dimensional velocity structure in northern California Coast Ranges from inversion of local earthquake arrival times, Bull. Seismol. Soc. Am., 76, 1025–1052, 1986.
Eberhart-Phillips, D. and Chadwick, M.: Three-dimensional attenuation model of the shallow Hikurangi subduction zone in the Raukumara Peninsula, New Zealand, J. Geophys. Res., 107, 2033–2050, https://doi.org/10.1029/2000JB000046, 2002.
Eberhart-Phillips, D. and Michael, A. J.: Seismotectonics of the Loma Prieta, California, region determined from three-dimensional Vp, and seismicity, J. Geophys. Res., 103, 21099–21120, https://doi.org/10.1029/98JB01984, 1998.
Eberhart-Phillips, D., Chadwick, M., and Bannister, S.: Three-dimensional attenuation structure of central and southern South Island, New Zealand, from local earthquakes, J. Geophys. Res., 113, B05308–B05308, https://doi.org/10.1029/2007JB005359, 2008.
Evans, J. R., Eberhart-Phillips, D., and Thurber, C.: User's manual for SIMULPS12 for imaging Vp and : A derivative of the “Thurber” tomographic inversion SIMUL3 for local earthquakes and explosions, USGS, https://doi.org/10.3133/ofr94431, 1994.
Fu, Y. V., Gao, Y., Li, A., Li, L., and Chen, A.: Lithospheric structure of the southeastern margin of the Tibetan Plateau from Rayleigh wave tomography: Lithospheric Velocity Structure of SE Tibet, J. Geophys. Res., 122, 4631–4644, https://doi.org/10.1002/2016JB013096, 2017.
Guo, H. and Thurber, C.: Temporal Changes in Seismic Velocity and Attenuation at The Geysers Geothermal Field, California, From Double-Difference Tomography, J. Geophys. Res., 127, e2021JB022938, https://doi.org/10.1029/2021JB022938, 2022.
Guo, R., Zheng, Y., and Xu, J.: Stress modulation of the seismic gap between the 2008 M8.0 Wenchuan earthquake and the 2013 M7.0 Lushan earthquake and implications for seismic hazard, Geophys. J. Int., 221, 2113–2125, 2020.
Han, S., H. Zhang, H. Xin, W. Shen, and H. Yao: USTClitho2.0: Updated Unified Seismic Tomography Models for Continental China Lithosphere from Joint Inversion of Body-Wave Arrival Times and Surface-Wave Dispersion Data, Seismol. Res. Lett. 93, 201–215, https://doi.org/10.1785/0220210122, 2022.
Hauksson, E. and Shearer, P. M.: Attenuation models (QP and QS) in three dimensions of the southern California crust: Inferred fluid saturation at seismogenic depths, J. Geophys. Res. 111, B05302–B05322, https://doi.org/10.1029/2005JB003947, 2006.
He, H., Chen, Z., Liu, Z., Gao, Z., Hu, L., Lu, C., Shao, J., and Li, Y.: Geochemical features of fluid in Xiaojiang fault zone, Southeastern Tibetan plateau: Implications for fault activity, Appl. Geochem., 148, 105507, https://doi.org/10.1016/j.apgeochem.2022.105507, 2023.
Hu, S., He, L., and Wang, J.: Heat flow in the continental area of China: a new data set, Earth Planet. Sci. Lett., 179, 407–419, 2000.
Huang, J. and Zhao, D.: Crustal heterogeneity and seismotectonics of the region around Beijing, China, Tectonophysics, 385, 159–180, 2004.
Huang, Z., Wang, L., Xu, M., and Zhao, D.: P Wave Anisotropic Tomography of the SE Tibetan Plateau: Evidence for the Crustal and Upper-Mantle Deformations, J. Geophys. Res., 123, 8957–8978, https://doi.org/10.1029/2018JB016048, 2018.
Jiang, G., Hu, S., Shi, Y., Zhang, C., Wang, Z., and Hu, D.: Terrestrial heat flow of continental China: Updated dataset and tectonic implications, Tectonophysics, 753, 36–48, https://doi.org/10.1016/j.tecto.2019.01.006, 2019.
Karato, S. and H. A. Spetzler: Defect microdynamics in minerals and solid-state mechanisms of seismic wave attenuation and velocity dispersion in the mantle, Rev. Geophys., 28, 399–421, 1990.
Lees, J. M. and Lindley, G. T.: Three-dimensional attenuation tomography at Loma Prieta: Inversion of t∗ for Q, J. Geophys. Res. 99, 6843–6863, https://doi.org/10.1029/93JB03460, 1994.
Li, P.: The Xianshuihe-Xiaojiang fault zone: Part I: Regional Tectonic Background, Seismological Press, Beijing, 284 pp., ISBN7-5028-0987-2/P⋅607, 1993 (in Chinese).
Li, X., Bai, D., Ma, X., Chen, Y., Varentsov, I. M., Xue, G., Xue, S., and Lozovsky, I.: Electrical resistivity structure of the Xiaojiang strike-slip fault system (SW China) and its tectonic implications, J. Asian Earth Sci., 176, 57–67, https://doi.org/10.1016/j.jseaes.2019.01.031, 2019.
Li, X., Ma, X., Chen, Y., Xue, S., Varentsov, I. M., and Bai, D.: A plume-modified lithospheric barrier to the southeastward flow of partially molten Tibetan crust inferred from magnetotelluric data, Earth Planet. Sci. Lett., 548, 116493, https://doi.org/10.1016/j.epsl.2020.116493, 2020.
Li, Z., Tian, B., Liu, S., and Yang, J.: Asperity of the 2013 Lushan earthquake in the eastern margin of Tibetan Plateau from seismic tomography and aftershock relocation, Geophys. J. Int., 195, 2016–2022, https://doi.org/10.1093/gji/ggt370, 2013.
Lin, G.: Three-dimensional compressional wave attenuation tomography for the crust and uppermost mantle of Northern and central California, J. Geophys. Res., 119, 3462–3477, https://doi.org/10.1002/2013JB010621, 2014.
Lin, Y., Liu, S., Dinghui, Y., Xiwei, X., Shuxin, Y., and Wenshuai, W.: A multiscale magma system beneath the Tengchong volcano in western Yunnan revealed by ambient noise tomography, Geophys. J. Int., 236, 1828–1839, 2024.
Liu, H., Pei, S., Liu, W., Xue, X., Li, J., Hua, Q., and Li, L.: Crustal and Upper Mantle Attenuation Structure Beneath the Southeastern Tibetan Plateau and Its Implications on Plateau Outgrowth, J. Geophys. Res. 129, e2023JB026977, https://doi.org/10.1029/2023JB026977, 2024.
Liu, X. and Zhao, D.: Seismic attenuation tomography of the Southwest Japan arc: new insight into subduction dynamics, Geophys. J. Int., 201, 135–156, https://doi.org/10.1093/gji/ggv007, 2015.
Liu, Y., Yao, H., Zhang, H., and Fang, H.: The Community Velocity Model V.1.0 of Southwest China, Constructed from Joint Body- and Surface-Wave Travel-Time Tomography, Seismol. Res. Lett., 92, 2972–2987, https://doi.org/10.1785/0220200318, 2021.
Liu, Y., Yu Z., Zhang Z., Yao H., Wang W., Zhang H., Fang H., and Fang L.: The high-resolution community velocity model V2.0 of southwest China, constructed by joint body and surface wave tomography of data recorded at temporary dense arrays, Sci. China Earth Sci., 66, 2368–2385, https://doi.org/10.1007/s11430-022-1161-7, 2023.
McNamara, D. E.: Frequency dependent Lg attenuation in southcentral Alaska, Geophys. Res. Lett., 27, 3949–3952, 2000.
Pei, S., Cui, Z., Sun, Y., Toksoz, M. N., Rowe, C. A., Gao, X., Zhao, J., Liu, H., He, J., and Morgan, F. D.: Structure of the Upper Crust in Japan from S-Wave Attenuation Tomography, Bull. Seismol. Soc. Am., 99, 428–434, https://doi.org/10.1785/0120080029, 2009.
Pei, S., Zhang, H., Su, J., and Cui, Z.: Ductile Gap between the Wenchuan and Lushan Earthquakes Revealed from the Two-dimensional Pg Seismic Tomography, Sci. Rep., 4, 6489, https://doi.org/10.1038/srep06489, 2014.
Qiao, L., Yao, H., Lai, Y.-C., Huang, B.-S., and Zhang, P.: Crustal Structure of Southwest China and Northern Vietnam From Ambient Noise Tomography: Implication for the Large-Scale Material Transport Model in SE Tibet, Tectonics, 37, 1492–1506, https://doi.org/10.1029/2018TC004957, 2018.
Reyners, M., Eberhart-Phillips, D., and Stuart, G.: A three-dimensional image of shallow subduction: crustal structure of the Raukumara Peninsula, New Zealand, Geophys. J. Int. 137, 873–890. https://doi.org/10.1046/j.1365-246x.1999.00842.x, 1999.
Ren, Y., Lu, Z. W., Zhang, X., Xue, S., and Wang, G.: Crustal structure of the Emeishan large igneous province inner zone revealed by deep seismic reflection profile. Chinese J. Geophys., 65, 484–494, https://doi.org/10.6038/cjg2022P0196, 2022 (in Chinese).
Shen, W., Ritzwoller, M. H., Kang, D., Kim, Y., Lin, F.-C., Ning, J., Wang, W., Zheng, Y., and Zhou, L.: A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion, Geophys. J. Int., 206, 954–979, https://doi.org/10.1093/gji/ggw175, 2016.
Shen, W., Liu, S., Yang, D., Wang, W., Xu, X., and Yang, S.: The crustal and uppermost mantle dynamics of the Tengchong–Baoshan region revealed by P -wave velocity and azimuthal anisotropic tomography, Geophys. J. Int., 230, 1092–1105, https://doi.org/10.1093/gji/ggac105, 2022.
Shi, Z. and Wang, G.: Evaluation of the permeability properties of the Xiaojiang Fault Zone using hot springs and water wells, Geophys. J. Int., 209, 1526–1533, https://doi.org/10.1093/gji/ggx113, 2017.
Stachnik, J. C., Abers, G. A., and Christensen, D. H.: Seismic attenuation and mantle wedge temperatures in the Alaska subduction zone, J. Geophys. Res. 109, B10304, https://doi.org/10.1029/2004JB003018, 2004.
Sun, Q., Pei, S., Cui, Z., Chen, Y. J., Liu, Y., Xue, X., Li, J., Li, L., and Zuo, H.: Structure-controlled asperities of the 1920 Haiyuan M 8.5 and 1927 Gulang M 8 earthquakes, NE Tibet, China, revealed by high-resolution seismic tomography, Sci. Rep., 11, 5090, https://doi.org/10.1038/s41598-021-84642-7, 2021.
Tang, Z., Yang, D., Pan, W., Dong, X., Wang, N., and Xia, J.: Adjoint Attenuation Tomography of Sichuan–Yunnan Region, Seismol. Res. Lett., 94, 898–912, https://doi.org/10.1785/0220220189, 2023.
Thurber, C. H.: Local earthquake tomography: velocities and -theory, Phys. Earth Planet. Inter., 75, 55–62, 1993.
Thurber, C. and Eberhart-Phillips, D.: SIMUL codes for local earthquake tomography, Zenodo [code], https://doi.org/10.5281/zenodo.5547889, 2021.
Toomey, D. R. and Foulger, G. R.: Tomographic inversion of local earthquake data from the Hengill-Grensdalur Central Volcano Complex, Iceland, J. Geophys. Res., 94, 17497–17510, https://doi.org/10.1029/JB094iB12p17497, 1989.
Wang, C., Liang, C., Deng, K., Huang, Y., and Zhou, L.: Spatiotemporal Distribution of Microearthquakes and Implications Around the Seismic Gap Between the Wenchuan and Lushan Earthquakes, Tectonics, 37, 2695–2709, https://doi.org/10.1029/2018TC005000, 2018.
Wang, F., Wang, M., Wang, Y., and Shen, Z.-K.: Earthquake potential of the Sichuan-Yunnan region, western China, J. Asian Earth Sci., 107, 232–243, https://doi.org/10.1016/j.jseaes.2015.04.041, 2015.
Wang, Q. and Gao, Y.: Rayleigh wave phase velocity tomography and strong earthquake activity on the southeastern front of the Tibetan Plateau, Sci. China Earth Sci. 57, 2532–2542, https://doi.org/10.1007/s11430-014-4908-2, 2014.
Wang, Y., Zhang, X., Jiang, C., Wei, H., and Wan, J.: Tectonic controls on the late Miocene–Holocene volcanic eruptions of the Tengchong volcanic field along the southeastern margin of the Tibetan plateau, J. Asian Earth Sci., 30, 375–389, https://doi.org/10.1016/j.jseaes.2006.11.005, 2007.
Wang, Z., Zhao, D., Liu, X., Chen, C., and Li, X.: P and S wave attenuation tomography of the Japan subduction zone, Geochem. Geophys. Geosy., 18, 1688–1710, https://doi.org/10.1002/2017gc006800, 2017.
Wei, Z. and Zhao, L.: Lg-Q model for Sichuan and Yunnan region, Earth Planet. Phys., 3, 526–536, https://doi.org/10.26464/epp2019054, 2019.
Wessel, P., Luis, J., Uieda, L., Scharroo, R., Wobbe, F., Smith, W., and Tian, D.: The Generic Mapping Tools Version 6, Geochem. Geophy. Geosys. 20, 5556–5564, https://doi.org/10.1029/2019GC008515, 2019.
Wu, J., Cai, Y., Wang, wei, Wang, weilai, Wang, C., Fang, L., Liu, Y., and Liu, J.: Three dimensional velocity model and its tectonic implications at China Seismic Experimental Site, eastern margin of the Tibetan Plateau, Sci. China Earth Sci., 54, 2304–2326, 2024.
Wu, J. P., Yang, T., Wang, W. L., Ming, Y. H., and Zhang, T. Z.: Three dimensional P-wave velocity structure around Xiaojiang fault system and its tectonic implications, Chin. J. Geophys. Chin. Engl. Abstr., 56, 2257–2267, 2013.
Xin, H., Zhang, H., Kang, M., He, R., Gao, L., and Gao, J.: High-Resolution Lithospheric Velocity Structure of Continental China by Double-Difference Seismic Travel-Time Tomography, Seismol. Res. Lett. 90, 229–241, https://doi.org/10.1785/0220180209, 2019.
Xu, T., Zhang, Z., Liu, B., Chen, Y., Zhang, M., Tian, X., Xu, Y., and Teng, J.: Crustal velocity structure in the Emeishan large igneous province and evidence of the Permian mantle plume activity, Sci. China Earth Sci., 58, 1133–1147, https://doi.org/10.1007/s11430-015-5094-6, 2015.
Yang, X., Luo, Y., Jiang, C., Yang, Y., Niu, F., and Li, G.: Crustal and Upper Mantle Velocity Structure of SE Tibet From Joint Inversion of Rayleigh Wave Phase Velocity and Teleseismic Body Wave Data, J. Geophys. Res., 128, e2022JB026162, https://doi.org/10.1029/2022JB026162, 2023.
Yang, Y., Forsyth, D. W., and Weeraratne, D. S.: Seismic attenuation near the East Pacific Rise and the origin of the low-velocity zone, Earth Planet. Sci. Lett., 258, 260–268, https://doi.org/10.1016/j.epsl.2007.03.040, 2007.
Yang, Y., Yao, H., Wu, H., Zhang, P., and Wang, M.: A new crustal shear-velocity model in Southwest China from joint seismological inversion and its implications for regional crustal dynamics, Geophys. J. Int., 1379–1393, https://doi.org/10.1093/gji/ggz514, 2020.
Yang, Y. J., Ritzwoller, M. H., Zheng, Y., Shen, W. S., Levshin, A. L., and Xie, Z. J.: A synoptic view of the distribution and connectivity of the mid-crustal low velocity zone beneath Tibet, J. Geophys. Res.-Sol. Ea., 117, B04303, https://doi.org/10.1029/2011JB008810, 2012.
Yao, H., Beghein, C., and van der Hilst, R. D.: Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis – II. Crustal and upper-mantle structure, Geophys. J. Int., 173, 205–219, https://doi.org/10.1111/j.1365-246X.2007.03696.x, 2008.
Yu, N., Wang, X., Li, D., Li, X., Wang, E., Kong, W., and Li, T.: The mechanism of deep material transport and seismogenic environment of the Xiaojiang fault system revealed by 3-D magnetotelluric study, Sci. China Earth Sci., 65, 1128–1145, https://doi.org/10.1007/s11430-021-9914-3, 2022.
Yuan, Y., Ma, Y., Hu, S., Guo, T., and Fu, X.: Present day geothermal characteristics in South China, Chinese J. Geophys., 49, 1118–1126, 2006 (in Chinese).
Zhang, M., Guo, Z., Xu, S., Barry, P. H., Sano, Y., Zhang, L., Halldórsson, S. A., Chen, A.-T., Cheng, Z., Liu, C.-Q., Li, S.-L., Lang, Y.-C., Zheng, G., Li, Z., Li, L., and Li, Y.: Linking deeply-sourced volatile emissions to plateau growth dynamics in southeastern Tibetan Plateau, Nat. Commun., 12, 4157, https://doi.org/10.1038/s41467-021-24415-y, 2021.
Zhang, P., Deng, Q., Zhang, G., Ma, J., Gan, W., Min, W., Mao, F., and Wang, Q.: Strong earthquake activity and active blocks in China mainland, Sci. China Earth Sci., 46, 13–24, https://doi.org/10.1360/03dz0002, 2003.
Zhang, Y., Feng, W. P., Xu, L. S., Zhou, C. H., and Chen, Y. T.: Spatio-temporal rupture process of the 2008 great Wenchuan earthquake, Sci. China Earth Sci., 52, 145–154, https://doi.org/10.1007/s11430-008-0148-7, 2009a.
Zhang, Z., Wang, Y., Chen, Y., Houseman, G. A., Tian, X. B., Wang, E., and Teng, J. W.: Crustal structure across Longmenshan fault belt from passive source seismic profiling, Geophys. Res. Lett., 36, L17310, https://doi.org/10.1029/2009GL039580, 2009b.
Zhang, Z., Yao, H., and Yang, Y.: Shear wave velocity structure of the crust and upper mantle in Southeastern Tibet and its geodynamic implications, Sci. China Earth Sci., 63, 1278–1293, https://doi.org/10.1007/s11430-020-9625-3, 2020.
Zhao, C., Ran, H., and Chen, K.: Present-day temperatures of magma chambers in the crust beneath Tengchong volcanic field, southwestern China: Estimation from carbon isotopic fractionation between CO2 and CH4 of free gases escaped from thermal springs, Acta Petrol. Sin., 27, 2883–2897, 2011.
Zhao, C., Ran, H., and Wang, Y.: Present-day mantle-derived helium release in the Tengchong volcanic field, Southwest China: Implications for tectonics and magmatism, Acta Petrol. Sin., 28, 1189–1204, 2012.
Zhao, G., Unsworth, M. J., Zhan, Y., Wang, L., Chen, X., Jones, A. G., Tang, J., Xiao, Q., Wang, J., Cai, J., Li, T., Wang, Y., and Zhang, J.: Crustal structure and rheology of the Longmenshan and Wenchuan Mw 7.9 earthquake epicentral area from magnetotelluric data, Geology, 40, 1139–1142, https://doi.org/10.1130/G33703.1, 2012.
Zhao, L. F., Xie, X. B., He, J. K., Tian, X. B., and Yao, Z. X.: Crustal flow pattern beneath the Tibetan Plateau constrained by regional Lg-wave Q tomography, Earth Planet. Sci. Lett., 383, 113–122, https://doi.org/10.1016/j.epsl.2013.09.038, 2013.
Zhao, Y., Guo, L., Guo, Z., Chen, Y. J., Shi, L., and Li, Y.: High resolution crustal model of SE Tibet from joint inversion of seismic P-wave travel-times and Bouguer gravity anomalies and its implication for the crustal channel flow, Tectonophysics, 792, 228580, https://doi.org/10.1016/j.tecto.2020.228580, 2020.
Zhao, Y., Guo, Z., Wang, K., and Yang, Y. J.: A Large Magma Reservoir Beneath the Tengchong Volcano Revealed by Ambient Noise Adjoint Tomography, J. Geophys. Res., 126, e2021JB022116, https://doi.org/10.1029/2021JB022116, 2021.
Zheng, X., Zhao, C., Zheng, S., and Zhou, L.: Crustal and upper mantle structure beneath the SE Tibetan Plateau from joint inversion of multiple types of seismic data, Geophys. J. Int., 217, 331–345, https://doi.org/10.1093/gji/ggz027, 2019.
Zhou, L.: Attenuation tomography of the earth media, PhD Thesis, Institute of Geophysics, China Earthquake Administration, Beijing, 161–174, 2016 (in Chinese).
Zhou, L. and Duan, M.: The High-resolution 3D QP Model of the China Seismic Experiment Site, Zenodo [data set], https://doi.org/10.5281/zenodo.13994425, 2024.
Zhou, L., Zhao, C., Xiu, J., and Chen, Z.: Tomography of QLg in Sichuan-Yunnan Zone, Chinese J. Geophys., 51, 1745–1752, 2008 (in Chinese).
Zhou, L., Zhao, C., Zheng, X., Chen, Z., and Zheng, S.: Inferring water infiltration in the Longtan reservoir area by three-dimensional attenuation tomography, Geophys. J. Int., 186, 1045–1063, https://doi.org/10.1111/j.1365-246X.2011.05124.x, 2011.
Zhou, L., Zhao, C., Luo, J., and Chen, Z.: A Detailed Insight into Fluid Infiltration in the Three Gorges Reservoir Area, China, from 3D VP, , QP, and QS Tomography, Bull. Seismol. Soc. Am., 108, 3029–3045, https://doi.org/10.1785/0120170361, 2018.
Zhou, L., Song, X., Yang, X., and Zhao, C.: Rayleigh Wave Attenuation Tomography in the Crust of the Chinese Mainland, Geochem. Geophys. Geosy., 21, e2020GC008971, https://doi.org/10.1029/2020GC008971, 2020.
Zhu, H., Bozdağ, E., Duffy, T. S., and Tromp, J.: Seismic attenuation beneath Europe and the North Atlantic: Implications for water in the mantle, Earth Planet. Sci. Lett., 381, 1–11, https://doi.org/10.1016/j.epsl.2013.08.030, 2013.
Zou, H., Shen, C.-C., Fan, Q., and Lin, K.: U-series disequilibrium in young Tengchong volcanics: Recycling of mature clay sediments or mudstones into the SE Tibetan mantle, Lithos, 192–195, 132–141, https://doi.org/10.1016/j.lithos.2014.01.017, 2014.
Short summary
We obtain the highest-resolution three-dimensional P-wave attenuation model in the China Seismic Experimental Site to date. The P-wave attenuation value anomalies along large fault zones, some basin areas, and the Tengchong volcanic area are low, reflecting the high degree of medium fragmentation in these areas with thick sedimentary layers or rich in fluids.
We obtain the highest-resolution three-dimensional P-wave attenuation model in the China Seismic...
Special issue