Articles | Volume 11, issue 6
https://doi.org/10.5194/se-11-2499-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/se-11-2499-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
What can seismic noise tell us about the Alpine reactivation of the Iberian Massif? An example in the Iberian Central System
Juvenal Andrés
CORRESPONDING AUTHOR
Geosciences Barcelona GEO3BCN-CSIC, 08028, Barcelona, Spain
Department of Geology, University of Salamanca, 37008, Salamanca,
Spain
Puy Ayarza
Department of Geology, University of Salamanca, 37008, Salamanca,
Spain
Martin Schimmel
Geosciences Barcelona GEO3BCN-CSIC, 08028, Barcelona, Spain
Imma Palomeras
Department of Geology, University of Salamanca, 37008, Salamanca,
Spain
Mario Ruiz
Geosciences Barcelona GEO3BCN-CSIC, 08028, Barcelona, Spain
Geosciences Barcelona GEO3BCN-CSIC, 08028, Barcelona, Spain
Related authors
Puy Ayarza, José Ramón Martínez Catalán, Ana Martínez García, Juan Alcalde, Juvenal Andrés, José Fernando Simancas, Immaculada Palomeras, David Martí, Irene DeFelipe, Chris Juhlin, and Ramón Carbonell
Solid Earth, 12, 1515–1547, https://doi.org/10.5194/se-12-1515-2021, https://doi.org/10.5194/se-12-1515-2021, 2021
Short summary
Short summary
Vertical incidence seismic profiling on the Iberian Massif images a mid-crustal-scale discontinuity at the top of the reflective lower crust. This feature shows that upper- and lower-crustal reflections merge into it, suggesting that it has often behaved as a detachment. The orogen-scale extension of this discontinuity, present in Gondwanan and Avalonian affinity terranes into the Iberian Massif, demonstrates its relevance, leading us to interpret it as the Conrad discontinuity.
Helena Seivane and Martin Schimmel
EGUsphere, https://doi.org/10.5194/egusphere-2025-5031, https://doi.org/10.5194/egusphere-2025-5031, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Mantle-derived gases can seep to the surface before a volcanic eruption, but detecting them is difficult when emissions are weak. We used seismic noise from individual stations at Cumbre Vieja Volcano, La Palma, to monitor shallow gas accumulation being modulated by atmospheric cycles. We find clear links between pressure variations and gas release, with a marked increase months before the 2021 eruption, highlighting potential for early warning and hazard assessment.
Jari Joutsenvaara, Marko Holma, Pasi Kuusiniemi, Jarmo Korteniemi, Helena Seivane, David Marti-Linares, Martin Schimmel, Giulio Casini, Grant George Buffett, Markku Pirttijärvi, Ari Saartenoja, Barbara Štimac Tumara, and Ivan Kapustin
Adv. Geosci., 65, 171–180, https://doi.org/10.5194/adgeo-65-171-2025, https://doi.org/10.5194/adgeo-65-171-2025, 2025
Short summary
Short summary
The AGEMERA project (Agile Exploration and Geo-Modelling for European Critical Raw Materials) enhances EU critical raw materials exploration by integrating non-invasive methods such as ambient noise passive seismic, drone-based surveys, and muography. These technologies map bedrock properties and resource distribution effectively, feeding data into a comprehensive web-based repository for strategic analysis.
Jordi Díaz, Sergi Ventosa, Martin Schimmel, Mario Ruiz, Albert Macau, Anna Gabàs, David Martí, Özgenç Akin, and Jaume Vergés
Solid Earth, 14, 499–514, https://doi.org/10.5194/se-14-499-2023, https://doi.org/10.5194/se-14-499-2023, 2023
Short summary
Short summary
We assess the capability of multiple methods based on the interpretation of seismic noise to map the basement of the Cerdanya Basin, located in the eastern Pyrenees. Basement depth estimations retrieved from the different approaches are consistent, with maximum depths reaching 700 m close to the Têt fault bounding the basin to the east. Our results prove that seismic noise analysis using high-density networks is an excellent tool to improve the geological characterization of sedimentary basins.
Juan Alcalde, Ramon Carbonell, Solveig Pospiech, Alba Gil, Liam A. Bullock, and Fernando Tornos
Solid Earth, 13, 1161–1168, https://doi.org/10.5194/se-13-1161-2022, https://doi.org/10.5194/se-13-1161-2022, 2022
Puy Ayarza, José Ramón Martínez Catalán, Ana Martínez García, Juan Alcalde, Juvenal Andrés, José Fernando Simancas, Immaculada Palomeras, David Martí, Irene DeFelipe, Chris Juhlin, and Ramón Carbonell
Solid Earth, 12, 1515–1547, https://doi.org/10.5194/se-12-1515-2021, https://doi.org/10.5194/se-12-1515-2021, 2021
Short summary
Short summary
Vertical incidence seismic profiling on the Iberian Massif images a mid-crustal-scale discontinuity at the top of the reflective lower crust. This feature shows that upper- and lower-crustal reflections merge into it, suggesting that it has often behaved as a detachment. The orogen-scale extension of this discontinuity, present in Gondwanan and Avalonian affinity terranes into the Iberian Massif, demonstrates its relevance, leading us to interpret it as the Conrad discontinuity.
Jordi Diaz, Mario Ruiz, and José-Antonio Jara
Solid Earth, 12, 725–739, https://doi.org/10.5194/se-12-725-2021, https://doi.org/10.5194/se-12-725-2021, 2021
Short summary
Short summary
During the COVID-19 pandemic lockdown, the city of Barcelona was covered by a network of 19 seismometers. The results confirm that the quieting of human activity during lockdown has resulted in a reduction of seismic vibrations. The different lockdown phases in Barcelona are recognized consistently at most of the seismic stations. Our contribution demonstrates that seismic noise can be used as a free and reliable tool to monitor human activity in urban environments.
Irene DeFelipe, Juan Alcalde, Monika Ivandic, David Martí, Mario Ruiz, Ignacio Marzán, Jordi Diaz, Puy Ayarza, Imma Palomeras, Jose-Luis Fernandez-Turiel, Cecilia Molina, Isabel Bernal, Larry Brown, Roland Roberts, and Ramon Carbonell
Earth Syst. Sci. Data, 13, 1053–1071, https://doi.org/10.5194/essd-13-1053-2021, https://doi.org/10.5194/essd-13-1053-2021, 2021
Short summary
Short summary
Seismic data provide critical information about the structure of the lithosphere, and their preservation is essential for innovative research reusing data. The Seismic DAta REpository (SeisDARE) comprises legacy and recently acquired seismic data in the Iberian Peninsula and Morocco. This database has been built by a network of different institutions that promote multidisciplinary research. We aim to make seismic data easily available to the research, industry, and educational communities.
Cited articles
Andrés, J., Marzán, I., Ayarza, P., Martí, D., Palomeras, I.,
Torné, M., Campbell, S., and Carbonell, R.: Curie point depth of the Iberian
Peninsula and surrounding margins, A thermal and tectonic perspective of its
evolution, J. Geophys. Res.-Sol. Ea., 123, 2049–2068, https://doi.org/10.1002/2017JB014994, 2018.
Andrés, J., Draganov, D., Schimmel, M., Ayarza, P., Palomeras, I., Ruiz, M., and Carbonell, R.: Lithospheric image of the Central Iberian Zone (Iberian Massif) using global-phase seismic interferometry, Solid Earth, 10, 1937–1950, https://doi.org/10.5194/se-10-1937-2019, 2019.
Ayarza, P., Martínez Catalán, J., Zeyen, H., and Juhlin, C.: Geophysical constraints on the deep structure of a limited ocean-continent
subduction zone at the(2004) North Iberian Margin, Tectonics, 23.1., https://doi.org/10.1029/2002TC001487, 2004.
Ayarza, P., Martínez Catalán, J., Gallart, J., Pulgar, J. A., and Dañobeitia, J. J.: Estudio Sismico de la Corteza Iberica Norte 3.3: A seismic image of the
Variscan crust in the hinterland of the NW Iberian Massif, Tectonics, 17.2, 171–186, https://doi.org/10.1029/97TC03411, 1998.
Ayarza, P., Palomeras, I., Carbonell, R., Afonso, J. C., and Simancas, F.: A wide-angle upper mantle reflector in SW Iberia: Some constraints on its
nature, Phys. Earth Planet. Int., 181, 88–102, https://doi.org/10.1016/j.pepi.2010.05.004, 2010.
Banda, E., Suriñach, E., Aparicio, A., Sierra, J., and Ruiz de la Parte, E.:
Crust and upper mantle structure of the central Iberian meseta (Spain),
Geophys. J. Int., 67, 779–789, 1981.
Barbero, L. and Villaseca, C.: Eclogite facies relicts in metabasites from
the Sierra de Guadarrama (Spanish Central System): P-T estimations for the
Hercynian evolution, Mineral. Mag., 64, 815–836, 2000.
Bea, F.: La naturaleza del magmatismo de la Zona Centroibérica:
Consideraciones generales y ensayo de correlación, in: Geología de
España, edited by: Vera, J. A., SGE-IGME, Madrid, Spain, 128–133, 2004.
Becker, G. and Knapmeyer-Endrun, B.: Crustal thickness across the Trans-European
Suture Zone from ambient noise autocorrelations, Geophys. J.
Int., 212, 1237–1254, https://doi.org/10.1093/gji/ggx485, 2018.
Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., Levshin, A. L., Lin, F.,
Moschetti, M. P., Shapiro, N. M., and Yang, Y.: Processing seismic ambient noise
data to obtain reliable broad-band surface wave dispersion measurements,
Geophys. J. Int., 169, 1239–1260, https://doi.org/10.1111/j.1365-246X.2007.03374.x, 2007.
Buffoni, C., Schimmel, M., Sabbione, N. C., Rosa, M. L., and Connon, G.: Crustal
structure beneath Tierra del Fuego, Argentina, inferred from seismic P-wave
receiver functions and ambient noise autocorrelations, Tectonophysics, 751,
41–53, https://doi.org/10.1016/j.tecto.2018.12.013, 2019.
Carbonell, R.: On the nature of mantle heterogeneities and discontinuities:
evidence from a very dense wide-angle shot record, Tectonophysics, 388,
103–117, https://doi.org/10.1016/j.tecto.2004.07.025, 2004.
Claerbout, J.: Synthesis of a layered medium from its acoustic transmission
response, Geophysics, 33, 264–269, https://doi.org/10.1190/1.1439927, 1968.
Cloetingh, S., Burov, E., Beekman, F., Andeweg, B., Andriessen, P. A. M.,
Garcia-Castellanos, D., de Vicente, G., and Vegas, R.: Lithospheric folding
in Iberia, Tectonics, 21, 1041, https://doi.org/10.1029/2001TC901031, 2002.
Dercourt, J., Zonenshain, L. P., Ricou, L. E., Kazmin, V. G., Le Pichon, X.,
Knipper, A. L., Grandjacquet, C., Sbortshikov, I. M., Geyssant, J., and Lepvrier,
C.: Geological evolution of the tethys belt from the atlantic to the pamirs
since the LIAS, Tectonophysics, 123, 241–315, 1986.
De Vicente, G., Giner, J. L., Muñoz-Martín, A., González-Casado,
J. M., and Lindo, R.: Determination of present-day stress tensor and neotectonic
interval in the Spanish Central System and madrid Basin, central Spain:
Dynamics of Extensional Basins and Inversion Tectonics, Tectonophysics, 266,
405–424, https://doi.org/10.1016/S0040-1951(96)00200-4, 1996.
De Vicente, G., Vegas, R., Muñoz Martín, A., Silva, P. G.,
Andriessen, P., Cloetingh, S., González Casado, J. M., Van Wees, J. D.,
Álvarez, J., Carbó, A., and Olaiz, A.: Cenozoic thick-skinned
deformation and topography evolution of the Spanish Central System, Global
Planet. Change, 58, 335–381. https://doi.org/10.1016/j.gloplacha.2006.11.042,
2007.
De Vicente, G., Cunha, P. P., Muñoz-Martín, A., Cloetingh, S. A. P. L., Olaiz, A., and Vegas, R.: The Spanish-Portuguese Central System: An Example of Intense
Intraplate Deformation and Strain Partitioning, Tectonics 37, 4444–4469, https://doi.org/10.1029/2018TC005204, 2018.
Dewey, J. F., Helman, M. L., Knott, S. D., Turco, E., and Hutton, D. H. W.:
Kinematics of the western mediterranean, Geol. Soc. Spec.
Publ., 45, 265–283, https://doi.org/10.1144/GSL.SP.1989.045.01.15, 1989.
Díaz, J., Gallart, J., and Carbonell, R.: moho topography beneath the
Iberian-Western mediterranean region mapped from controlled-source and
natural seismicity surveys, Tectonophysics, 692, 74–85, https://doi.org/10.1016/j.tecto.2016.08.023, 2016.
Díez Balda, M. A., Vegas, R., and González Lodeiro, F.: Central-Iberian
Zone, Autochthonous Sequences, in:
Pre-Mesozoic Geology of Iberia,
edited by: Dallmeyer, R. D. and Martínez García, E.,
Springer, Berlin, Germany, 172–188, 1990.
Ehsan, S. A., Carbonell, R., Ayarza, P., Martí, D.,
Pérez-Estaún, A., Martínez Poyatos, D., Simancas, F., Azor, A., and
Mansilla, L.: Crustal deformation styles along the reprocessed deep seismic
reflection transect of the Central Iberian Zone (Iberian
Peninsula), Tectonophysics, 621, 159–174, https://doi.org/10.1016/j.tecto.2014.02.014, 2014.
Ehsan, S. A., Carbonell, R., Ayarza, P., Martí, D., Martínez
Poyatos, D., Simancas, J. F., Azor, A., Ayala, C., Torné, M., and
Pérez-Estaún, A.: Lithospheric velocity model across the Southern
Central Iberian Zone (Variscan Iberian massif): The ALCUDIA wide-angle
seismic reflection transect, Tectonics, 34, 535–554,
https://doi.org/10.1002/2014TC003661, 2015.
Flecha, I., Palomeras, I., Carbonell, R., Simancas, F., Ayarza, P., Matas,
J., González-Lodeiro F., and Peréz-Estaún, A.: Seismic imaging and
modelling of the lithosphere of SW-Iberia, Tectonophysics, 472,
148–15, https://doi.org/10.1016/j.tecto.2008.05.033, 2009.
Fores, B., Champollion, C., Mainsant, G., Albaric, J., and Fort, A.: monitoring
saturation changes with ambient seismic noise and gravimetry in a karst
environment, Vadose Zone J., 17, 170163, https://doi.org/10.2136/vzj2017.09.0163, 2018.
Franke, W.: The mid-European segment of the Variscides: tectonostratigraphic
units, terrane boundaries and plate tectonic evolution, in: Orogenic
Processes: Quantification and modelling in the Variscan Belt, Geol. Soc. Spec. Publ., 179, 35–61,
https://doi.org/10.1144/GSL.SP.2000.179.01.05, 2000.
Gorbatov, A., Saygin, E., and Kennett, B. L. N.: Crustal properties from seismic
station autocorrelograms, Geophys. J. Int., 192, 861–870, 2013.
ILIHA DSS Group.: A deep seismic sounding investigation of lithospheric
heterogeneity and anisotropy beneath the Iberian Peninsula, Tectonophysics
221, 35–51, 1993.
Julià, J. and Mejía, J.: Thickness and Vp/Vs ratio variation of the
Iberian crust, Geophys. J. Int., 156, 59–72, 2004.
Julivert, M., Fontboté, M., Ribeiro, A., and Conde, L. E.: mapa y memoria
Explicativa del mapa Tectónico de la Península Ibérica y
Baleares, scale 1:1,000,000, Inst. Geol. y min. de Esp., Madrid, Spain, 113, 1972.
Kennett, B. L. N.: Lithosphere-asthenosphere P-wave reflectivity across
Australia, Earth Planet. Sci.e Lett., 431, 225–235, https://doi.org/10.1016/j.epsl.2015.09.039, 2015.
Kennett, B. L. N., Saygin, E., and Salmon, M.: Stacking autocorrelograms to map
Moho depth with high spatial resolution in southeastern Australia, Geophys.
Res. Lett., 42, 7490–7497, https://doi.org/10.1002/2015GL065345, 2015.
Mancilla, F. L. and Díaz, J.: High resolution moho topography map
beneath Iberia and Northern morocco from receiver function analysis,
Tectonophysics, 663, 203–211, https://doi.org/10.1016/j.tecto.2015.06.017, 2015.
Martínez Catalán, J. R.: Are the oroclines of the Variscan belt
related to late Variscan strike-slip tectonics?, Terra Nova, 23, 241–247,
2011a.
Martínez Catalán, J. R.: The Central Iberian arc: implications for
the Iberian massif, Geogaceta, 50, 7–10, 2011b.
Martínez Catalán, J. R., Rubio Pascual, F. J., Díez Montes,
A., Díez Fernández, R., Gómez Barreiro, J., Dias da Silva, I.,
González Clavijo, I., Ayarza, P., and Alcock, J. E.: The late Variscan
HT/LP metamorphic event in NW and Central Iberia: relationships to crustal
thickening, extension, orocline development and crustal evolution, Geol.
Soc. Spec. Publ., 405, 225–247, https://doi.org/10.1144/SP405.1, 2014.
Martínez Poyatos, D., Carbonell, R., Palomeras, I., Simancas, F.,
Ayarza, P., Martí, D., Azor, A., Jabaloy, A., González Cuadra, P.,
Tejero, R., Martín Parra, L. M., Matas, J., González Lodeiro, F.,
Pérez-Estaún, A., García Lobón, J. L., and Mansilla, L.: Imaging
the crustal structure of the Central Iberian Zone (Variscan Belt): the
ALCUDIA deep seismic reflection transect, Tectonics 31, TC3017,
https://doi.org/10.1029/2011TC002995, 2012.
Matte, P.: The Variscan collage and orogeny (480–290 ma) and the tectonic
definition of the Amorica microplate: A review, Terra Nova, 13, 122–128,
https://doi.org/10.1046/j.1365-3121.2001.00327.x., 2001.
Obermann, A., Froment, B., Campillo, M., Larose, E., Planès, T.,
Valette, B., Chen, J. H., and Liu, Q. Y.: Seismic noise correlations to image
structural and mechanical changes associated with the mw 7.9 2008 Wenchuan
earth-quake, J. Geophys. Res.-Sol. Ea., 119, 3155–3168,
https://doi.org/10.1002/2013JB010932, 2014.
Palomeras, I., Carbonell, R., Flecha, I., Simancas, F., Ayarza, P., Matas,
J., Martínez Poyatos, D., Azor, A., González Lodeiro, F., and
Pérez-Estaún, A.: The nature of the lithosphere across the Variscan
Orogen of SW-Iberia: Dense wide-angle seismic reflection data, J. Geophys.
Res., 114, B02302, https://doi.org/10.1029/2007JB005050, 2009.
Palomeras, I., Carbonell, R., Ayarza, P., Fernandez, M., Simancas, F.,
Martínez Poyatos, D., González Lodeiro, F., and Pérez-Estaún, A.: Geophysical model of the lithospher across the
Variscan Belt of SW-Iberia: multidisciplinary assessment, Tectonophysics,
508, 42–51, https://doi.org/10.1016/j.tecto.2010.07.010,
2011.
Palomeras, I., Villaseñor, A., Thurner, S., Levander, A., Gallart, J.,
Harnafi, M.: Lithospheric strcuture of Iberia and morocco using
finite-frequency Rayleigh wave tomogrpahy from earthquakes and seismic
ambient noise, Geochem., Geophy. Geosy., 18, 1824–1840,
https://doi.org/10.1002/2016GC006657, 2017.
Pastor-Galán, D., Groenewegen, T., Brouwer, D., Krijgsman, W., and
Dekkers, M. J.: One or two orocilnes in the Variscan orogen of Iberia?
Implications for Pangea amalgamation, Geology, 43, 527–530, https://doi.org/10.1130/G36701.1, 2015.
Pastor-Galán, D., Dekkers, M. J., Gutiérrez-Alonso, G., Brouwer, D.,
Groenewegen, T., and Krijgsman, W.: Paleomagnetism of the Central Iberian
curve's putative hinge: Too many oroclines in the Iberian Variscides,
Gondwana Res., 39, 96–113. https://doi.org/10.1016/j.gr.2016.06.016,
2016.
Pastor-Galán, D., Gutiérrez-Alonso, G., Dekkers, M. J., and
Langereis, C. G.: Paleomagnetism in Extremadura (Central Iberian Zone,
Spain) Paleozoic rocks: Extensive remagnetizations and further constraints
on the extent of the Cantabrian orocline, J. Iber. Geol., 43,
583–600, https://doi.org/10.1007/s41513-017-0039-x, 2017.
Pérez Estaún, A., Martínez Catalán, J. R., and Bastida, F.:
Crustal thickening and deformation sequence in the footwall to the suture of
the Variscan belt of northwest Spain, Tectonophysics, 191, 243–253, 1991.
Pous, J., Muñoz-Martín, A., Olaiz, A. J., Seillé, H., and de Vicente, G.: Analisis de la estructura alpina de la corteza del centro de la Peninsula Iberica:
Una seccion Magneto-Telurica a traves del Sistema Central (Sierra de Gredos), Geo-Temas, 13,
4–8, 2012.
Pulgar, J. A., Gallart, J., Fernández-Viejo, G., Pérez-Estaún,
A., and Álvarez-Marrón, J.: Seismic image of the Cantabrian
Mountains in the western extension of the Pyrenees from integrated ESCIN
reflection and refraction data, Tectonophysics, 264, 1–19, https://doi.org/10.1016/S0040-1951(96)00114-X, 1996.
Romero, P. and Schimmel, M.: mapping the basement of the Ebro Basin in Spain
with seismic ambient noise autocorrelations, J. Geophys.
Res., 123, 5052–5067, https://doi.org/10.1029/2018JB015498, 2018.
Ruigrok, E. and Kees, W.: Global-phase seismic interferometry unveils P-wave
reflectivity below the Himalayas and Tibet, Geophys. Res. Lett., 39, https://doi.org/10.1029/2012GL051672, 2012.
Simancas, J. F., Ayarza, P., Azor, A., Carbonell, R., Martínez Poyatos, D., Pérez-Estaún, A., and González Lodeiro, F.: A seismic geotraverse across the Iberian Variscides: Orogenic shortening,
collisional magmatism, and orocline development, Tectonics, 32, 417–432, https://doi.org/10.1002/tect.20035, 2013.
Schimmel, M.: Phase cross-correlations: design, comparisons and applications,
Bull. Seismol. Soc. Am., 89, 1366–1378, 1999.
Schimmel, M. and Gallart, J.: Frequency-dependent phase coherence for noise
suppression in seismic array data, J. Geophys. Res., 112, B04303,
https://doi.org/10.1029/2006JB004680, 2007.
Schimmel, M., Stutzmann, E., Gallart, J.: Using instantaneous phase
coherence for signal extraction from ambient noise data at a local to a
global scale, Geophys. J. Int., 184, 494–506,
https://doi.org/10.1111/j.1365-246X.2010.04861.x, 2011.
Schimmel, M., Stutzmann, E., and Ventosa, S.: Low-frequency ambient noise
autocorrelations: Waveforms and normal modes, Seismol. Res.
Lett., 89, 1488–1496, https://doi.org/10.1785/0220180027, 2018.
Sens-Schönfelder, C. and Wegler, U.: Passive image interferometry and
seasonal variations of seismic velocities at merapi Volcano, Indonesia,
Geophys. Res. Lett. 33, 21302, https://doi.org/10.1029/2006GL027797, 2006.
Simancas, J. F., Carbonell, R., González Lodeiro, F.,
Pérez-Estaún, A., Juhlin, C., Ayarza, P., Kashubin, A., Azor, A.,
Martínez Poyatos, D., Almodóvar, G. R., Pascual, E., Sáez, R.,
and Expósito, I.: Crustal structure of the transpressional Variscan
orogen of SW Iberia: SW Iberia deep seismic reflection profile (IBERSEIS),
Tectonics, 22, 1062, https://doi.org/10.1029/2002TC001479, 2003.
Suriñach, E. and Vegas, R.: Lateral inhomogeneities of the Hercynian crust
in central Spain, Phys. Earth Planet. Inter., 51, 226–234, 1988.
Taylor, G., Rost, S., and Houseman, G.: Crustal imaging across the North
Anatolian Fault Zone from the autocorrelation of ambient seismic noise,
Geophys. Res. Lett., 43, 2502–2509, https://doi.org/10.1002/2016GL067715,
2016.
Tibuleac, I., M. and von Seggern, D.: Crust-mantle boundary reflectors in
Nevada from ambient seismic noise autocorrelations, Geophys. J.
Int., 189, 493–500, https://doi.org/10.1111/j.1365-246X.2011.05336.x, 2012.
Torne, M., Fernàndez, M., Vergés, J., Ayala, C., Salas, M. C.,
Jimenez-Munt, I., and Diaz, J.: Crust and mantle lithospheric structure of
the Iberian Peninsula deduced from potential field modeling and thermal
analysis, Tectonophysics, 663, 419–433, https://doi.org/10.1016/j.tecto.2015.06.003, 2015.
Van Wees, J. D., Arche, A., Beijdorff, C. G., LopezGomez, J., and Cloetingh, S.
A. P. L.: Temporal and spatial variations in tectonic subsidence in the
Iberian Basin (eastern Spain): Inferences from automated modelling of
high-resolution stratigraphy (Permian-Mesozoic), Tectonophysics, 300, 285–310, 1998.
Vegas, R., Vázquez, J. T., Suriñach, E., and Marcos, A.: model of
distributed deformation, block rotations and crustal thickening for the
formation of the Spanish Central System, Tectonophysics 184, 367–378,
https://doi.org/10.1016/0040-1951(90)90449-I, 1990.
Vergés, J.,Mmillán, H., Roca, E., Muñoz, J. A., Marzo, M.,
Cirés, J., Den Bezemer, T., Zoetemeijer, R., and Cloetingh, S.: Eastern
Pyrenees and related foreland basins: pre-, syn- and post-collisional
crustal-scale cross-sections, Mar. Petrol. Geol., 12, 903–915, https://doi.org/10.1016/0264-8172(95)98854-X,
1995.
Villaseca, C., Ruiz-Martínez, V. C., and Pérez-Soba, C.: magnetic
susceptibility of Variscan granite-types of the Spanish central system and
the redox state of magma, Geol. Acta, 15, 379–394, 2017.
Ziegler, P.: Geological atlas of Western and Central Europe, City:
Shell.isbn: 9789066441255, 1990.