Articles | Volume 11, issue 2
https://doi.org/10.5194/se-11-579-2020
https://doi.org/10.5194/se-11-579-2020
Research article
 | 
22 Apr 2020
Research article |  | 22 Apr 2020

Seismic reflection data reveal the 3D structure of the newly discovered Exmouth Dyke Swarm, offshore NW Australia

Craig Magee and Christopher Aiden-Lee Jackson

Related authors

Impact of Timanian thrust systems on the late Neoproterozoic–Phanerozoic tectonic evolution of the Barents Sea and Svalbard
Jean-Baptiste P. Koehl, Craig Magee, and Ingrid M. Anell
Solid Earth, 13, 85–115, https://doi.org/10.5194/se-13-85-2022,https://doi.org/10.5194/se-13-85-2022, 2022
Short summary
Extrusion dynamics of deepwater volcanoes revealed by 3-D seismic data
Qiliang Sun, Christopher A.-L. Jackson, Craig Magee, Samuel J. Mitchell, and Xinong Xie
Solid Earth, 10, 1269–1282, https://doi.org/10.5194/se-10-1269-2019,https://doi.org/10.5194/se-10-1269-2019, 2019
Short summary

Related subject area

Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Structural geology and tectonics, paleoseismology, rock physics, experimental deformation | Discipline: Tectonics
Stress state at faults: the influence of rock stiffness contrast, stress orientation, and ratio
Moritz O. Ziegler, Robin Seithel, Thomas Niederhuber, Oliver Heidbach, Thomas Kohl, Birgit Müller, Mojtaba Rajabi, Karsten Reiter, and Luisa Röckel
Solid Earth, 15, 1047–1063, https://doi.org/10.5194/se-15-1047-2024,https://doi.org/10.5194/se-15-1047-2024, 2024
Short summary
Interseismic and long-term deformation of southeastern Sicily driven by the Ionian slab roll-back
Amélie Viger, Stéphane Dominguez, Stéphane Mazzotti, Michel Peyret, Maxime Henriquet, Giovanni Barreca, Carmelo Monaco, and Adrien Damon
Solid Earth, 15, 965–988, https://doi.org/10.5194/se-15-965-2024,https://doi.org/10.5194/se-15-965-2024, 2024
Short summary
Rift and plume: a discussion on active and passive rifting mechanisms in the Afro-Arabian rift based on synthesis of geophysical data
Ran Issachar, Peter Haas, Nico Augustin, and Jörg Ebbing
Solid Earth, 15, 807–826, https://doi.org/10.5194/se-15-807-2024,https://doi.org/10.5194/se-15-807-2024, 2024
Short summary
Propagating rifts: the roles of crustal damage and ascending mantle fluids
Folarin Kolawole and Rasheed Ajala
Solid Earth, 15, 747–762, https://doi.org/10.5194/se-15-747-2024,https://doi.org/10.5194/se-15-747-2024, 2024
Short summary
Cretaceous–Paleocene extension at the southwestern continental margin of India and opening of the Laccadive basin: constraints from geophysical data
Mathews George Gilbert, Parakkal Unnikrishnan, and Munukutla Radhakrishna
Solid Earth, 15, 671–682, https://doi.org/10.5194/se-15-671-2024,https://doi.org/10.5194/se-15-671-2024, 2024
Short summary

Cited articles

Anderson, E. M.: The dynamics of faulting and dyke formation with applications to Britain, Hafner Pub. Co., Edinburgh, 206 pp., 1951. 
Ardakani, E. P., Schmitt, D. R., and Currie, C. A.: Geophysical evidence for an igneous dike swarm, Buffalo Creek, Northeast Alberta, Geol. Soc. Am. Bull., 130, 1059–1072, 2017. 
Baragar, W., Ernst, R., Hulbert, L., and Peterson, T.: Longitudinal petrochemical variation in the Mackenzie dyke swarm, northwestern Canadian Shield, J. Petrol., 37, 317–359, 1996. 
Bilal, A., McClay, K., and Scarselli, N.: Fault-scarp degradation in the central Exmouth Plateau, North West Shelf, Australia, Geol. Soc. Lond. Spec. Publ., 476, SP476.411, 27 pp., 2018. 
Black, M., McCormack, K., Elders, C., and Robertson, D.: Extensional fault evolution within the Exmouth Sub-basin, North West Shelf, Australia, Mar. Petrol. Geol., 85, 301–315, 2017. 
Download
Short summary
Injection of vertical sheets of magma (dyke swarms) controls tectonic and volcanic processes on Earth and other planets. Yet we know little of the 3D structure of dyke swarms. We use seismic reflection data, which provides ultrasound-like images of Earth's subsurface, to study a dyke swarm in 3D for the first time. We show that (1) dyke injection occurred in the Late Jurassic, (2) our data support previous models of dyke shape, and (3) seismic data provides a new way to view and study dykes.