Articles | Volume 12, issue 9
https://doi.org/10.5194/se-12-2109-2021
https://doi.org/10.5194/se-12-2109-2021
Research article
 | 
23 Sep 2021
Research article |  | 23 Sep 2021

Micromechanisms leading to shear failure of Opalinus Clay in a triaxial test: a high-resolution BIB–SEM study

Lisa Winhausen, Jop Klaver, Joyce Schmatz, Guillaume Desbois, Janos L. Urai, Florian Amann, and Christophe Nussbaum

Related authors

The influence of burial history on physical properties of claystones – Overview of a systematic research program across scales
Raphael Burchartz, Timo Seemann, Garri Gaus, Lisa Winhausen, Mohammadreza Jalali, Brian Mutuma Mbui, Sebastian Grohmann, Linda Burnaz, Marlise Colling Cassel, Jochen Erbacher, Ralf Littke, and Florian Amann
EGUsphere, https://doi.org/10.5194/egusphere-2025-579,https://doi.org/10.5194/egusphere-2025-579, 2025
Short summary
Failure mode transition in Opalinus Clay: a hydro-mechanical and microstructural perspective
Lisa Winhausen, Kavan Khaledi, Mohammadreza Jalali, Janos L. Urai, and Florian Amann
Solid Earth, 13, 901–915, https://doi.org/10.5194/se-13-901-2022,https://doi.org/10.5194/se-13-901-2022, 2022
Short summary
The pore pressure oscillation method as a proven tool for determining the hydraulic properties of low-permeability rocks
Lisa Winhausen, Mohammadreza Jalali, and Florian Amann
Saf. Nucl. Waste Disposal, 1, 301–301, https://doi.org/10.5194/sand-1-301-2021,https://doi.org/10.5194/sand-1-301-2021, 2021
Workshop: Best-practice for laboratory testing low-permeable materials
Ben Laurich, Jürgen Hesser, Sibylle Mayr, Lisa Winhausen, Amin Ghanizadeh, Antonia Nitsch, Julia Leuthold, Christian Weber, and Garri Gaus
Saf. Nucl. Waste Disposal, 1, 299–300, https://doi.org/10.5194/sand-1-299-2021,https://doi.org/10.5194/sand-1-299-2021, 2021

Cited articles

Allirot, D., Boehler, J. P., and Sawczuk, A.: Irreversible deformations of an anisotropic rock under hydrostatic pressure, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Pergamon, 14, 77–83, 1977. 
Amann, F., Button, E. A., Evans, K. F., Gischig, V. S., and Blümel, M.: Experimental study of the brittle behavior of clay shale in rapid unconfined compression, Rock Mech. Rock Eng., 44, 415–430, 2011. 
Amann, F., Kaiser, P., and Button, E. A.: Experimental study of brittle behavior of clay shale in rapid triaxial compression, Rock Mech. Rock Eng., 45, 21–33, 2012. 
Amann, F., Wild, K. M., Loew, S., Yong, S., Thoeny, R., and Frank, E.: Geomechanical behaviour of Opalinus Clay at multiple scales: results from Mont Terri rock laboratory (Switzerland), in: Mont Terri Rock Laboratory, 20 Years, Birkhäuser, Cham., 153–173, 2018. 
Aristorenas, G. V.: Time-dependent behavior of tunnels excavated in shale, Doctoral dissertation, Massachusetts Institute of Technology, 553 pp., 1992. 
Download
Short summary
An experimentally deformed sample of Opalinus Clay (OPA), which is being considered as host rock for nuclear waste in Switzerland, was studied by electron microscopy to image deformation microstructures. Deformation localised by forming micrometre-thick fractures. Deformation zones show dilatant micro-cracking, granular flow and bending grains, and pore collapse. Our model, with three different stages of damage accumulation, illustrates microstructural deformation in a compressed OPA sample.
Share