Articles | Volume 12, issue 2
https://doi.org/10.5194/se-12-521-2021
https://doi.org/10.5194/se-12-521-2021
Research article
 | 
25 Feb 2021
Research article |  | 25 Feb 2021

Wireline distributed acoustic sensing allows 4.2 km deep vertical seismic profiling of the Rotliegend 150 °C geothermal reservoir in the North German Basin

Jan Henninges, Evgeniia Martuganova, Manfred Stiller, Ben Norden, and Charlotte M. Krawczyk

Related authors

3D deep geothermal reservoir imaging with wireline distributed acoustic sensing in two boreholes
Evgeniia Martuganova, Manfred Stiller, Ben Norden, Jan Henninges, and Charlotte M. Krawczyk
Solid Earth, 13, 1291–1307, https://doi.org/10.5194/se-13-1291-2022,https://doi.org/10.5194/se-13-1291-2022, 2022
Short summary

Related subject area

Subject area: Crustal structure and composition | Editorial team: Seismics, seismology, paleoseismology, geoelectrics, and electromagnetics | Discipline: Geophysics
Comparison of surface-wave techniques to estimate S- and P-wave velocity models from active seismic data
Farbod Khosro Anjom, Frank Adler, and Laura Valentina Socco
Solid Earth, 15, 367–386, https://doi.org/10.5194/se-15-367-2024,https://doi.org/10.5194/se-15-367-2024, 2024
Short summary
Complex fault system revealed by 3-D seismic reflection data with deep learning and fault network analysis
Thilo Wrona, Indranil Pan, Rebecca E. Bell, Christopher A.-L. Jackson, Robert L. Gawthorpe, Haakon Fossen, Edoseghe E. Osagiede, and Sascha Brune
Solid Earth, 14, 1181–1195, https://doi.org/10.5194/se-14-1181-2023,https://doi.org/10.5194/se-14-1181-2023, 2023
Short summary
Advanced seismic characterization of a geothermal carbonate reservoir – insight into the structure and diagenesis of a reservoir in the German Molasse Basin
Sonja H. Wadas, Johanna F. Krumbholz, Vladimir Shipilin, Michael Krumbholz, David C. Tanner, and Hermann Buness
Solid Earth, 14, 871–908, https://doi.org/10.5194/se-14-871-2023,https://doi.org/10.5194/se-14-871-2023, 2023
Short summary
Electrical conductivity of anhydrous and hydrous gabbroic melt under high temperature and high pressure: implications for the high-conductivity anomalies in the mid-ocean ridge region
Mengqi Wang, Lidong Dai, Haiying Hu, Ziming Hu, Chenxin Jing, Chuanyu Yin, Song Luo, and Jinhua Lai
Solid Earth, 14, 847–858, https://doi.org/10.5194/se-14-847-2023,https://doi.org/10.5194/se-14-847-2023, 2023
Short summary
Formation and geophysical character of transitional crust at the passive continental margin around Walvis Ridge, Namibia
Gesa Franz, Marion Jegen, Max Moorkamp, Christian Berndt, and Wolfgang Rabbel
Solid Earth, 14, 237–259, https://doi.org/10.5194/se-14-237-2023,https://doi.org/10.5194/se-14-237-2023, 2023
Short summary

Cited articles

Barberan, C., Allanic, C., Avila, D., Hy-Billiot, J., Hartog, A., Frignet, B., and Lees, G.: Multi-offset seismic acquisition using optical fiber behind tubing, in: Conference Proceedings, 74th EAGE Conference and Exhibition, Copenhagen, Denmark, 4–7 June, Y003, 2012. 
Bauer, K., Moeck, I., Norden, B., Schulze, A., Weber, M., and Wirth, H.: Tomographic P wave velocity and vertical velocity gradient structure across the geothermal site Groß Schönebeck (NE German Basin): Relationship to lithology, salt tectonics, and thermal regime, J. Geophys. Res., 115, B08312, https://doi.org/10.1029/2009jb006895, 2010. 
Bauer, K., Norden, B., Ivanova, A., Stiller, M., and Krawczyk, C. M.: Wavelet transform-based seismic facies classification and modelling: application to a geothermal target horizon in the NE German Basin, Geophys. Prospect., 68, 466–482, https://doi.org/10.1111/1365-2478.12853, 2019. 
Blöcher, G., Cacace, M., Reinsch, T., and Watanabe, N.: Evaluation of three exploitation concepts for a deep geothermal system in the North German Basin, Comput. Geosci., 82, 120–129, https://doi.org/10.1016/j.cageo.2015.06.005, 2015. 
Cai, Z., Wang, Y., Liu, C., Zhang, Q., and Xu, X.: Cable noise analysis and suppression in DAS-VSP data, AAPG/SEG International Conference and Exhibition, Barcelona, Spain, 3–6 April 2016, 170, 2016. 
Download
Short summary
We performed a seismic survey in two 4.3 km deep geothermal research wells using the novel method of distributed acoustic sensing and wireline cables. The characteristics of the acquired data, methods for data processing and quality improvement, and interpretations on the geometry and structure of the sedimentary and volcanic reservoir rocks are presented. The method enables measurements at high temperatures and reduced cost compared to conventional sensors.