Dou, S., Lindsey, N., Wagner, A. M., Daley, T. M., Freifeld, B., Robertson, M., Peterson, J., Ulrich, C., Martin, E. R., and Ajo-Franklin, J. B.:
Distributed Acoustic Sensing for Seismic Monitoring of The Near
Surface: A Traffic-Noise Interferometry Case Study,
Sci. Rep.-UK, 7, 11620,
https://doi.org/10.1038/s41598-017-11986-4, 2017.
a,
b
Fang, G., Li, Y. E., Zhao, Y., and Martin, E. R.: Urban Near-Surface
Seismic Monitoring Using Distributed Acoustic Sensing, Geophys. Res. Lett., 47, e2019GL086115,
https://doi.org/10.1029/2019GL086115, 2020.
a,
b,
c,
d
Feigl, K. L. and the PoroTomo Team: Overview and Preliminary Results from the PoroTomo Project at Brady Hot Springs, Nevada: Poroelastic Tomography by Adjoint Inverse Modeling of Data from Seismology, Geodesy, and Hydrology, in: 43rd Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, USA, 13–15 February 2017, 1715 pp., 2018.
a,
b,
c,
d,
e
Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen,
P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R.,
Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A.,
del Río, J. F., Wiebe, M., Peterson, P., Gérard-Marchant, P.,
Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant,
T. E.: Array Programming with NumPy, Nature, 585, 357–362,
https://doi.org/10.1038/s41586-020-2649-2, 2020.
a
Hutchison, A. A. and Ghosh, A.: Ambient Tectonic Tremor in the San Jacinto Fault, near the Anza Gap, Detected by Multiple Mini Seismic Arrays,
B. Seismol. Soc. Am., 107, 1985–1993,
https://doi.org/10.1785/0120160385, 2017.
a,
b
Inbal, A., Ampuero, J. P., and Clayton, R. W.: Localized Seismic Deformation in the Upper Mantle Revealed by Dense Seismic Arrays, Science, 354, 88–92,
https://doi.org/10.1126/science.aaf1370, 2016.
a
Inza, L. A., Mars, J. I., Métaxian, J. P., O'Brien, G. S., and Macedo, O.: Seismo-Volcano Source Localization with Triaxial Broad-Band Seismic Array, Geophys. J. Int., 187, 371–384,
https://doi.org/10.1111/j.1365-246X.2011.05148.x, 2011.
a
Jiang, C., Schmandt, B., Ward, K. M., Lin, F.-C., and Worthington, L. L.: Upper Mantle Seismic Structure of Alaska From Rayleigh and S Wave
Tomography, Geophys. Res. Lett., 45, 10350–10359,
https://doi.org/10.1029/2018GL079406, 2018.
a
Jolie, E., Moeck, I., and Faulds, J. E.: Quantitative Structural-Geological Exploration of Fault-Controlled Geothermal Systems – A
Case Study from the Basin- and Range-Province, Nevada (USA),
Geothermics, 54, 54–67,
https://doi.org/10.1016/j.geothermics.2014.10.003, 2015.
a
Jousset, P., Reinsch, T., Ryberg, T., Blanck, H., Clarke, A., Aghayev, R.,
Hersir, G. P., Henninges, J., Weber, M., and Krawczyk, C. M.: Dynamic Strain
Determination Using Fibre-Optic Cables Allows Imaging of Seismological and
Structural Features, Nat. Commun., 9, 2509,
https://doi.org/10.1038/s41467-018-04860-y, 2018.
a,
b
Krüger, F., Weber, M., Scherbaum, F., and Schlittenhardt, J.: Double Beam
Analysis of Anomalies in the Core-Mantle Boundary Region, Geophys. Res. Lett., 20, 1475–1478,
https://doi.org/10.1029/93GL01311, 1993.
a
Lellouch, A., Yuan, S., Spica, Z., Biondi, B., and Ellsworth, W. L.: Seismic
Velocity Estimation Using Passive Downhole Distributed Acoustic Sensing
Records: Examples From the San Andreas Fault Observatory at
Depth, J. Geophys. Res.-Sol. Ea., 124, 6931–6948,
https://doi.org/10.1029/2019JB017533, 2019.
a
Lin, F.-C., Li, D., Clayton, R. W., and Hollis, D.: High-Resolution 3D
Shallow Crustal Structure in Long Beach, California: Application
of Ambient Noise Tomography on a Dense Seismic Array, Geophysics, 78,
45–56,
https://doi.org/10.1190/geo2012-0453.1, 2013.
a
Lindsey, N. J., Martin, E. R., Dreger, D. S., Freifeld, B., Cole, S., James,
S. R., Biondi, B. L., and Ajo-Franklin, J. B.: Fiber-Optic Network
Observations of Earthquake Wavefields, Geophys. Res. Lett.,
44, 11792–11799,
https://doi.org/10.1002/2017GL075722, 2017.
a,
b
Lindsey, N. J., Dawe, T. C., and Ajo-Franklin, J. B.: Illuminating Seafloor
Faults and Ocean Dynamics with Dark Fiber Distributed Acoustic Sensing,
Science, 366, 1103–1107,
https://doi.org/10.1126/science.aay5881, 2019.
a,
b,
c,
d,
e,
f
Lindsey, N. J., Rademacher, H., and Ajo-Franklin, J. B.: On the Broadband
Instrument Response of Fiber-Optic DAS Arrays, J. Geophys. Res.-Sol. Ea., 125, e2019JB018145,
https://doi.org/10.1029/2019JB018145, 2020.
a
Lior, I., Sladen, A., Rivet, D., Ampuero, J.-P., Hello, Y., Becerril, C.,
Martins, H. F., Lamare, P., Jestin, C., Tsagkli, S., and Markou, C.: On the
Detection Capabilities of Underwater DAS, J. Geophys. Res.-Sol. Ea., 126, e2020JB020925,
https://doi.org/10.1029/2020JB020925, 2021.
a
Liu, H., Ma, J., Yan, W., Liu, W., Zhang, X., and Li, C.: Traffic Flow
Detection Using Distributed Fiber Optic Acoustic Sensing, IEEE Access, 6,
68968–68980,
https://doi.org/10.1109/ACCESS.2018.2868418, 2018.
a
Martin, E. R., Lindsey, N., Ajo-Franklin, J., and Biondi, B.: Introduction to Interferometry of Fiber Optic Strain Measurements, EarthArXiv (preprint),
https://doi.org/10.31223/osf.io/s2tjd, 2018.
a,
b,
c,
d,
e
Meng, L., Inbal, A., and Ampuero, J.-P.: A Window into the Complexity of the
Dynamic Rupture of the 2011 Mw 9 Tohoku-Oki Earthquake, Geophys. Res. Lett., 38, L00G07,
https://doi.org/10.1029/2011GL048118, 2011.
a,
b,
c
Meng, L., Allen, R. M., and Ampuero, J.-P.: Application of Seismic Array
Processing to Earthquake Early Warning, B. Seismol. Soc. Am., 104, 2553–2561,
https://doi.org/10.1785/0120130277, 2014.
a
Nakamichi, H., Yamanaka, Y., Terakawa, T., Horikawa, S., Okuda, T., and
Yamazaki, F.: Continuous Long-Term Array Analysis of Seismic Records Observed
during the 2011 Shinmoedake Eruption Activity of Kirishima Volcano,
Southwest Japan, Earth Planets Space, 65, 7,
https://doi.org/10.5047/eps.2013.03.002, 2013.
a
Paitz, P., Edme, P., Gräff, D., Walter, F., Doetsch, J., Chalari, A.,
Schmelzbach, C., and Fichtner, A.: Empirical Investigations of the
Instrument Response for Distributed Acoustic Sensing (DAS) across
17 Octaves, B. Seismol. Soc. Am., 111, 1–10,
https://doi.org/10.1785/0120200185, 2020.
a
Ringdal, F. and Husebye, E. S.: Application of Arrays in the Detection,
Location, and Identification of Seismic Events, B. Seismol. Soc. Am., 72, 201–224, 1982. a
Roux, P., Moreau, L., Lecointre, A., Hillers, G., Campillo, M., Ben-Zion, Y., Zigone, D., and Vernon, F.: A Methodological Approach towards High-Resolution Surface Wave Imaging of the San Jacinto Fault Zone Using Ambient-Noise Recordings at a Spatially Dense Array, Geophys. J. Int., 206, 980–992,
https://doi.org/10.1093/gji/ggw193, 2016.
a
Shearer, P. M.: Deep Earth Structure: Seismic Scattering in the Deep Earth, in: Treatise on Geophysics (edn. 2), edited by: Schubert, G., Elsevier, Oxford, UK, 759–787,
https://doi.org/10.1016/B978-0-444-53802-4.00018-X, 2015.
a
Singh, S., Capdeville, Y., and Igel, H.: Correcting Wavefield Gradients for the Effects of Local Small-Scale Heterogeneities, Geophys. J. Int., 220, 996–1011,
https://doi.org/10.1093/gji/ggz479, 2020.
a,
b,
c
Sladen, A., Rivet, D., Ampuero, J. P., De Barros, L., Hello, Y., Calbris, G.,
and Lamare, P.: Distributed Sensing of Earthquakes and Ocean-Solid Earth
Interactions on Seafloor Telecom Cables, Nat. Commun., 10, 5777,
https://doi.org/10.1038/s41467-019-13793-z, 2019.
a,
b,
c
Stipčević, J., Kennett, B. L. N., and Tkalčić, H.:
Simultaneous Use of Multiple Seismic Arrays, Geophys. J. Int., 209, 770–783,
https://doi.org/10.1093/gji/ggx027, 2017.
a
van den Ende, M. and Ampuero, J.-P.: Evaluating seismic beamforming capabilities of Distributed Acoustic Sensing arrays, figshare, https://doi.org/10.6084/m9.figshare.12899288 (last access: 18 April 2021), 2020.
Walter, F., Gräff, D., Lindner, F., Paitz, P., Köpfli, M., Chmiel, M., and Fichtner, A.: Distributed Acoustic Sensing of Microseismic Sources and Wave Propagation in Glaciated Terrain, Nat. Commun., 11, 2436,
https://doi.org/10.1038/s41467-020-15824-6, 2020.
a
Wang, H. F., Zeng, X., Miller, D. E., Fratta, D., Feigl, K. L., Thurber, C. H., and Mellors, R. J.: Ground Motion Response to an ML 4.3 Earthquake Using Co-Located Distributed Acoustic Sensing and Seismometer Arrays, Geophys. J. Int., 213, 2020–2036,
https://doi.org/10.1093/gji/ggy102, 2018.
a,
b,
c,
d,
e,
f,
g,
h,
i
Wiesmeyr, C., Litzenberger, M., Waser, M., Papp, A., Garn, H., Neunteufel, G., and Döller, H.: Real-Time Train Tracking from Distributed Acoustic Sensing Data, Applied Sciences, 10, 448,
https://doi.org/10.3390/app10020448, 2020.
a
Zhu, T. and Stensrud, D. J.: Characterizing Thunder-Induced Ground
Motions Using Fiber-Optic Distributed Acoustic Sensing Array,
J. Geophys. Res.-Atmos., 124, 12810–12823,
https://doi.org/10.1029/2019JD031453, 2019.
a
Zhu, T., Shen, J., and Martin, E. R.: Sensing Earth and environment dynamics by telecommunication fiber-optic sensors: an urban experiment in Pennsylvania, USA, Solid Earth, 12, 219–235,
https://doi.org/10.5194/se-12-219-2021, 2021.
a
Zigone, D., Ben-Zion, Y., Lehujeur, M., Campillo, M., Hillers, G., and
Vernon, F. L.: Imaging Subsurface Structures in the San Jacinto Fault
Zone with High-Frequency Noise Recorded by Dense Linear Arrays, Geophys. J. Int., 217, 879–893,
https://doi.org/10.1093/gji/ggz069, 2019.
a