Articles | Volume 12, issue 4
https://doi.org/10.5194/se-12-915-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/se-12-915-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluating seismic beamforming capabilities of distributed acoustic sensing arrays
Martijn P. A. van den Ende
CORRESPONDING AUTHOR
Université Côte d'Azur, IRD, CNRS, Observatoire de la Côte d'Azur, Géoazur, Valbonne, France
Jean-Paul Ampuero
Université Côte d'Azur, IRD, CNRS, Observatoire de la Côte d'Azur, Géoazur, Valbonne, France
Related authors
Constanza Rodriguez Piceda, Zoë K. Mildon, Billy J. Andrews, Yifan Yin, Jean-Paul Ampuero, Martijn van den Ende, Claudia Sgambato, and Percy Galvez
EGUsphere, https://doi.org/10.5194/egusphere-2025-4694, https://doi.org/10.5194/egusphere-2025-4694, 2025
This preprint is open for discussion and under review for Solid Earth (SE).
Short summary
Short summary
We investigate how the spatial arrangement of normal faults in the Italian Apennines affects earthquake timing and size. Computer-based models show that wide networks with faults offset across-strike produce more irregular and variable earthquakes, while narrow networks with fewer across-strike faults lead to more regular events. Faster-moving faults are more sensitive to nearby positive stress interactions, highlighting the need to consider fault geometry in seismic hazard assessments.
Martijn P. A. van den Ende, Marco M. Scuderi, Frédéric Cappa, and Jean-Paul Ampuero
Solid Earth, 11, 2245–2256, https://doi.org/10.5194/se-11-2245-2020, https://doi.org/10.5194/se-11-2245-2020, 2020
Short summary
Short summary
The injection of fluids (like wastewater or CO2) into the subsurface could cause earthquakes when existing geological faults inside the reservoir are (re-)activated. To assess the hazard associated with this, previous studies have conducted experiments in which fluids have been injected into centimetre- and decimetre-scale faults. In this work, we analyse and model these experiments. To this end, we propose a new approach through which we extract the model parameters that govern slip on faults.
Berend A. Verberne, Martijn P. A. van den Ende, Jianye Chen, André R. Niemeijer, and Christopher J. Spiers
Solid Earth, 11, 2075–2095, https://doi.org/10.5194/se-11-2075-2020, https://doi.org/10.5194/se-11-2075-2020, 2020
Short summary
Short summary
The strength of fault rock plays a central role in determining the distribution of crustal seismicity. We review laboratory work on the physics of fault friction at low shearing velocities carried out at Utrecht University in the past 2 decades. Key mechanical data and post-mortem microstructures can be explained using a generalized, physically based model for the shear of gouge-filled faults. When implemented into numerical fault-slip codes, this offers new ways to simulate the seismic cycle.
Constanza Rodriguez Piceda, Zoë K. Mildon, Billy J. Andrews, Yifan Yin, Jean-Paul Ampuero, Martijn van den Ende, Claudia Sgambato, and Percy Galvez
EGUsphere, https://doi.org/10.5194/egusphere-2025-4694, https://doi.org/10.5194/egusphere-2025-4694, 2025
This preprint is open for discussion and under review for Solid Earth (SE).
Short summary
Short summary
We investigate how the spatial arrangement of normal faults in the Italian Apennines affects earthquake timing and size. Computer-based models show that wide networks with faults offset across-strike produce more irregular and variable earthquakes, while narrow networks with fewer across-strike faults lead to more regular events. Faster-moving faults are more sensitive to nearby positive stress interactions, highlighting the need to consider fault geometry in seismic hazard assessments.
Małgorzata Chmiel, Maxime Godano, Marco Piantini, Pierre Brigode, Florent Gimbert, Maarten Bakker, Françoise Courboulex, Jean-Paul Ampuero, Diane Rivet, Anthony Sladen, David Ambrois, and Margot Chapuis
Nat. Hazards Earth Syst. Sci., 22, 1541–1558, https://doi.org/10.5194/nhess-22-1541-2022, https://doi.org/10.5194/nhess-22-1541-2022, 2022
Short summary
Short summary
On 2 October 2020, the French Maritime Alps were struck by an extreme rainfall event caused by Storm Alex. Here, we show that seismic data provide the timing and velocity of the propagation of flash-flood waves along the Vésubie River. We also detect 114 small local earthquakes triggered by the rainwater weight and/or its infiltration into the ground. This study paves the way for future works that can reveal further details of the impact of Storm Alex on the Earth’s surface and subsurface.
Martijn P. A. van den Ende, Marco M. Scuderi, Frédéric Cappa, and Jean-Paul Ampuero
Solid Earth, 11, 2245–2256, https://doi.org/10.5194/se-11-2245-2020, https://doi.org/10.5194/se-11-2245-2020, 2020
Short summary
Short summary
The injection of fluids (like wastewater or CO2) into the subsurface could cause earthquakes when existing geological faults inside the reservoir are (re-)activated. To assess the hazard associated with this, previous studies have conducted experiments in which fluids have been injected into centimetre- and decimetre-scale faults. In this work, we analyse and model these experiments. To this end, we propose a new approach through which we extract the model parameters that govern slip on faults.
Berend A. Verberne, Martijn P. A. van den Ende, Jianye Chen, André R. Niemeijer, and Christopher J. Spiers
Solid Earth, 11, 2075–2095, https://doi.org/10.5194/se-11-2075-2020, https://doi.org/10.5194/se-11-2075-2020, 2020
Short summary
Short summary
The strength of fault rock plays a central role in determining the distribution of crustal seismicity. We review laboratory work on the physics of fault friction at low shearing velocities carried out at Utrecht University in the past 2 decades. Key mechanical data and post-mortem microstructures can be explained using a generalized, physically based model for the shear of gouge-filled faults. When implemented into numerical fault-slip codes, this offers new ways to simulate the seismic cycle.
Cited articles
Ajo-Franklin, J., Dou, S., Daley, T., Freifeld, B., Robertson, M., Ulrich,
C., Wood, T., Eckblaw, I., Lindsey, N., Martin, E., and Wagner, A.:
Time-Lapse Surface Wave Monitoring of Permafrost Thaw Using Distributed
Acoustic Sensing and a Permanent Automated Seismic Source, in: 2017 SEG
International Exposition and Annual Meeting, Society of Exploration
Geophysicists, SEG, 6093 pp., 2017. a
Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., and Wassermann, J.: ObsPy: A Python Toolbox for
Seismology, Seismol. Res. Lett., 81, 530–533, https://doi.org/10.1785/gssrl.81.3.530, 2010. a
Capon, J., Greenfield, R., and Kolker, R.: Multidimensional Maximum-Likelihood Processing of a Large Aperture Seismic
Array, P. IEEE, 55, 192–211, https://doi.org/10.1109/PROC.1967.5439, 1967. a
Cole, S., Karrenbach, M., Kahn, D., Rich, J., Silver, K., and Langton, D.:
Source Parameter Estimation from DAS Microseismic Data, in: 2018 SEG
International Exposition and Annual Meeting, Society of Exploration
Geophysicists, SEG, 5520 pp., 2018. a
Daley, T. M., Miller, D. E., Dodds, K., Cook, P., and Freifeld, B. M.: Field
Testing of Modular Borehole Monitoring with Simultaneous Distributed Acoustic
Sensing and Geophone Vertical Seismic Profiles at Citronelle,
Alabama, Geophys. Prospect., 64, 1318–1334, https://doi.org/10.1111/1365-2478.12324, 2016. a
Dou, S., Lindsey, N., Wagner, A. M., Daley, T. M., Freifeld, B., Robertson, M., Peterson, J., Ulrich, C., Martin, E. R., and Ajo-Franklin, J. B.:
Distributed Acoustic Sensing for Seismic Monitoring of The Near
Surface: A Traffic-Noise Interferometry Case Study,
Sci. Rep.-UK, 7, 11620, https://doi.org/10.1038/s41598-017-11986-4, 2017. a, b
Fang, G., Li, Y. E., Zhao, Y., and Martin, E. R.: Urban Near-Surface
Seismic Monitoring Using Distributed Acoustic Sensing, Geophys. Res. Lett., 47, e2019GL086115, https://doi.org/10.1029/2019GL086115, 2020. a, b, c, d
Feigl, K.: Brady's Geothermal Field DAS Earthquake Data [data set],
University of Wisconsin, USA, https://doi.org/10.15121/1334285, 2016a. a
Feigl, K.: Brady's Geothermal Field Nodal Seismometer Earthquake Data [data set], University of Wisconsin, USA, https://doi.org/10.15121/1334284, 2016b. a
Feigl, K. L. and the PoroTomo Team: Overview and Preliminary Results from the PoroTomo Project at Brady Hot Springs, Nevada: Poroelastic Tomography by Adjoint Inverse Modeling of Data from Seismology, Geodesy, and Hydrology, in: 43rd Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, USA, 13–15 February 2017, 1715 pp., 2018. a, b, c, d, e
Goldstein, P. and Archuleta, R. J.: Array Analysis of Seismic Signals, Geophys. Res. Lett., 14, 13–16, https://doi.org/10.1029/GL014i001p00013, 1987. a
Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen,
P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R.,
Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A.,
del Río, J. F., Wiebe, M., Peterson, P., Gérard-Marchant, P.,
Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant,
T. E.: Array Programming with NumPy, Nature, 585, 357–362,
https://doi.org/10.1038/s41586-020-2649-2, 2020. a
Hartog, A. H.: An Introduction to Distributed Optical Fibre Sensors, edn. 1,
CRC Press, Boca Raton, Florida, USA, 472 pp., https://doi.org/10.1201/9781315119014, 2017. a
Hunter, J. D.: Matplotlib: A 2D Graphics Environment,
Comput. Sci. Eng., 9, 90–95, https://doi.org/10.1109/MCSE.2007.55, 2007. a
Hutchison, A. A. and Ghosh, A.: Ambient Tectonic Tremor in the San Jacinto Fault, near the Anza Gap, Detected by Multiple Mini Seismic Arrays,
B. Seismol. Soc. Am., 107, 1985–1993, https://doi.org/10.1785/0120160385, 2017. a, b
Inbal, A., Ampuero, J. P., and Clayton, R. W.: Localized Seismic Deformation in the Upper Mantle Revealed by Dense Seismic Arrays, Science, 354, 88–92,
https://doi.org/10.1126/science.aaf1370, 2016. a
Inza, L. A., Mars, J. I., Métaxian, J. P., O'Brien, G. S., and Macedo, O.: Seismo-Volcano Source Localization with Triaxial Broad-Band Seismic Array, Geophys. J. Int., 187, 371–384, https://doi.org/10.1111/j.1365-246X.2011.05148.x, 2011. a
Jiang, C., Schmandt, B., Ward, K. M., Lin, F.-C., and Worthington, L. L.: Upper Mantle Seismic Structure of Alaska From Rayleigh and S Wave
Tomography, Geophys. Res. Lett., 45, 10350–10359,
https://doi.org/10.1029/2018GL079406, 2018. a
Jolie, E., Moeck, I., and Faulds, J. E.: Quantitative Structural-Geological Exploration of Fault-Controlled Geothermal Systems – A
Case Study from the Basin- and Range-Province, Nevada (USA),
Geothermics, 54, 54–67, https://doi.org/10.1016/j.geothermics.2014.10.003, 2015. a
Jousset, P., Reinsch, T., Ryberg, T., Blanck, H., Clarke, A., Aghayev, R.,
Hersir, G. P., Henninges, J., Weber, M., and Krawczyk, C. M.: Dynamic Strain
Determination Using Fibre-Optic Cables Allows Imaging of Seismological and
Structural Features, Nat. Commun., 9, 2509,
https://doi.org/10.1038/s41467-018-04860-y, 2018. a, b
Kiser, E. and Ishii, M.: Back-Projection Imaging of Earthquakes,
Annu. Rev. Earth Pl. Sc., 45, 271–299,
https://doi.org/10.1146/annurev-earth-063016-015801, 2017. a, b
Krüger, F., Weber, M., Scherbaum, F., and Schlittenhardt, J.: Double Beam
Analysis of Anomalies in the Core-Mantle Boundary Region, Geophys. Res. Lett., 20, 1475–1478, https://doi.org/10.1029/93GL01311, 1993. a
Kuvshinov, B. N.: Interaction of Helically Wound Fibre-Optic Cables with Plane Seismic Waves, Geophys. Prospect., 64, 671–688,
https://doi.org/10.1111/1365-2478.12303, 2016. a, b
Lellouch, A., Yuan, S., Spica, Z., Biondi, B., and Ellsworth, W. L.: Seismic
Velocity Estimation Using Passive Downhole Distributed Acoustic Sensing
Records: Examples From the San Andreas Fault Observatory at
Depth, J. Geophys. Res.-Sol. Ea., 124, 6931–6948,
https://doi.org/10.1029/2019JB017533, 2019. a
Lin, F.-C., Li, D., Clayton, R. W., and Hollis, D.: High-Resolution 3D
Shallow Crustal Structure in Long Beach, California: Application
of Ambient Noise Tomography on a Dense Seismic Array, Geophysics, 78,
45–56, https://doi.org/10.1190/geo2012-0453.1, 2013. a
Lindsey, N. J., Martin, E. R., Dreger, D. S., Freifeld, B., Cole, S., James,
S. R., Biondi, B. L., and Ajo-Franklin, J. B.: Fiber-Optic Network
Observations of Earthquake Wavefields, Geophys. Res. Lett.,
44, 11792–11799, https://doi.org/10.1002/2017GL075722, 2017. a, b
Lindsey, N. J., Rademacher, H., and Ajo-Franklin, J. B.: On the Broadband
Instrument Response of Fiber-Optic DAS Arrays, J. Geophys. Res.-Sol. Ea., 125, e2019JB018145, https://doi.org/10.1029/2019JB018145, 2020. a
Lior, I., Sladen, A., Rivet, D., Ampuero, J.-P., Hello, Y., Becerril, C.,
Martins, H. F., Lamare, P., Jestin, C., Tsagkli, S., and Markou, C.: On the
Detection Capabilities of Underwater DAS, J. Geophys. Res.-Sol. Ea., 126, e2020JB020925, https://doi.org/10.1029/2020JB020925, 2021. a
Liu, H., Ma, J., Yan, W., Liu, W., Zhang, X., and Li, C.: Traffic Flow
Detection Using Distributed Fiber Optic Acoustic Sensing, IEEE Access, 6,
68968–68980, https://doi.org/10.1109/ACCESS.2018.2868418, 2018. a
Meng, L., Inbal, A., and Ampuero, J.-P.: A Window into the Complexity of the
Dynamic Rupture of the 2011 Mw 9 Tohoku-Oki Earthquake, Geophys. Res. Lett., 38, L00G07, https://doi.org/10.1029/2011GL048118, 2011. a, b, c
Meng, L., Allen, R. M., and Ampuero, J.-P.: Application of Seismic Array
Processing to Earthquake Early Warning, B. Seismol. Soc. Am., 104, 2553–2561, https://doi.org/10.1785/0120130277, 2014. a
Nakamichi, H., Yamanaka, Y., Terakawa, T., Horikawa, S., Okuda, T., and
Yamazaki, F.: Continuous Long-Term Array Analysis of Seismic Records Observed
during the 2011 Shinmoedake Eruption Activity of Kirishima Volcano,
Southwest Japan, Earth Planets Space, 65, 7,
https://doi.org/10.5047/eps.2013.03.002, 2013. a
Paitz, P., Edme, P., Gräff, D., Walter, F., Doetsch, J., Chalari, A.,
Schmelzbach, C., and Fichtner, A.: Empirical Investigations of the
Instrument Response for Distributed Acoustic Sensing (DAS) across
17 Octaves, B. Seismol. Soc. Am., 111, 1–10, https://doi.org/10.1785/0120200185, 2020. a
Rieken, D. and Fuhrmann, D.: Generalizing MUSIC and MVDR for Multiple
Noncoherent Arrays, IEEE T. Signal Proces., 52, 2396–2406,
https://doi.org/10.1109/TSP.2004.832153, 2004. a, b, c
Ringdal, F. and Husebye, E. S.: Application of Arrays in the Detection,
Location, and Identification of Seismic Events, B. Seismol. Soc. Am., 72, 201–224, 1982. a
Roux, P., Moreau, L., Lecointre, A., Hillers, G., Campillo, M., Ben-Zion, Y., Zigone, D., and Vernon, F.: A Methodological Approach towards High-Resolution Surface Wave Imaging of the San Jacinto Fault Zone Using Ambient-Noise Recordings at a Spatially Dense Array, Geophys. J. Int., 206, 980–992, https://doi.org/10.1093/gji/ggw193, 2016. a
Schmidt, R.: Multiple Emitter Location and Signal Parameter Estimation,
IEEE T. Antenn. Propag., 34, 276–280, https://doi.org/10.1109/TAP.1986.1143830, 1986. a, b
Scholz, C. H.: The Mechanics of Earthquakes and Faulting, edn. 3,
Cambridge University Press, Cambridge, UK, https://doi.org/10.1017/9781316681473, 2019. a
Shearer, P. M.: Deep Earth Structure: Seismic Scattering in the Deep Earth, in: Treatise on Geophysics (edn. 2), edited by: Schubert, G., Elsevier, Oxford, UK, 759–787, https://doi.org/10.1016/B978-0-444-53802-4.00018-X, 2015. a
Singh, S., Capdeville, Y., and Igel, H.: Correcting Wavefield Gradients for the Effects of Local Small-Scale Heterogeneities, Geophys. J. Int., 220, 996–1011, https://doi.org/10.1093/gji/ggz479, 2020. a, b, c
Sladen, A., Rivet, D., Ampuero, J. P., De Barros, L., Hello, Y., Calbris, G.,
and Lamare, P.: Distributed Sensing of Earthquakes and Ocean-Solid Earth
Interactions on Seafloor Telecom Cables, Nat. Commun., 10, 5777,
https://doi.org/10.1038/s41467-019-13793-z, 2019. a, b, c
Stipčević, J., Kennett, B. L. N., and Tkalčić, H.:
Simultaneous Use of Multiple Seismic Arrays, Geophys. J. Int., 209, 770–783, https://doi.org/10.1093/gji/ggx027, 2017.
a
Thomson, D.: Spectrum Estimation and Harmonic Analysis, P. IEEE, 70, 1055–1096, https://doi.org/10.1109/PROC.1982.12433, 1982. a
van den Ende, M. and Ampuero, J.-P.: Evaluating seismic beamforming capabilities of Distributed Acoustic Sensing arrays, figshare, https://doi.org/10.6084/m9.figshare.12899288 (last access: 18 April 2021), 2020.
Walter, F., Gräff, D., Lindner, F., Paitz, P., Köpfli, M., Chmiel, M., and Fichtner, A.: Distributed Acoustic Sensing of Microseismic Sources and Wave Propagation in Glaciated Terrain, Nat. Commun., 11, 2436,
https://doi.org/10.1038/s41467-020-15824-6, 2020. a
Wang, H. F., Zeng, X., Miller, D. E., Fratta, D., Feigl, K. L., Thurber, C. H., and Mellors, R. J.: Ground Motion Response to an ML 4.3 Earthquake Using Co-Located Distributed Acoustic Sensing and Seismometer Arrays, Geophys. J. Int., 213, 2020–2036, https://doi.org/10.1093/gji/ggy102, 2018. a, b, c, d, e, f, g, h, i
Wiesmeyr, C., Litzenberger, M., Waser, M., Papp, A., Garn, H., Neunteufel, G., and Döller, H.: Real-Time Train Tracking from Distributed Acoustic Sensing Data, Applied Sciences, 10, 448, https://doi.org/10.3390/app10020448, 2020. a
Zhan, Z.: Distributed Acoustic Sensing Turns Fiber-Optic Cables into
Sensitive Seismic Antennas, Seismol. Res. Lett., 91, 1–15,
https://doi.org/10.1785/0220190112, 2020. a, b, c, d
Zhu, T. and Stensrud, D. J.: Characterizing Thunder-Induced Ground
Motions Using Fiber-Optic Distributed Acoustic Sensing Array,
J. Geophys. Res.-Atmos., 124, 12810–12823, https://doi.org/10.1029/2019JD031453, 2019. a
Zhu, T., Shen, J., and Martin, E. R.: Sensing Earth and environment dynamics by telecommunication fiber-optic sensors: an urban experiment in Pennsylvania, USA, Solid Earth, 12, 219–235, https://doi.org/10.5194/se-12-219-2021, 2021. a
Zigone, D., Ben-Zion, Y., Lehujeur, M., Campillo, M., Hillers, G., and
Vernon, F. L.: Imaging Subsurface Structures in the San Jacinto Fault
Zone with High-Frequency Noise Recorded by Dense Linear Arrays, Geophys. J. Int., 217, 879–893, https://doi.org/10.1093/gji/ggz069, 2019. a
Short summary
Distributed acoustic sensing (DAS) is an emerging technology that measures stretching of an optical-fibre cable. This technology can be used to record the ground shaking of earthquakes, which offers a cost-efficient alternative to conventional seismometers. Since DAS is relatively new, we need to verify that existing seismological methods can be applied to this new data type. In this study, we reveal several issues by comparing DAS with conventional seismometer data for earthquake localisation.
Distributed acoustic sensing (DAS) is an emerging technology that measures stretching of an...
Special issue