Articles | Volume 14, issue 3
https://doi.org/10.5194/se-14-237-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-14-237-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Formation and geophysical character of transitional crust at the passive continental margin around Walvis Ridge, Namibia
Marine Geodynamics, Research Division 4: Dynamics of the Ocean Floor, GEOMAR
Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Marion Jegen
Marine Geodynamics, Research Division 4: Dynamics of the Ocean Floor, GEOMAR
Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Max Moorkamp
Geophysics, Department of Earth and Environmental Sciences, Ludwig Maximilian University of Munich, Munich, Germany
Christian Berndt
Marine Geodynamics, Research Division 4: Dynamics of the Ocean Floor, GEOMAR
Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Wolfgang Rabbel
Applied Geophysics, Institute of Geosciences, Christian-Albrechts University Kiel, Kiel, Germany
Related authors
No articles found.
Helene-Sophie Hilbert, Anke Dannowski, Jörg Bialas, Felix Gross, Jasper Hoffmann, Dirk Kläschen, and Christian Berndt
EGUsphere, https://doi.org/10.5194/egusphere-2025-5275, https://doi.org/10.5194/egusphere-2025-5275, 2026
This preprint is open for discussion and under review for Solid Earth (SE).
Short summary
Short summary
This study investigates gas hydrate distribution in the Danube Fan, NW Black Sea. Using seismic data and drilling results, we analysed the structure, composition, and gas content of underconsolidated sediments. Gas hydrates are present in low concentration and patchy distribution. Free gas is trapped beneath the hydrate stability zone. The area shows signs of past slope failures linked to weak sediments and gas accumulation. The study provides insights into how gas hydrate systems evolve.
Antonia Reiß, Hanna Hadler, Dennis Wilken, Bente S. Majchczack, Ruth Blankenfeldt, Sarah Bäumler, Ulf Ickerodt, Stefanie Klooß, Timo Willershäuser, Wolfgang Rabbel, and Andreas Vött
E&G Quaternary Sci. J., 74, 37–57, https://doi.org/10.5194/egqsj-74-37-2025, https://doi.org/10.5194/egqsj-74-37-2025, 2025
Short summary
Short summary
This study combines different geophysical and geomorphological methods to estimate how and to what extent human–environment interactions have shaped the coastal region of the Trendermarsch since the High Middle Ages. Our results reveal a drowned, formerly cultivated marshland with different phases of settlement from medieval times onwards and thus presumably illustrate storm-flood-induced reactions in cultivation patterns.
Julie Christin Schindlbeck-Belo, Matthew Toohey, Marion Jegen, Steffen Kutterolf, and Kira Rehfeld
Earth Syst. Sci. Data, 16, 1063–1081, https://doi.org/10.5194/essd-16-1063-2024, https://doi.org/10.5194/essd-16-1063-2024, 2024
Short summary
Short summary
Volcanic forcing of climate resulting from major explosive eruptions is a dominant natural driver of past climate variability. To support model studies of the potential impacts of explosive volcanism on climate variability across timescales, we present an ensemble reconstruction of volcanic stratospheric sulfur injection over the last 140 000 years that is based primarily on tephra records.
Damian L. Arévalo-Martínez, Amir Haroon, Hermann W. Bange, Ercan Erkul, Marion Jegen, Nils Moosdorf, Jens Schneider von Deimling, Christian Berndt, Michael Ernst Böttcher, Jasper Hoffmann, Volker Liebetrau, Ulf Mallast, Gudrun Massmann, Aaron Micallef, Holly A. Michael, Hendrik Paasche, Wolfgang Rabbel, Isaac Santos, Jan Scholten, Katrin Schwalenberg, Beata Szymczycha, Ariel T. Thomas, Joonas J. Virtasalo, Hannelore Waska, and Bradley A. Weymer
Biogeosciences, 20, 647–662, https://doi.org/10.5194/bg-20-647-2023, https://doi.org/10.5194/bg-20-647-2023, 2023
Short summary
Short summary
Groundwater flows at the land–ocean transition and the extent of freshened groundwater below the seafloor are increasingly relevant in marine sciences, both because they are a highly uncertain term of biogeochemical budgets and due to the emerging interest in the latter as a resource. Here, we discuss our perspectives on future research directions to better understand land–ocean connectivity through groundwater and its potential responses to natural and human-induced environmental changes.
Cited articles
Akaike, H.: A New Look at the Statistical Model Identification,
IEEE T. Automat. Contr., 19, 716–723, https://doi.org/10.1109/TAC.1974.1100705,
1974.
Anderson, D. L.: Top-Down Tectonics?, Science, 293, 2016–2018,
https://doi.org/10.1126/science.1065448, 2001.
Aslanian, D., Moulin, M., Olivet, J. L., Unternehr, P., Matias, L., Bache,
F., Rabineau, M., Nouzeì, H., Klingelheofer, F., Contrucci, I., and Labails,
C.: Brazilian and African passive margins of the Central Segment of the
South Atlantic Ocean: Kinematic constraints, Tectonophysics, 468, 98–112,
https://doi.org/10.1016/j.tecto.2008.12.016, 2009.
Astic, T. and Oldenburg, D. W.: A framework for petrophysically and
geologically guidedgeophysical inversion using a dynamic Gaussian mixture
model prior, Geophys. J. Int., 219, 1989–2012,
https://doi.org/10.1093/gji/ggz389, 2019.
Astic, T., Heagy, L. J., and Oldenburg, D. W.: Petrophysically and
geologically guided multi-physics inversion using a dynamic Gaussian mixture
model, Geophys. J. Int., 224, 40–68, https://doi.org/10.1093/gji/ggaa378,
2020.
Attias, E., Evans, R. L., Naif, S., Elsenbeck, J., and Key, K.: Conductivity
structure of the lithosphereasthenosphere boundary beneath the eastern North
American margin, Geochem. Geophy. Geosy., 18, 676–696,
https://doi.org/10.1002/2016GC006667, 2017.
Avdeeva, A. and Avdeev, D. B.: A limited-memory quasi-Newton inversion for
1D magnetotellurics, Geophysics, 71, G191–G196, https://doi.org/10.1190/1.2236381, 2006.
Avdeev, D. B., Kuvshinov, A. V., Pankratov, O. V., and Newman, G. A.:
High-Performance Three-Dimensional Electromagnetic Modelling Using Modified
Neumann Series. Wide-Band Numerical Solution and Examples,
J. Geomagn. Geoelectr., 49, 1519–1539, https://doi.org/10.5636/jgg.49.1519, 1997.
Baba, K.: Electrical structure in marine tectonic settings, Surv.
Geophys., 26, 701–731, https://doi.org/10.1007/s10712-005-1831-2, 2005.
Baba, K., Chen, J., Sommer, M., Utada, H., Geissler, W. H., Jokat, W., and
Jegen, M.: Marine magnetotellurics imaged no distinct plume beneath the
Tristan da Cunha hotspot in the southern Atlantic Ocean, Tectonophysics,
716, 52–63, https://doi.org/10.1016/j.tecto.2016.09.033, 2017.
Baby, G., Guillocheau, F., Morin, J., Ressouche, J., Robin, C., Broucke, O.,
and Dall'Asta, M.: Post-rift stratigraphic evolution of the Atlantic margin
of Namibia and South Africa: Implications for the vertical movements of the
margin and the uplift history of the South African Plateau,
Mar. Petrol. Geol., 97, 169–191, https://doi.org/10.1016/j.marpetgeo.2018.06.030, 2018.
Bauer, K., Neben, S., Schreckenberger, B., Emmermann, R., Hinz, K., Fechner,
N., Gohl, K., Schulze, A., Trumbull, R. B., and Weber, K.: Deep structure of
the Namibia continental margin as derived from integrated geophysical
studies, J. Geophys. Res.-Sol. Ea., 105, 25829–25853,
https://doi.org/10.1029/2000jb900227, 2000.
Bauer, K., Trumbull, R. B., and Vietor, T.: Geophysical images and a crustal
model of intrusive structures beneath the Messum ring complex, Namibia,
Earth Planet. Sc. Lett., 216, 65–80,
https://doi.org/10.1016/S0012-821X(03)00486-2, 2003.
Becker, K., Franke, D., Trumbull, R., Schnabel, M., Heyde, I., Schreckenberger, B., Koopmann, H., Bauer, K., Jokat, W., and Krawczyk, C. M.: Asymmetry of high-velocity lower crust on the South Atlantic rifted margins and implications for the interplay of magmatism and tectonics in continental breakup, Solid Earth, 5, 1011–1026, https://doi.org/10.5194/se-5-1011-2014, 2014.
Bedrosian, P. A.: MT+, integrating magnetotellurics to determine earth
structure, physical state, and processes, Surv. Geophys., 28,
121–167, https://doi.org/10.1007/s10712-007-9019-6, 2007.
Bedrosian, P. A., Maercklin, N., Weckmann, U., Bartov, Y., Ryberg, T., and
Ritter, O.: Lithology-derived structure classification from the joint
interpretation of magnetotelluric and seismic models, Geophys. J. Int., 170, 737–748,
https://doi.org/10.1111/j.1365-246X.2007.03440.x, 2007.
Begg, G. C., Griffin, W. L., Natapov, L. M., O'Reilly, S. Y., Grand, S. P.,
O'Neill, C. J., Hronsky, J. M., Djomani, Y. P., Swain, C. J., Deen, T., and
Bowden, P.: The lithospheric architecture of Africa: Seismic tomography,
mantle petrology, and tectonic evolution, Geosphere, 5, 23–50,
https://doi.org/10.1130/GES00179.1, 2009.
Blaich, O. A., Faleide, J. I., and Tsikalas, F.: Crustal breakup and
continent-ocean transition at South Atlantic conjugate margins, J. Geophys. Res.-Sol. Ea., 116, B01402, https://doi.org/10.1029/2010JB007686, 2011.
Braun, J.: A review of numerical modeling studies of passive margin
escarpments leading to a new analytical expression for the rate of
escarpment migration velocity, Gondwana Res., 53, 209–224,
https://doi.org/10.1016/j.gr.2017.04.012, 2018.
Braun, J., Guillocheau, F., Robin, C., Baby, G., and Jelsma, H.: Rapid
erosion of the Southern African Plateau as it climbs over a mantle
superswell, J. Geophys. Res.-Sol. Ea., 119, 6093–6112,
https://doi.org/10.1002/2014JB010998, 2014.
Brown, R., Summerfield, M., Gleadow, A., Gallagher, K., Carter, A., Beucher,
R., and Wildman, M.: Intracontinental deformation in southern Africa during
the Late Cretaceous, J. Afr. Earth Sci., 100, 20–41,
https://doi.org/10.1016/j.jafrearsci.2014.05.014, 2014.
Brune, S., Heine, C., Pérez-Gussinyé, M., and Sobolev, S. V.: Rift
migration explains continental margin asymmetry and crustal hyper-extension,
Nat. Commun., 5, 1–9, https://doi.org/10.1038/ncomms5014, 2014.
Brune, S., Heine, C., Clift, P. D., and Pérez-Gussinyé, M.: Rifted margin
architecture and crustal rheology: Reviewing Iberia-Newfoundland, Central
South Atlantic, and South China Sea, Mar. Petrol. Geol., 79,
257–281, https://doi.org/10.1016/j.marpetgeo.2016.10.018, 2017.
Buiter, S. J. and Torsvik, T. H.: A review of Wilson Cycle plate margins: A
role for mantle plumes in continental break-up along sutures?, Gondwana Res., 26, 627–653, https://doi.org/10.1016/j.gr.2014.02.007, 2014.
Burke, K. and Dewey, J. F.: Plume-Generated Triple Junctions: Key Indicators
in Applying Plate Tectonics to Old Rocks, J. Geol., 81,
406–433, https://doi.org/10.1086/627882, 1973.
Carlson, R. L. and Herrick, C. N.: Densities and porosities in the oceanic
crust and their variations with depth and age,
J. Geophys. Res., 95, 9153–9170, https://doi.org/10.1029/JB095iB06p09153, 1990.
Carlson, R. L. and Raskin, G. S.: Density of the ocean crust, Nature, 311,
555–558, https://doi.org/10.1038/311555a0, 1984.
Clemson, J., Cartwright, J., and Booth, J.: Structural segmentation and the
influence of basement structure on the Namibian passive margin,
J. Geol. Soc., 154, 477–482, 10.1144/gsjgs.154.3.0477, 1997.
Clift, P. and Lin, J.: Preferential mantle lithospheric extension under the
South China margin, Mar. Petrol. Geol., 18, 929–945,
https://doi.org/10.1016/S0264-8172(01)00037-X, 2001a.
Clift, P. and Lin, J.: Patterns of extension and magmatism along the
continent-ocean boundary, South China margin,
Geol. Soc. Sp., 187, 489–510, 10.1144/GSL.SP.2001.187.01.24, 2001b.
Collier, J. S., McDermott, C., Warner, G., Gyori, N., Schnabel, M.,
McDermott, K., and Horn, B. W.: New constraints on the age and style of
continental breakup in the South Atlantic from magnetic anomaly data, Earth Planet. Sc. Lett., 477, 27–40, https://doi.org/10.1016/j.epsl.2017.08.007,
2017.
Corseri, R., Senger, K., Selway, K., Abdelmalak, M. M., Planke, S., and
Jerram, D. A.: Magnetotelluric evidence for massive sulphide mineralization
in intruded sediments of the outer Vøring Basin, mid-Norway,
Tectonophysics, 706–707, 196–205, https://doi.org/10.1016/j.tecto.2017.04.011, 2017.
Courtillot, V., Davaille, A., Besse, J., and Stock, J.: Three distinct types
of hotspots in the Earth's mantle, Earth Planet. Sc. Lett., 205,
295–308, https://doi.org/10.1016/S0012-821X(02)01048-8, 2003.
de Beer, J. H., Huyssen, R. M. J., Joubert, S. J., and van Zijl, J. S. V.:
Magnetometer array studies and deep Schlumberger soundings in the Damara
orogenic belt, South West Africa, Geophys. J. Int., 70,
11–29, https://doi.org/10.1111/j.1365-246X.1982.tb06388.x, 1982.
Dingle, R. and Simpson, E.: The Walvis Ridge: A Review, in: Geodynamics:
Progress and Prospects, vol. 5, 160–176, https://doi.org/10.1029/SP005p0160, 1976.
Dingle, R. V.: Structural and sedimentary development of the continental
margin off southwestern Africa, Communications of the Geological Survey of
Namibia, 8, 37–46, 1992.
Dingle, R. V., Birch, G. F., Bremner, J. M., De Decker, R., Du Plessis, A.,
Engelbrecht, J., Fincham, M. J., Fitton, T., Flemming, B. W., Gentle, R. I.,
Goodlad, S. W., Martin, A. K., Mills, E. G., Moir, G. J., Parker, R. J.,
Robson, S. H., Rogers, J., Salmon, D. A., Siesser, W. G., Simpson, E. S. W.,
Summerhayes, C. P., Westall, F., Winter, A., and Woodborne, M. W.: Deep sea
sedimentary environments around southern Africa (South-East Atlantic and
South- West Indian Oceans), Annals of the South African Museum, 98, 1–27,
1987.
Duncan, A. R., Newton, S. R., van den Berg, C., and Reid, D. L.:
Geochemistry and petrology of dolerite sills in the Huab River Valley,
Damaraland, north-western Namibia, Communications of the Geological Survey
of Namibia, 5, 5–17, 1989.
Eldholm, O., Thiede, J., Taylor, E., and Al., E.: Proceedings of the Ocean
Drilling Program, 104 Initial Reports, vol. 104 of Proceedings of the Ocean
Drilling Program, Ocean Drilling Program, https://doi.org/10.2973/odp.proc.ir.104.1987,
1987.
Eldholm, O., Gladczenko, T. P., Skogseid, J., and Planke, S.: Atlantic
volcanic margins: A comparative study, Geol. Soc. Sp., 167, 411–428, https://doi.org/10.1144/GSL.SP.2000.167.01.16, 2000.
Elliott, G. M., Berndt, C., and Parson, L. M.: The SW African volcanic
rifted margin and the initiation of the Walvis Ridge, South Atlantic,
Mar. Geophys. Res., 30, 207–214, https://doi.org/10.1007/s11001-009-9077-x, 2009.
Evans, R. L., Hirth, G., Baba, K., Forsyth, D., Chave, A., and Mackie, R.:
Geophysical evidence from the MELT area for compositional controls on
oceanic plates, Nature, 437, 249–252, https://doi.org/10.1038/nature04014, 2005.
Ewart, A.: Petrology and Geochemistry of Early Cretaceous Bimodal
Continental Flood Volcanism of the NW Etendeka, Namibia. Part 1:
Introduction, Mafic Lavas and Re-evaluation of Mantle Source Components,
J. Petrol., 45, 59–105, https://doi.org/10.1093/petrology/egg083, 2004.
Foucher, J., Le Pichon, X., and Sibuet, J.-C.: The ocean-continent
transition in the uniform lithospheric stretching model: role of partial
melting in the mantle, Philos. T. Roy. Soc.
A, 305, 27–43,
https://doi.org/10.1098/rsta.1982.0024, 1982.
Foulger, G. R.: Plates vs. Plumes, Wiley, https://doi.org/10.1002/9781444324860, 2010.
Foulger, G. R., Du, Z., and Julian, B. R.: Icelandic-type crust, Geophys. J. Int., 155, 567–590, https://doi.org/10.1046/j.1365-246X.2003.02056.x,
2003.
Franke, D.: Rifting, lithosphere breakup and volcanism: Comparison of
magma-poor and volcanic rifted margins, Mar. Petrol. Geol., 43,
63–87, https://doi.org/10.1016/j.marpetgeo.2012.11.003, 2013.
Franke, D., Neben, S., Ladage, S., Schreckenberger, B., and Hinz, K.: Margin
segmentation and volcano-tectonic architecture along the volcanic margin off
Argentina/Uruguay, South Atlantic, Mar. Geol., 244, 46–67,
https://doi.org/10.1016/j.margeo.2007.06.009, 2007.
Franz, G., Moorkamp, M., Jegen, M., Berndt, C., and Rabbel, W.: Comparison
of Different Coupling Methods for Joint Inversion of Geophysical Data: A
Case Study for the Namibian Continental Margin, J. Geophys. Res.-Sol. Ea., 126, 1–28, https://doi.org/10.1029/2021jb022092, 2021.
French, S. W. and Romanowicz, B.: Broad plumes rooted at the base of the
Earth's mantle beneath major hotspots, Nature, 525, 95–99,
https://doi.org/10.1038/nature14876, 2015.
Frimmel, H. E.: Configuration of Pan-African Orogenic Belts in Southwestern
Africa, in: Developments in Precambrian Geology: Neoproterozoic-Cambrian
Tectonics, Global Change and Evolution: A Focus on South Western Gondwana,
edited by: Gaucher, C., Sial, A. N., Halverson, G. P., and Frimmel, H. E.,
5.1, 145–151, Elsevier, https://doi.org/10.1016/S0166-2635(09)01610-7, 2009.
Fromm, T., Jokat, W., Ryberg, T., Behrmann, J., Haberland, C., and Weber,
M.: South Atlantic opening: A plume-induced breakup?, Geology, 43, 931–934,
https://doi.org/10.1130/G36936.1, 2015.
Fromm, T., Jokat, W., and Behrmann, J. H.: Interaction between a hotspot and
a fracture zone: The crustal structure of Walvis Ridge at 6 E,
Tectonophysics, 716, 108–120, https://doi.org/10.1016/j.tecto.2017.03.001, 2017a.
Fromm, T., Jokat, W., Ryberg, T., Behrmann, J., Haberland, C., and Weber,
M.: The onset of Walvis Ridge: Plume influence at the continental margin,
Tectonophysics, 716, 90–107, https://doi.org/10.1016/j.tecto.2017.03.011, 2017b.
Gallagher, K. and Brown, R.: Denudation and uplift at passive margins: the
record on the Atlantic Margin of southern Africa, Philos. T.
Roy. Soc. A, 357, 835–859, https://doi.org/10.1098/rsta.1999.0354, 1999.
Garcia, X., Seilleì, H., Elsenbeck, J., Evans, R. L., Jegen, M., Hölz, S.,
Ledo, J., Lovatini, A., Marti, A., Marcuello, A., Queralt, P., Ungarelli,
C., and Ranero, C. R.: Structure of the mantle beneath the Alboran Basin
from magnetotelluric soundings, Geochem. Geophy. Geosy., 16, 4261–4274,
https://doi.org/10.1002/2015GC006100, 2015.
Gardés, E., Gaillard, F., and Tarits, P.: Toward a unified hydrous olivine
electrical conductivity law, Geochem. Geophy. Geosy., 15,
4984–5000, https://doi.org/10.1002/2014GC005496, 2014.
Garzanti, E., Dinis, P., Vermeesch, P., Andò, S., Hahn, A., Huvi, J.,
Limonta, M., Padoan, M., Resentini, A., Rittner, M., and Vezzoli, G.:
Sedimentary processes controlling ultralong cells of littoral transport:
Placer formation and termination of the Orange sand highway in southern
Angola, Sedimentology, 65, 431–460, https://doi.org/10.1111/sed.12387, 2018.
Gassmöller, R., Dannberg, J., Bredow, E., Steinberger,
B., and Torsvik, T. H.: Major influence of plume-ridge interaction,
lithosphere thickness variations, and global mantle flow on hotspot
volcanism – The example of Tristan, Geochem. Geophy. Geosy.,
17, 1454–1479, https://doi.org/10.1002/2015GC006177, 2016.
Geoffroy, L.: Volcanic passive margins, C. R. Geosci., 337,
1395–1408, https://doi.org/10.1016/j.crte.2005.10.006, 2005.
Georgen, J. E. and Lin, J.: The effects of transform faults on along-axis
flow of plume material: Implications for plume-ridge interaction, in:
Interactions between mantle plumes and mid-ocean ridges: Constraints from
geophysics, geochemistry, and geodynamical modeling (Dissertation),
September, https://apps.dtic.mil/sti/pdfs/ADA405859.pdf#page=37 (last access: 21 February 2023), 2001.
Gernigon, L., Ringenbach, J. C., Planke, S., and Le Gall, B.: Deep
structures and breakup along volcanic rifted margins: Insights from
integrated studies along the outer Vøring Basin (Norway), Mar. Petrol. Geol., 21, 363–372, https://doi.org/10.1016/j.marpetgeo.2004.01.005, 2004.
Géron, A.: Hands-on machine learning with Scikit-Learn, Keras and
TensorFlow: concepts, tools, and techniques to build intelligent systems,
O'Reilly, 2. edn., ISBN 9781492032649, 2019.
Gholamrezaie, E., Scheck-Wenderoth, M., Sippel, J., and Strecker, M. R.: Variability of the geothermal gradient across two differently aged magma-rich continental rifted margins of the Atlantic Ocean: the Southwest African and the Norwegian margins, Solid Earth, 9, 139–158, https://doi.org/10.5194/se-9-139-2018, 2018.
Gibson, S., Thompson, R., and Day, J.: Timescales and mechanisms of
plumelithosphere interactions: 40Ar/39Ar geochronology and geochemistry of
alkaline igneous rocks from the ParanáEtendeka large igneous province,
Earth Planet. Sc. Lett., 251, 1–17, https://doi.org/10.1016/j.epsl.2006.08.004,
2006.
Gladczenko, T. P., Skogseid, J., and Eldhom, O.: Namibia volcanic margin,
Mar. Geophys. Res., 20, 313–341, https://doi.org/10.1023/A:1004746101320, 1998.
Glen, J. M. G., Renne, P. R., Milner, S. C., and Coe, R. S.: Magma flow
inferred from anisotropy of magnetic susceptibility in the coastal
Paraná-Etendeka igneous province: Evidence for rifting before flood
volcanism, Geology, 25, 1131,
https://doi.org/10.1130/0091-7613(1997)025<1131:MFIFAO>2.3.CO;2, 1997.
Goscombe, B., Hand, M., and Gray, D.: Structure of the Kaoko Belt, Namibia:
Progressive evolution of a classic transpressional orogen,
J. Struct. Geol., 25, 1049–1081, https://doi.org/10.1016/S0191-8141(02)00150-5, 2003.
Goslin, J. and Sibuet, J. C.: Geophysical study of the easternmost Walvis
Ridge, South Atlantic: Deep structure,
B. Geol. Soc. Am., 86, 1713–1724, https://doi.org/10.1130/0016-7606(1975)86<1713:GSOTEW>2.0.CO;2,
1975.
Goslin, J., Mascle, J., Sibuet, J.-C., and Hoskins, H.: Geophysical study of
the easternmost Walvis Ridge, South Atlantic: Morphology and shallow
structure, Geol. Soc. Am. B., 85, 619–632,
https://doi.org/10.1130/0016-7606(1974)85<619:GSOTEW>2.0.CO;2, 1974.
Grayver, A. V.: Global 3-D Electrical Conductivity Model of the World Ocean
and Marine Sediments, Geochem. Geophy. Geosy., 22, e2021GC009950,
https://doi.org/10.1029/2021GC009950, 2021.
Guillocheau, F., Rouby, D., Robin, C., Helm, C., Rolland, N., Le Carlier de
Veslud, C., and Braun, J.: Quantification and causes of the terrigeneous
sediment budget at the scale of a continental margin: A new method applied
to the Namibia-South Africa margin, Basin Res., 24, 3–30,
https://doi.org/10.1111/j.1365-2117.2011.00511.x, 2012.
Haas, P., Ebbing, J., Celli, N. L., and Rey, P. F.: Two-step Gravity
Inversion Reveals Variable Architecture of African Cratons,
Front. Earth Sci., 9, 1–14, https://doi.org/10.3389/feart.2021.696674, 2021.
Harris, C., Marsh, J. S., and Milner, S. C.: Petrology of the alkaline core
of the messum igneous complex, Namibia: Evidence for the progressively
decreasing effect of crustal contamination, J. Petrol., 40,
1377–1397, https://doi.org/10.1093/petroj/40.9.1377, 1999.
Heincke, B., Jegen, M., Moorkamp, M., Hobbs, R. W., and Chen, J.: An
adaptive coupling strategy for joint inversions that use petrophysical
information as constraints, J. Appl. Geophys., 136,
279–297,
https://doi.org/10.1016/j.jappgeo.2016.10.028, 2017.
Heine, C., Zoethout, J., and Müller, R. D.: Kinematics of the South Atlantic rift, Solid Earth, 4, 215–253, https://doi.org/10.5194/se-4-215-2013, 2013.
Heinson, G.: Electromagnetic studies of the lithosphere and asthenosphere,
Surv. Geophys., 20, 229–255,
https://doi.org/10.1023/A:1006689521329, 1999.
Heinson, G., White, A., and Lilley, F. E.: Rifting of a passive margin and
development of a lower-crustal detachment zone: Evidence from marine
magnetotellurics, Geophys. Res. Lett., 32, 1–4,
https://doi.org/10.1029/2005GL022934, 2005.
Heit, B., Yuan, X., Weber, M., Geissler, W., Jokat, W., Lushetile, B., and
Hoffmann, K. H.: Crustal thickness and Vp/Vs ratio in NW Namibia from
receiver functions: Evidence for magmatic underplating due to mantle
plume-crust interaction, Geophys. Res. Lett., 42, 3330–3337,
https://doi.org/10.1002/2015GL063704, 2015.
Hinze, W. J., von Frese, R. R. B., and Saad, A. H.: Density of Earth
materials, in: Gravity and Magnetic Exploration, Cambridge
University Press, Cambridge, 64–87, https://doi.org/10.1017/CBO9780511843129.005, 2012.
Hirsch, K. K., Bauer, K., and Scheck-Wenderoth, M.: Deep structure of the
western South African passive margin – Results of a combined approach of
seismic, gravity and isostatic investigations, Tectonophysics, 470, 57–70,
https://doi.org/10.1016/j.tecto.2008.04.028, 2009.
Hirth, G. and Kohlstedt, D. L.: Water in the oceanic upper mantle:
implications for rheology, melt extraction and the evolution of the
lithosphere, Earth Planet. Sc. Lett., 144, 93–108,
https://doi.org/10.1016/0012-821X(96)00154-9, 1996.
Homrighausen, S., Hoernle, K., Hauff, F., Wartho, J. A., van den Bogaard,
P., and Garbe-Schönberg, D.: New age and geochemical data
from the Walvis Ridge: The temporal and spatial diversity of South Atlantic
intraplate volcanism and its possible origin, Geochim. Cosmochim.
Ac., 245, 16–34, https://doi.org/10.1016/j.gca.2018.09.002, 2019.
Hoversten, G. M., Myer, D., Key, K., Alumbaugh, D., Hermann, O., and Hobbet,
R.: Field test of sub-basalt hydrocarbon exploration with marine controlled
source electromagnetic and magnetotelluric data, Geophys. Prospect.
63, 1284–1310, https://doi.org/10.1111/1365-2478.12278, 2015.
Ince, E. S., Barthelmes, F., Reißland, S., Elger, K., Förste, C., Flechtner, F., and Schuh, H.: ICGEM – 15 years of successful collection and distribution of global gravitational models, associated services, and future plans, Earth Syst. Sci. Data, 11, 647–674, https://doi.org/10.5194/essd-11-647-2019, 2019.
Jackson, M. P., Cramez, C., and Fonck, J. M.: Role of subaerial volcanic
rocks and mantle plumes in creation of South Atlantic margins: Implications
for salt tectonics and source rocks, Mar. Petrol. Geol., 17,
477–498, https://doi.org/10.1016/S0264-8172(00)00006-4, 2000.
Jegen, M., Hobbs, R. W., Tarits, P., and Chave, A. D.: Joint inversion of
marine magnetotelluric and gravity data incorporating seismic constraints.
Preliminary results of sub-basalt imaging off the Faroe Shelf, Earth Planet. Sc. Lett., 282, 47–55, https://doi.org/10.1016/j.epsl.2009.02.018, 2009.
Jegen, M., Avdeeva, A., Berndt, C., Franz, G., Heincke, B.,
Hölz, S., Neska, A., Marti, A., Planert, L., Chen, J.,
Kopp, H., Baba, K., Ritter, O., Weckmann, U., Meqbel, N., and Behrmann, J.:
3-D magnetotelluric image of offshore magmatism at the Walvis Ridge and rift
basin, Tectonophysics, 683, 98–108, https://doi.org/10.1016/j.tecto.2016.06.016, 2016.
Jegen, M., Geissler, W. H., Ritter, O., and Weckmann, U.: Magnetotelluric impedances of marine measurements conducted during Maria S.
Merian cruise MSM17/1 and MSM17/2, Walvis Ridge, Namibian Margin, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.931440, 2021.
Jones, A. G., Evans, R. L., and Eaton, D. W.: Velocity-conductivity
relationships for mantle mineral assemblages in Archean cratonic lithosphere
based on a review of laboratory data and Hashin-Shtrikman extremal bounds,
Lithos, 109, 131–143, https://doi.org/10.1016/j.lithos.2008.10.014, 2009.
Jones, A. G., Fullea, J., Evans, R. L., and Muller, M. R.: Water in cratonic
lithosphere: Calibrating laboratory-determined models of electrical
conductivity of mantle minerals using geophysical and petrological
observations, Geochem. Geophy. Geosy., 13, Q06010,
https://doi.org/10.1029/2012GC004055, 2012.
Kapinos, G., Weckmann, U., Jegen-Kulcsar, M., Meqbel, N., Neska, A.,
Katjiuongua, T. T., Hölz, S., Ritter, O., Hoelz, S., and
Ritter, O.: Electrical resistivity image of the South Atlantic continental
margin derived from onshore and offshore magnetotelluric data, Geophys. Res. Lett., 43, 154–160, https://doi.org/10.1002/2015GL066811, 2016.
Keiding, J. K., Frei, O., Renno, A. D., Veksler, I. V., and Trumbull, R. B.:
Conditions of magma crystallization in the henties bay-outjo dyke swarm,
namibia: Implications for the feeder system of continental flood basalts,
Lithos, 179, 16–27, https://doi.org/10.1016/j.lithos.2013.07.018, 2013.
Key, K. and Constable, S.: Coast effect distortion of marine magnetotelluric
data: Insights from a pilot study offshore northeastern Japan,
Phys.
Earth Planet. Int., 184, 194–207,
https://doi.org/10.1016/j.pepi.2010.11.008, 2011.
Khoza, T. D., Jones, A. G., Muller, M. R., Evans, R. L., Miensopust, M. P.,
and Webb, S. J.: Lithospheric structure of an Archean craton and adjacent
mobile belt revealed from 2-D and 3-D inversion of magnetotelluric data:
Example from southern Congo craton in northern Namibia, J. Geophys. Res.-Sol. Ea., 118, 4378–4397, https://doi.org/10.1002/jgrb.50258,
2013.
Koopmann, H., Brune, S., Franke, D., and Breuer, S.: Linking rift
propagation barriers to excess magmatism at volcanic rifted margins,
Geology, 42, 1071–1074, https://doi.org/10.1130/G36085.1, 2014.
Koopmann, H., Schreckenberger, B., Franke, D., Becker, K., and Schnabel, M.:
The late rifting phase and continental break-up of the southern South
Atlantic: the mode and timing of volcanic rifting and formation of earliest
oceanic crust, Geological Society, London, Special Publications, 420,
315–340, https://doi.org/10.1144/SP420.2, 2016.
Larsen, H. C., Saunders, A. D., Clift, P. D., and the Shipboard Scientific Party: Proceedings of the Ocean
Drilling Program, 152 Initial Reports, vol. 152 of Proceedings of the Ocean
Drilling Program, Ocean Drilling Program, https://doi.org/10.2973/odp.proc.ir.152.1994,
1994.
Laske, G., Masters, G., Ma, Z., and Pasyanos, M.: Update on CRUST1.0–A
1-degree global model of Earth's crust, in: EGU General Assembly 2013, 7–12 April 2013, vol.
15, p. 2658, Vienna, 2013EGUGA..15.2658L, 2013.
Lelièvre, P. G., Farquharson, C. G., and Hurich, C. A.: Joint inversion of
seismic travel-times and gravity data on unstructured grids with application
to mineral exploration, Geophysics, 77, K1–K15, https://doi.org/10.1190/1.3513182, 2012.
Li, K., Wei, X., and Sun, J.: Geophysical characterization of a buried
niobium and rare earth element deposit using 3D joint inversion and geology
differentiation: A case study on the Elk Creek Carbonatite, SEG Technical
Program Expanded Abstracts, September 2021, 1256–1260,
https://doi.org/10.1190/segam2021-3585069.1, 2021.
Li, X. and Sun, J.: Towards a better understanding of the recoverability of
physical property relationships from geophysical inversions of multiple
potential-field data sets, Geophys. J. Int., 230,
1489–1507, https://doi.org/10.1093/gji/ggac130, 2022.
Lösing, M., Moorkamp, M., and Ebbing, J.: Joint inversion
based on variation of informationa crustal model of Wilkes Land, East
Antarctica, Geophys. J. Int., 232, 162–175,
https://doi.org/10.1093/gji/ggac334, 2022.
Macdonald, D., Gomez-Perez, I., Franzese, J., Spalletti, L., Lawver, L.,
Gahagan, L., Dalziel, I., Thomas, C., Trewin, N., Hole, M., and Paton, D.:
Mesozoic break-up of SW Gondwana: Implications for regional hydrocarbon
potential of the southern South Atlantic, Mar. Petrol. Geol., 20,
287–308, https://doi.org/10.1016/S0264-8172(03)00045-X, 2003.
Margirier, A., Braun, J., Gautheron, C., Carcaillet, J., Schwartz, S., Pinna
Jamme, R., and Stanley, J.: Climate control on Early Cenozoic denudation of
the Namibian margin as deduced from new thermochronological constraints,
Earth Planet. Sc. Lett., 527, 115779, https://doi.org/10.1016/j.epsl.2019.115779, 2019.
MATLAB: MATLAB version 9.11.0.1769968 (R2021b), Natick, Massachusetts, The MathWorks Inc., [code], https://de.mathworks.com/products/matlab.html (last access: 21 February 2023), 2021.
Matsuno, T., Seama, N., Evans, R. L., Chave, A. D., Baba, K., White, A.,
Goto, T. N., Heinson, G., Boren, G., Yoneda, A., and Utada, H.: Upper mantle
electrical resistivity structure beneath the central Mariana subduction
system, Geochem. Geophy. Geosy., 11, 1–24,
https://doi.org/10.1029/2010GC003101, 2010.
Maystrenko, Y. P., Scheck-Wenderoth, M., Hartwig, A., Anka, Z., Watts, A.
B., Hirsch, K. K., and Fishwick, S.: Structural features of the Southwest
African continental margin according to results of lithosphere-scale 3D
gravity and thermal modelling, Tectonophysics, 604, 104–121,
https://doi.org/10.1016/j.tecto.2013.04.014, 2013.
McDermott, C., Lonergan, L., Collier, J. S., McDermott, K. G., and
Bellingham, P.: Characterization of Seaward-Dipping Reflectors Along the
South American Atlantic Margin and Implications for Continental Breakup,
Tectonics, 37, 3303–3327, https://doi.org/10.1029/2017TC004923, 2018.
McKenzie, D. and Bickle, M. J.: The Volume and Composition of Melt Generated
by Extension of the Lithosphere, J. Petrol., 29, 625–679,
https://doi.org/10.1093/petrology/29.3.625, 1988.
McLachlan, G. J., Lee, S. X., and Rathnayake, S. I.: Finite Mixture Models,
Annu. Rev. Stat. Appl., 6, 355–378,
https://doi.org/10.1146/annurev-statistics-031017-100325, 2019.
Melo, A. T., Sun, J., and Li, Y.: Geophysical inversions applied to 3D
geology characterization of an iron oxide copper-gold deposit in Brazil,
Geophysics, 82, K1–K13,
https://doi.org/10.1190/GEO2016-0490.1, 2017.
Minshull, T. A.: Geophysical characterisation of the oceancontinent
transition at magma-poor rifted margins, C. R. Geosci., 341,
382–393, https://doi.org/10.1016/j.crte.2008.09.003, 2009.
Mjelde, R., Raum, T., Murai, Y., and Takanami, T.:
Continent-ocean-transitions: Review, and a new tectono-magmatic model of the
Vøring Plateau, NE Atlantic, J. Geodyn., 43, 374–392,
https://doi.org/10.1016/j.jog.2006.09.013, 2007.
Moorkamp, M.: Integrating Electromagnetic Data with Other Geophysical
Observations for Enhanced Imaging of the Earth: A Tutorial and Review,
Surv. Geophys., 38, 935–962, https://doi.org/10.1007/s10712-017-9413-7, 2017.
Moorkamp, M.: Deciphering the State of the Lower Crust and Upper Mantle With
MultiPhysics Inversion, Geophys. Res. Lett., 49, e2021GL096336,
https://doi.org/10.1029/2021GL096336, 2022.
Moorkamp, M., Jegen, M., Roberts, A., and Hobbs, R.: Massively parallel
forward modeling of scalar and tensor gravimetry data, Comput.
Geosci., 36, 680–686, https://doi.org/10.1016/j.cageo.2009.09.018, 2010.
Moorkamp, M., Heincke, B., Jegen, M., Roberts, A. W., and Hobbs, R. W.: A
framework for 3-D joint inversion of MT, gravity and seismic refraction
data, Geophys. J. Int., 184, 477–493,
10.1111/j.1365-246X.2010.04856.x, 2011.
Moorkamp, M., Özaydn, S., Selway, K., and Jones, A. G.:
Probing the Southern African Lithosphere With MagnetotelluricsPart I: Model
Construction, J. Geophys. Res.-Sol. Ea., 127, e2021JB023117,
https://doi.org/10.1029/2021JB023117, 2022.
Moorkamp, M., Heincke, B., and Shi, Z.: jif3d – 3D Joint Inversion Framework, http://svn.code.sf.net/p/jif3d/jif3dsvn/trunk/jif3D/ (last access: 21 February 2023), 2013–2023.
Morgan, J. P., Taramón, J. M., Araujo, M., Hasenclever, J., and
Peréz-Gussinyé, M.: Causes and consequences of asymmetric lateral plume flow
during South Atlantic rifting, P. Natl. Acad. Sci. USA, 117, 27877–27883, https://doi.org/10.1073/pnas.2012246117, 2020.
Morgan, W. J.: Convection Plumes in the Lower Mantle, Nature, 230, 42–43,
https://doi.org/10.1038/230042a0, 1971.
Moulin, M., Aslanian, D., and Unternehr, P.: A new starting point for the
South and Equatorial Atlantic Ocean, Earth-Sci. Rev., 98, 1–37,
https://doi.org/10.1016/j.earscirev.2009.08.001, 2010.
Mutter, J. C., Talwani, M., and Stoffa, P. L.: Origin of seaward-dipping
reflectors in oceanic crust off the Norwegian margin by 'subaerial sea-floor
spreading', Geology, 10, 353–357,
https://doi.org/10.1130/0091-7613(1982)10<353:OOSRIO>2.0.CO;2, 1982.
Mutter, J. C., Buck, W. R., and Zehnder, C. M.: Convective partial melting:
1. A model for the formation of thick basaltic sequences during the
initiation of spreading, J. Geophys. Res., 93, 1031,
https://doi.org/10.1029/JB093iB02p01031, 1988.
Myer, D., Constable, S., and Key, K.: Magnetotelluric evidence for layered
mafic intrusions beneath the vøring and exmouth rifted margins, Phys.
Earth Planet. Int., 220, 1–10,
https://doi.org/10.1016/j.pepi.2013.04.007, 2013.
Nürnberg, D. and Müller, R. D.: The
tectonic evolution of the South Atlantic from Late Jurassic to present,
Tectonophysics, 191, 27–53, https://doi.org/10.1016/0040-1951(91)90231-G, 1991.
O'Connor, J. M. and Duncan, R. A.: Evolution of the Walvis Ridge-Rio Grande
Rise Hot Spot System: Implications for African and South American Plate
motions over plumes, J. Geophys. Res.-Sol. Ea., 95, 17475–17502, https://doi.org/10.1029/JB095iB11p17475, 1990.
Owen-Smith, T. M., Ashwal, L. D., Sudo, M., and Trumbull, R. B.: Age and
petrogenesis of the Doros Complex, Namibia, and implications for early
plume-derived melts in the Paranaì-Etendeka LIP, J. Petrol., 58,
423–442, https://doi.org/10.1093/petrology/egx021, 2017.
Paasche, H. and Tronicke, J.: Cooperative inversion of 2D geophysical data
sets: A zonal approach based on fuzzy c-means cluster analysis, Geophysics,
72, 35–39, https://doi.org/10.1190/1.2670341, 2007.
Palshin, N. A.: Oceanic electromagnetic studies: A review, Surv. Geophys., 17, 455–491, https://doi.org/10.1007/BF01901641, 1996.
Panzner, M., Morten, J. P., Weibull, W. W., and Arntsen, B.: Integrated
seismic and electromagnetic model building applied to improve subbasalt
depth imaging in the Faroe-Shetland Basin, Geophysics, 81, E57–E68,
https://doi.org/10.1190/geo2015-0137.1, 2016.
Parker, R. L.: The inverse problem of electromagnetic induction: Existence
and construction of solutions based on incomplete data, J. Geophys. Res.-Sol. Ea., 85, 4421–4428, https://doi.org/10.1029/JB085iB08p04421,
1980.
Passchier, C. W., Trouw, R. A., Ribeiro, A., and Paciullo, F. V.: Tectonic
evolution of the southern Kaoko belt, Namibia, J. Afr. Earth Sci., 35, 61–75, https://doi.org/10.1016/S0899-5362(02)00030-1, 2002.
Paton, D. A., Pindell, J., McDermott, K., Bellingham, P., and Horn, B.:
Evolution of seaward-dipping reflectors at the onset of oceanic crust
formation at volcanic passive margins: Insights from the South Atlantic,
Geology, 45, 439–442, https://doi.org/10.1130/G38706.1, 2017.
Peate, D. W.: The Paraná-Etendeka Province, in: Large Igneous Provinces:
Continental, Oceanic, and Planetary Flood Volcanism, edited by: Mahoney, J. J. and Coffin, M. F.,
Geophysical Monograph Series,
American Geophysical Union, 217–245,
https://doi.org/10.1029/GM100p0217, 2013.
Pérez-Gussinyé, M. and Reston, T. J.: Rheological evolution during
extension at nonvolcanic rifted margins: Onset of serpentinization and
development of detachments leading to continental breakup, J. Geophys. Res.-Sol. Ea., 106, 3961–3975, https://doi.org/10.1029/2000JB900325,
2001.
Peron-Pinvidic, G., Manatschal, G., and Osmundsen, P. T.: Structural
comparison of archetypal Atlantic rifted margins: A review of observations
and concepts, Mar. Petrol. Geol., 43, 21–47,
https://doi.org/10.1016/j.marpetgeo.2013.02.002, 2013.
Planert, L., Behrmann, J., Jokat, W., Fromm, T., Ryberg, T., Weber, M., and
Haberland, C.: The wide-angle seismic image of a complex rifted margin,
offshore North Namibia: Implications for the tectonics of continental
breakup, Tectonophysics, 716, 130–148, https://doi.org/10.1016/j.tecto.2016.06.024, 2017.
Planke, S.: Geophysical response of flood basalts from analysis of wire line
logs: Ocean Drilling Program Site 642, Vøring volcanic margin, J. Geophys. Res.-Sol. Ea., 99, 9279–9296, https://doi.org/10.1029/94JB00496, 1994.
Planke, S., and Eldholm, O.: Seismic response and construction of seaward dipping wedges of flood basalts: Voring volcanic margin, J. Geophys. Res., 99, 9263–9278, https://doi.org/10.1029/94JB00468, 1994.
Planke, S., Symonds, P. A., Alvestad, E., and Skogseid, J.: Seismic
volcanostratigraphy of large-volume basaltic extrusive complexes on rifted
margins, J. Geophys. Res.-Sol. Ea., 105, 19 335–19 351,
https://doi.org/10.1029/1999jb900005, 2000.
Raab, M. J., Brown, R. W., Gallagher, K., Weber, K., and Gleadow, A. J. W.:
Denudational and thermal history of the Early Cretaceous Brandberg and
Okenyenya igneous complexes on Namibia's Atlantic passive margin, Tectonics,
24, TC3006, https://doi.org/10.1029/2004TC001688, 2005.
Rabinowitz, P. D. and LaBrecque, J.: The Mesozoic South Atlantic ocean and
evolution of its continental margins., J. Geophys. Res.-Sol. Ea., 84, 5973–6002, https://doi.org/10.1029/JB084iB11p05973, 1979.
Reston, T. J. and Pérez-Gussinyé, M.: Lithospheric extension from rifting
to continental breakup at magma-poor margins: rheology, serpentinisation and
symmetry, Int. J. Earth Sci., 96, 1033–1046,
https://doi.org/10.1007/s00531-006-0161-z, 2007.
Ritter, O., Weckmann, U., Vietor, T., and Haak, V.: A magnetotelluric study
of the Damara Belt in Namibia 1. Regional scale conductivity anomalies,
Phys. Earth Planet. Int., 138, 71–90,
https://doi.org/10.1016/S0031-9201(03)00078-5, 2003.
Rouby, D., Bonnet, S., Guillocheau, F., Gallagher, K., Robin, C., Biancotto,
F., Dauteuil, O., and Braun, J.: Sediment supply to the Orange sedimentary
system over the last 150 My: An evaluation from sedimentation/denudation
balance, Mar. Petrol. Geol., 26, 782–794,
https://doi.org/10.1016/j.marpetgeo.2008.08.004, 2009.
Rust, D. and Summerfield, M.: Isopach and borehole data as indicators of
rifted margin evolution in southwestern Africa, Mar. Petrol. Geol., 7, 277–287, https://doi.org/10.1016/0264-8172(90)90005-2, 1990.
Ryberg, T., Haberland, C., Haberlau, T., Weber, M. H., Bauer, K., Behrmann,
J. H., and Jokat, W.: Crustal structure of northwest Namibia: Evidence for
plume-rift-continent interaction, Geology, 43, 739–742, https://doi.org/10.1130/G36768.1,
2015.
Ryberg, T., Geissler, W. H., Jokat, W., Yuan, X., Fromm, T., Pandey, S., and
Heit, B.: Crustal and uppermost mantle structure of the NW Namibia
continental margin and the Walvis Ridge derived from ambient seismic noise,
Geophys. J. Int., 230, 377–391, https://doi.org/10.1093/gji/ggac084, 2022.
Salomon, E., Passchier, C., and Koehn, D.: Asymmetric continental
deformation during South Atlantic rifting along southern Brazil and Namibia,
Gondwana Res., 51, 170–176, https://doi.org/10.1016/j.gr.2017.08.001, 2017.
Sawyer, D. S., Coffin, M. F., Reston, T. J., Stock, J. M., and Hopper, J. R.: COBBOOM: The Continental Breakup and Birth of Oceans Mission, Sci. Dril., 5, 13–25, https://doi.org/10.2204/iodp.sd.5.02.2007, 2007.
Schmitt, A. K., Emmermann, R., Trumbull, R. B., Bühn, B.,
and Henjes-Kunst, F.: Petrogenesis and 40Ar/39Ar geochronology of the
Brandberg complex, Namibia: Evidence for a major mantle contribution in
metaluminous and peralkaline granites, J. Petrol., 41, 1207–1239,
https://doi.org/10.1093/petrology/41.8.1207, 2000.
Schwarz, G.: Estimating the Dimension of a Model, Ann. Stat.,
6, 461–464, https://doi.org/10.1214/aos/1176344136, 1978.
Selway, K.: On the Causes of Electrical Conductivity Anomalies in
Tectonically Stable Lithosphere, Surv. Geophys., 35, 219–257,
https://doi.org/10.1007/s10712-013-9235-1, 2014.
Seton, M., Müller, R. D., Zahirovic, S., Gaina, C.,
Torsvik, T., Shephard, G., Talsma, A., Gurnis, M., Turner, M., Maus, S., and
Chandler, M.: Global continental and ocean basin reconstructions since
200Ma, Earth-Sci. Rev., 113, 212–270,
https://doi.org/10.1016/j.earscirev.2012.03.002, 2012.
Spacapan, J. B., DOdorico, A., Palma, O., Galland, O., Senger, K., Ruiz, R.,
Manceda, R., and Leanza, H. A.: Low resistivity zones at contacts of igneous
intrusions emplaced in organicrich formations and their implications on
fluid flow and petroleum systems: A case study in the northern Neuqueìn
Basin, Argentina, Basin Res., 32, 3–24, https://doi.org/10.1111/bre.12363, 2020.
Stewart, J., Watts, A. B., and Bagguley, J. G.: Three-dimensional subsidence
analysis and gravity modelling of the continental margin offshore Namibia,
Geophys. J. Int., 141, 724–746,
https://doi.org/10.1046/j.1365-246X.2000.00124.x, 2000.
Sun, J. and Li, Y.: Joint inversion of multiple geophysical and
petrophysical data using generalized fuzzy clustering algorithms,
Geophys. J. Int., 208, 1201–1216, https://doi.org/10.1093/gji/ggw442,
2017.
Teklay, M., Wirth, K., Mezger, K., and Thole, J.: Picrites of the Jungfrau
and Sargdeckel, central Namibia: Relative roles of mantle and crust in the
Southern Etendeka large igneous province, Lithos, 354–355, 105283,
https://doi.org/10.1016/j.lithos.2019.105283, 2020.
Thompson, R. N. and Gibson, S. A.: Subcontinental mantle plumes, hotspots
and pre-existing thinspots, J. Geol. Soc., 148,
973–977, https://doi.org/10.1144/gsjgs.148.6.0973, 1991.
Thompson, R. N., Gibson, S. A., Dickin, A. P., and Smith, P. M.: Early
Cretaceous Basalt and Picrite Dykes of the Southern Etendeka Region, NW
Namibia: Windows into the Role of the Tristan Mantle Plume in
ParanáEtendeka Magmatism, J. Petrol., 42, 2049–2081,
https://doi.org/10.1093/petrology/42.11.2049, 2001.
Torsvik, T. H., Rousse, S., Labails, C., and Smethurst, M. A.: A new scheme
for the opening of the South Atlantic Ocean and the dissection of an Aptian
salt basin, Geophys. J. Int., 177, 1315–1333,
https://doi.org/10.1111/j.1365-246X.2009.04137.x, 2009.
Trumbull, R. B., Vietor, T., Hahne, K., Wackerle, R., and Ledru, P.:
Aeromagnetic mapping and reconnaissance geochemistry of the Early Cretaceous
Henties Bay-Outjo dike swarm, Etendeka Igneous Province, Namibia, J. Afr. Earth Sci., 40, 17–29, https://doi.org/10.1016/j.jafrearsci.2004.07.006, 2004.
Turner, S., Hawkesworth, C., Gallagher, K., Stewart, K., Peate, D., and
Mantovani, M.: Mantle plumes, flood basalts, and thermal models for melt
generation beneath continents: Assessment of a conductive heating model and
application to the Paranaì, J. Geophys. Res.-Sol. Ea.,
101, 11503–11518, https://doi.org/10.1029/96JB00430, 1996.
Van Zijl, J. S. V.: Electrical studies of the deep crust in various tectonic
provinces of southern Africa, in: The Earth's crust, American
Geophysical Union, vol. 20 edn., 470–500, https://doi.org/10.1029/GM020p0470, 1977.
Weckmann, U., Ritter, O., and Haak, V.: A magnetotelluric study of the
Damara Belt in Namibia 2. MT phases over 90 reveal the internal structure of
the Waterberg Fault/Omaruru Lineament, Phys. Earth Planet.
Int., 138, 91–112, https://doi.org/10.1016/S0031-9201(03)00079-7, 2003.
White, R. S. and McKenzie, D.: Magmatism at rift zones: The generation of
volcanic continental margins and flood basalts, J. Geophys. Res., 94, 7685, https://doi.org/10.1029/JB094iB06p07685, 1989.
White, R. S. and McKenzie, D.: Mantle plumes and flood basalts, J. Geophys. Res.-Sol. Ea., 100, 17543–17585, https://doi.org/10.1029/95JB01585,
1995.
White, R. S., Spence, G. D., Fowler, S. R., McKenzie, D. P., Westbrook, G.
K., and Bowen, A. N.: Magmatism at rifted continental margins, Nature, 330,
439–444, https://doi.org/10.1038/330439a0, 1987.
Whitmarsh, R. B., Manatschal, G., and Minshull, T. A.: Evolution of
magma-poor continental margins from rifting to seafloor spreading, Nature,
413, 150–154, https://doi.org/10.1038/35093085, 2001.
Wilson, J. T.: A possible origin of the Hawaiian Islands,
Can. J. Phys., 41, 863–870, https://doi.org/10.1139/p63-094, 1963.
Worzewski, T., Jegen, M., and Swidinsky, A.: Approximations for the 2-D
coast effect on marine magnetotelluric data, Geophys. J. Int., 189, 357–368, https://doi.org/10.1111/j.1365-246X.2012.05385.x, 2012.
Yuan, X., Heit, B., Brune, S., Steinberger, B., Geissler, W. H., Jokat, W.,
and Weber, M.: Seismic structure of the lithosphere beneath NWNamibia:
Impact of the Tristan da Cunha mantle plume, Geochem. Geophy. Geosy., 18, 125–141, https://doi.org/10.1002/2016GC006645, 2017.
Zhao, D.: Seismic images under 60 hotspots: Search for mantle plumes,
Gondwana Res., 12, 335–355, https://doi.org/10.1016/j.gr.2007.03.001, 2007.
Zhu, J., Qiu, X., Kopp, H., Xu, H., Sun, Z., Ruan, A., Sun, J., and Wei, X.:
Shallow anatomy of a continentocean transition zone in the northern South
China Sea from multichannel seismic data, Tectonophysics, 554–557, 18–29,
https://doi.org/10.1016/j.tecto.2012.05.027, 2012.
Short summary
Our study focuses on the correlation of two geophysical parameters (electrical resistivity and density) with geological units. We use this computer-aided correlation to improve interpretation of the Earth’s formation history along the Namibian coast and the associated formation of the South Atlantic Ocean. It helps to distinguish different types of sediment cover and varieties of oceanic crust, as well as to identify typical features associated with the breakup of continents.
Our study focuses on the correlation of two geophysical parameters (electrical resistivity and...