Articles | Volume 15, issue 2
https://doi.org/10.5194/se-15-281-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-15-281-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Thermal structure of the southern Caribbean and northwestern South America: implications for seismogenesis
Ángela María Gómez-García
CORRESPONDING AUTHOR
GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Corporation Centre of Excellence in Marine Sciences (CEMarin), Bogotá, Colombia
now at: Geosciences Barcelona (GEO3BCN), CSIC, Lluís Solé i Sabarís s/n, 08028, Barcelona, Spain
Álvaro González
GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Centre de Recerca Matemàtica (CRM), Campus UAB, Edifici C. 08193, Bellaterra (Barcelona), Spain
Mauro Cacace
GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Magdalena Scheck-Wenderoth
GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Gaspar Monsalve
Facultad de Minas, Universidad Nacional de Colombia, Medellín, Colombia
Related authors
Montserrat Torne, Tiago M. Alves, Ivone Jiménez-Munt, Joao Carvalho, Conxi Ayala, Elsa C. Ramalho, Angela María Gómez-García, Hugo Matias, Hanneke Heida, Abraham Balaguera, José Luis García-Lobón, and Jaume Vergés
Earth Syst. Sci. Data, 17, 1275–1293, https://doi.org/10.5194/essd-17-1275-2025, https://doi.org/10.5194/essd-17-1275-2025, 2025
Short summary
Short summary
Sediments are like history books for geologists and geophysicists. By studying them, we can learn about past environments, sea level and climate changes, and where the sediments came from. To aid in understanding the geology, georesources, and potential hazards in the Iberian Peninsula and its surrounding seas, we present the SedDARE-IB sediment data repository. As an application in geothermal exploration, we investigate how sediment thickness affects the depth of the 150 °C isotherm.
Hugh Daigle, João C. Duarte, Ake Fagereng, Raphaël Paris, Patricia Persaud, Ángela María Gómez-García, and the Lisbon MagellanPlus Workshop Participants
Sci. Dril., 32, 101–111, https://doi.org/10.5194/sd-32-101-2023, https://doi.org/10.5194/sd-32-101-2023, 2023
Short summary
Short summary
Natural hazards associated with the ocean can have a direct impact on coastal populations and even affect populations located far away from the coast. These hazards may interact, and they include tsunamis that result in major damage and catastrophic loss of life and submarine landslides, which themselves can produce tsunamis and damage subsea infrastructure. We present ideas for investigating these hazards with scientific ocean drilling.
Ángela María Gómez-García, Eline Le Breton, Magdalena Scheck-Wenderoth, Gaspar Monsalve, and Denis Anikiev
Solid Earth, 12, 275–298, https://doi.org/10.5194/se-12-275-2021, https://doi.org/10.5194/se-12-275-2021, 2021
Short summary
Short summary
The Earth’s crust beneath the Caribbean Sea formed at about 90 Ma due to large magmatic activity of a mantle plume, which brought molten material up from the deep Earth. By integrating diverse geophysical datasets, we image for the first time two fossil magmatic conduits beneath the Caribbean. The location of these conduits at 90 Ma does not correspond with the present-day Galápagos plume. Either this mantle plume migrated in time or these conduits were formed above another unknown plume.
Denise Degen, Ajay Kumar, Magdalena Scheck-Wenderoth, and Mauro Cacace
EGUsphere, https://doi.org/10.5194/egusphere-2025-1925, https://doi.org/10.5194/egusphere-2025-1925, 2025
Short summary
Short summary
Geodynamical simulations cover a wide spatial and temporal range and are crucial to understand and assess the evolution of the Earth system. To enable computationally efficient modeling approaches that can account for potentially unknown subsurface properties, we present a surrogate modeling technique. This technique combines physics-based and machine-learning techniques to enable reliable predictions of geodynamical applications, as we illustrate for the case study of the Alpine Region.
Montserrat Torne, Tiago M. Alves, Ivone Jiménez-Munt, Joao Carvalho, Conxi Ayala, Elsa C. Ramalho, Angela María Gómez-García, Hugo Matias, Hanneke Heida, Abraham Balaguera, José Luis García-Lobón, and Jaume Vergés
Earth Syst. Sci. Data, 17, 1275–1293, https://doi.org/10.5194/essd-17-1275-2025, https://doi.org/10.5194/essd-17-1275-2025, 2025
Short summary
Short summary
Sediments are like history books for geologists and geophysicists. By studying them, we can learn about past environments, sea level and climate changes, and where the sediments came from. To aid in understanding the geology, georesources, and potential hazards in the Iberian Peninsula and its surrounding seas, we present the SedDARE-IB sediment data repository. As an application in geothermal exploration, we investigate how sediment thickness affects the depth of the 150 °C isotherm.
Javier Abreu-Torres, Gergő Hutka, Guido Blöcher, Mauro Cacace, Vincent Magnenet, and Jean Schmittbuhl
Adv. Geosci., 65, 117–125, https://doi.org/10.5194/adgeo-65-117-2025, https://doi.org/10.5194/adgeo-65-117-2025, 2025
Short summary
Short summary
We develop a simplified model which describes the geological geometry of the Vendenheim site, the solid and fluid properties were adapted from studies in the area. We implement compute the hydrothermal flow with a temperature dependent density and viscosity in a porous medium, in order to verify if a hydrothermal convective system is compatible with known observations at the Vendenheim site, and to get a better idea of the initial conditions of a model for an induced seismicity model.
Kalliopi Tzoufka, Guido Blöcher, Mauro Cacace, Daniela Pfrang, and Kai Zosseder
Adv. Geosci., 65, 103–111, https://doi.org/10.5194/adgeo-65-103-2024, https://doi.org/10.5194/adgeo-65-103-2024, 2024
Short summary
Short summary
Concepts of High-Temperature Aquifer Thermal Energy Storage (HT-ATES) are investigated for system application in the German Molasse Basin. We quantify via physics-based numerical modelling the system performance with respect to HT-ATES concept development and provide a predictive analysis of HT-ATES application in the Upper Jurassic reservoir. Results demonstrate a non-uniform layer-specific distribution of the thermal front propagation, while promising heat recovery efficiencies are predicted.
Hugh Daigle, João C. Duarte, Ake Fagereng, Raphaël Paris, Patricia Persaud, Ángela María Gómez-García, and the Lisbon MagellanPlus Workshop Participants
Sci. Dril., 32, 101–111, https://doi.org/10.5194/sd-32-101-2023, https://doi.org/10.5194/sd-32-101-2023, 2023
Short summary
Short summary
Natural hazards associated with the ocean can have a direct impact on coastal populations and even affect populations located far away from the coast. These hazards may interact, and they include tsunamis that result in major damage and catastrophic loss of life and submarine landslides, which themselves can produce tsunamis and damage subsea infrastructure. We present ideas for investigating these hazards with scientific ocean drilling.
Denise Degen, Cameron Spooner, Magdalena Scheck-Wenderoth, and Mauro Cacace
Geosci. Model Dev., 14, 7133–7153, https://doi.org/10.5194/gmd-14-7133-2021, https://doi.org/10.5194/gmd-14-7133-2021, 2021
Short summary
Short summary
In times of worldwide energy transitions, an understanding of the subsurface is increasingly important to provide renewable energy sources such as geothermal energy. To validate our understanding of the subsurface we require data. However, the data are usually not distributed equally and introduce a potential misinterpretation of the subsurface. Therefore, in this study we investigate the influence of measurements on temperature distribution in the European Alps.
Steffen Ahlers, Andreas Henk, Tobias Hergert, Karsten Reiter, Birgit Müller, Luisa Röckel, Oliver Heidbach, Sophia Morawietz, Magdalena Scheck-Wenderoth, and Denis Anikiev
Saf. Nucl. Waste Disposal, 1, 163–164, https://doi.org/10.5194/sand-1-163-2021, https://doi.org/10.5194/sand-1-163-2021, 2021
Steffen Ahlers, Andreas Henk, Tobias Hergert, Karsten Reiter, Birgit Müller, Luisa Röckel, Oliver Heidbach, Sophia Morawietz, Magdalena Scheck-Wenderoth, and Denis Anikiev
Solid Earth, 12, 1777–1799, https://doi.org/10.5194/se-12-1777-2021, https://doi.org/10.5194/se-12-1777-2021, 2021
Short summary
Short summary
Knowledge about the stress state in the upper crust is of great importance for many economic and scientific questions. However, our knowledge in Germany is limited since available datasets only provide pointwise, incomplete and heterogeneous information. We present the first 3D geomechanical model that provides a continuous description of the contemporary crustal stress state for Germany. The model is calibrated by the orientation of the maximum horizontal stress and stress magnitudes.
Denise Degen and Mauro Cacace
Geosci. Model Dev., 14, 1699–1719, https://doi.org/10.5194/gmd-14-1699-2021, https://doi.org/10.5194/gmd-14-1699-2021, 2021
Short summary
Short summary
In this work, we focus on improving the understanding of subsurface processes with respect to interactions with climate dynamics. We present advanced, open-source mathematical methods that enable us to investigate the influence of various model properties on the final outcomes. By relying on our approach, we have been able to showcase their importance in improving our understanding of the subsurface and highlighting the current shortcomings of currently adopted models.
Ángela María Gómez-García, Eline Le Breton, Magdalena Scheck-Wenderoth, Gaspar Monsalve, and Denis Anikiev
Solid Earth, 12, 275–298, https://doi.org/10.5194/se-12-275-2021, https://doi.org/10.5194/se-12-275-2021, 2021
Short summary
Short summary
The Earth’s crust beneath the Caribbean Sea formed at about 90 Ma due to large magmatic activity of a mantle plume, which brought molten material up from the deep Earth. By integrating diverse geophysical datasets, we image for the first time two fossil magmatic conduits beneath the Caribbean. The location of these conduits at 90 Ma does not correspond with the present-day Galápagos plume. Either this mantle plume migrated in time or these conduits were formed above another unknown plume.
Cameron Spooner, Magdalena Scheck-Wenderoth, Mauro Cacace, and Denis Anikiev
Solid Earth Discuss., https://doi.org/10.5194/se-2020-202, https://doi.org/10.5194/se-2020-202, 2020
Revised manuscript not accepted
Short summary
Short summary
By comparing long term lithospheric strength to seismicity patterns across the Alpine region, we show that most seismicity occurs where strengths are highest within the crust. The lower crust appears largely aseismic due to energy being dissipated by ongoing creep from low viscosities. Lithospheric structure appears to exert a primary control on seismicity distribution, with both forelands display a different distribution patterns, likely reflecting their different tectonic settings.
Cited articles
Acosta, J., Velandia, F., Osorio, J., Lonergan, L., and Mora, H.: Strike-slip deformation within the Colombian Andes, Geol. Soc. Spec. Publ., 272, 303–319, https://doi.org/10.1144/GSL.SP.2007.272.01.16, 2007.
Arcila, M., García, J., Montejo, J., Eraso, J., Valcarcel, J., Mora, M., Viganò, D., Pagani, M., and Díaz, F.: Modelo nacional de amenaza sísmica para Colombia, Servicio Geológico Colombiano, Bogotá, Colombia, https://doi.org/10.32685/9789585279469, 2020.
Arvidsson, R., Boutet, J. T., and Kulhanek, O.: Foreshocks and aftershocks of the Mw=7.1, 1992, earthquake in the Atrato region, Colombia, J. Seismol., 6, 1–11, 2002.
Audemard, F. A. M.: Paleoseismicity studies on the Oca-Ancón fault system, northwestern Venezuela, Tectonophysics, 259, 67–80, https://doi.org/10.1016/0040-1951(95)00144-1, 1996.
Avellaneda-Jiménez, D. S., Monsalve, G., León, S., and Gómez-García, A. M.: Insights into Moho depth beneath the northwestern Andean region from gravity data inversion, Geophys. J. Int., 229, 1964–1977, https://doi.org/10.1093/gji/ggac041, 2022.
Becker, T. W., Lowry, A. R., Faccenna, C., Schmandt, B., Borsa, A., and Yu, C.: Western US intermountain seismicity caused by changes in upper mantle flow, Nature, 524, 458–461, https://doi.org/10.1038/nature14867, 2015.
Biegalski, K. F., Bohlin, J., Carter, J. A., Coyne, J., Dompierre, D., Novosel, G., and Rinehart, C.: Formats and protocols for messages – IMS1.0, International Data Center & Science Applications International Corporation, Document SAIC-99/3004, http://www.isc.ac.uk/standards/isf/download/ims1_0.pdf (last access: December 2023), 1999.
Bishop, B. T., Cho, S., Warren, L., Soto-Cordero, L., Pedraza, P., Prieto, G. A., and Dionicio, V.: Oceanic intraplate faulting as a pathway for deep hydration of the lithosphere: Perspectives from the Caribbean, Geosphere, 19, 206–234, https://doi.org/10.1130/GES02534.1, 2023.
Blanpied, M. L., Lockner, D. A., and Byerlee, J. D.: An earthquake mechanism based on rapid sealing of faults, Nature, 358, 574–576, https://doi.org/10.1038/358574a0, 1992.
Bommer, J. J., Ake, J. P., and Munson, C. G.: Seismic Source Zones for Site-Specific Probabilistic Seismic Hazard Analysis: The Very Real Questions Raised by Virtual Fault Ruptures, Seismol. Res. Lett., 94, https://doi.org/10.1785/0220230037, 2023.
Bondár, I. and Storchak, D.: Improved location procedures at the International Seismological Centre, Geophys. J. Int., 186, 1220–1244, https://doi.org/10.1111/j.1365-246X.2011.05107.x, 2011.
Bormann, P.: Are new data suggesting a revision of the current Mw and Me scaling formulas?, J. Seismol., 19, 989–1002, https://doi.org/10.1007/s10950-015-9507-y, 2015.
Boschman, L. M., van Hinsbergen, D. J., Torsvik, T. H., Spakman, W., and Pindell, J. L.: Kinematic reconstruction of the Caribbean region since the Early Jurassic, Earth Sci. Rev., 138, 102–136, https://doi.org/10.1016/j.earscirev.2014.08.007, 2014.
Cacace, M. and Jacquey, A. B.: Flexible parallel implicit modelling of coupled thermal–hydraulic–mechanical processes in fractured rocks, Solid Earth, 8, 921–941, https://doi.org/10.5194/se-8-921-2017, 2017.
Cacace, M. and Scheck-Wenderoth, M.: Why intracontinental basins subside longer: 3-D feedback effects of lithospheric cooling and sedimentation on the flexural strength of the lithosphere, J. Geophys. Res.-Sol. Ea., 121, 3742–3761, https://doi.org/10.1002/2015JB012682, 2016.
Chen, W.-P. and Molnar, P.: Focal depths of intracontinental and intraplate earthquakes and their implications for the thermal and mechanical properties of the lithosphere, J. Geophys. Res., 88, 4183–4214, https://doi.org/10.1029/jb088ib05p04183, 1983.
Chen, W. P., Yu, C. Q., Tseng, T. L., Yang, Z., Wang, C. Y., Ning, J., and Leonard, T.: Moho, seismogenesis, and rheology of the lithosphere, Tectonophysics, 609, 491–503, https://doi.org/10.1016/j.tecto.2012.12.019, 2013.
Chiarabba, C. and De Gori, P.: The seismogenic thickness in Italy: constraints on potential magnitude and seismic hazard, Terra Nova, 28, 402–408, https://doi.org/10.1111/ter.12233, 2016.
Copernicus Climate Change Service (C3S): C3S ERA5-Land reanalysis, Copernicus Climate Change Service, https://doi.org/10.24381/cds.68d2bb30, 2019.
Craig, T. J., Copley, A., and Jackson, J.: Thermal and tectonic consequences of India underthrusting Tibet, Earth Planet. Sc. Lett., 353–354, 231–239, https://doi.org/10.1016/j.epsl.2012.07.010, 2012.
Currie, C. A. and Copeland, P.: Numerical models of Farallon plate subduction: Creating and removing a flat slab, Geosphere, 18, 476–502, https://doi.org/10.1130/GES02393.1, 2022.
Dicelis, G., Assumpção, M., Kellogg, J., Pedraza, P., and Dias, F.: Estimating the 2008 Quetame (Colombia) earthquake source parameters from seismic data and InSAR measurements, J. S. Am. Earth Sci., 72, 250–265, https://doi.org/10.1016/j.jsames.2016.09.011, 2016.
Di Giacomo, D. and Storchak, D. A.: A scheme to set preferred magnitudes in the ISC Bulletin, J. Seismol., 20, 555–567, https://doi.org/10.1007/s10950-015-9543-7, 2016.
Di Giacomo, D., Harris, J., and Storchak, D. A.: Complementing regional moment magnitudes to GCMT: a perspective from the rebuilt International Seismological Centre Bulletin, Earth Syst. Sci. Data, 13, 1957–1985, https://doi.org/10.5194/essd-13-1957-2021, 2021.
Dionicio, V. and Sánchez, J. J.: Mapping of B-values, earthquake relocation, and coulomb stress changes during 1992–2007 in the murindó seismic zone, Colombia, J. Seismol., 16, 375–387, https://doi.org/10.1007/s10950-011-9263-6, 2012.
Dionicio, V., Pedraza García, P., and Poveda, E.: Moment tensor and focal mechanism data of earthquakes recorded by Servicio Geológico Colombiano from 2014 to 2021, Boletín Geológico, 50, https://doi.org/10.32685/0120-1425/bol.geol.50.2.2023.694, 2023.
Dziewonski, A. M., Chou, T. A., and Woodhouse, J. H.: Determination of earthquake source parameters from waveform data for studies of global and regional seismicity, J. Geophys. Res., 86, 2825–2852, https://doi.org/10.1029/JB086iB04p02825, 1981.
Efron, B.: Bootstrap methods: another look at the jackknife, Ann. Stat., 7, 1–26, 1979.
Ehlers, T. A.: Crustal thermal processes and the interpretation of thermochronometer data, Rev. Mineral. Geochem., 58, 315–350, https://doi.org/10.2138/rmg.2005.58.12, 2005.
Ekström, G., Nettles, M., and Dziewoński, A. M.: The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes, Phys. Earth Planet. In., 200–201, 1–9, https://doi.org/10.1016/j.pepi.2012.04.002, 2012.
Ellis, S., Bannister, S., Van Dissen, R., Eberhart-Phillips, D., Boulton, C., Reyners, M., Funnell, R., Mortimer, N., Upton, P., Rollins, C., and Seebeck, H.: New Zealand Fault-Rupture Depth Model v.1.0: A Provisional Estimate of the Maximum Depth of Seismic Rupture on New Zealand's Active Faults, B. Seismol. Soc. Am., 114, 78–94, https://doi.org/10.1785/0120230166, 2024.
Engdahl, E. R., Di Giacomo, D., Sakarya, B., Gkarlaouni, C. G., Harris, J., and Storchak, D. A.: ISC-EHB 1964–2016, an Improved Data Set for Studies of Earth Structure and Global Seismicity, Earth Space Sci., 7, e2019EA000897, https://doi.org/10.1029/2019EA000897, 2020.
Ferry, N., Parent, L., Garric, G., Barnier, B., and Jourdain, N. C.: Mercator global Eddy permitting ocean reanalysis GLORYS1V1: Description and results, Mercator-Ocean Quarterly Newsletter, 34, 15–27, 2010.
Gentili, S., Sugan, M., Peruzza, L., and Schorlemmer, D.: Probabilistic completeness assessment of the past 30 years of seismic monitoring in northeastern Italy, Phys. Earth Planet. In., 186, 81–96, https://doi.org/10.1016/j.pepi.2011.03.005, 2011.
Gholamrezaie, E., Scheck-Wenderoth, M., Sippel, J., and Strecker, M. R.: Variability of the geothermal gradient across two differently aged magma-rich continental rifted margins of the Atlantic Ocean: the Southwest African and the Norwegian margins, Solid Earth, 9, 139–158, https://doi.org/10.5194/se-9-139-2018, 2018.
Goes, S., Govers, R., and Vacher, P.: Shallow mantle temperatures under Europe from P and S wave tomography, J. Geophys. Res.-Sol. Ea., 105, 11153–11169, https://doi.org/10.1029/1999jb900300, 2000.
Gómez-García, Á. M., Le Breton, E., Scheck-Wenderoth, M., Monsalve, G., and Anikiev, D.: 3D lithospheric structure of the Caribbean and north South American Plates and Rotation Files of Kinematic Reconstructions back to 90 Ma of the Caribbean Large Igneous Plateau, GFZ Data Services, https://doi.org/10.5880/GFZ.4.5.2020.003, 2020.
Gómez-García, Á. M., Le Breton, E., Scheck-Wenderoth, M., Monsalve, G., and Anikiev, D.: The preserved plume of the Caribbean Large Igneous Plateau revealed by 3D data-integrative models, Solid Earth, 12, 275–298, https://doi.org/10.5194/se-12-275-2021, 2021.
Gómez-García, Á. M., González, Á., Cacace, M., Scheck-Wenderoth, M., and Monsalve, G.: Hypocentral temperatures, geothermal gradients, crustal seismogenic depths and 3D thermal model of the Southern Caribbean and NW South America, GFZ Data Services [data set], https://doi.org/10.5880/GFZ.4.5.2023.002, 2023.
González, Á.: The Spanish National Earthquake Catalogue: Evolution, precision and completeness, J. Seismol., 21, 435–471, https://doi.org/10.1007/s10950-016-9610-8, 2017.
Grose, C. J. and Afonso, J. C.: Comprehensive plate models for the thermal evolution of oceanic lithosphere, Geochem. Geophy. Geosy., 14, 3751–3778, https://doi.org/10.1002/ggge.20232, 2013.
Gutscher, M. A., Klingelhoefer, F., Theunissen, T., Spakman, W., Berthet, T., Wang, T. K., and Lee, C. S.: Thermal modeling of the SW Ryukyu forearc (Taiwan): Implications for the seismogenic zone and the age of the subducting Philippine Sea Plate (Huatung Basin), Tectonophysics, 692, 131–142, https://doi.org/10.1016/j.tecto.2016.03.029, 2016.
Hanagan, C. and Mershon, B.: Geoid Height Calculator, UNAVCO/EarthScope Consortium, https://www.unavco.org/software/geodetic-utilities/geoid-height-calculator/geoid-height-calculator.html (last access: December 2023), 2021.
Hasterok, D., Gard, M., and Webb, J.: On the radiogenic heat production of metamorphic, igneous, and sedimentary rocks, Geosci. Front., 9, 1777–1794, https://doi.org/10.1016/j.gsf.2017.10.012, 2018.
He, C., Yao, W., Wang, Z., and Zhou, Y.: Strength and stability of frictional sliding of gabbro gouge at elevated temperatures, Tectonophysics, 427, 217–229, https://doi.org/10.1016/j.tecto.2006.05.023, 2007.
Husen, S. and Hardebeck, J. L.: Earthquake location accuracy, in: Community Online Resource for Statistical Seismicity Analysis, https://doi.org/10.5078/corssa-55815573, 2010.
Hirth, G. and Beeler, N. M.: The role of fluid pressure on frictional behavior at the base of the seismogenic zone, Geology, 43, 223–226, https://doi.org/10.1130/G36361.1, 2015.
Hyndman, R. J. and Fan, Y.: Sample Quantiles in Statistical Packages, Am. Stat., 50, 361–365, https://doi.org/10.1080/00031305.1996.10473566, 1996.
International Seismological Centre: ISC-EHB dataset, International Seismological Centre, https://doi.org/10.31905/PY08W6S3, 2023a.
International Seismological Centre: On-line Bulletin, International Seismological Centre https://doi.org/10.31905/D808B830, 2023b.
Jackson, J., McKenzie, D., Priestley, K., and Emmerson, B.: New views on the structure and rheology of the lithosphere, J. Geol. Soc., 165, 453–465, https://doi.org/10.1144/0016-76492007-109, 2008.
Jacquey, A. and Cacace, M.: GOLEM, a MOOSE-based application, Zenodo, https://doi.org/10.5281/zenodo.999400, 2017.
Johnson, K., Villani, M., Bayliss, K., Brooks, C., Chandrasekhar, S., Chartier, T., Chen, Y., Garcia-Pelaez, J., Gee, R., Styron, R., Rood, A., Simionato, M., and Pagani, M.: Global Earthquake Model (GEM) Seismic Hazard Map (version 2023.1 – June 2023), Zenodo, https://doi.org/10.5281/zenodo.8409647, 2023.
Kanamori, H.: The energy release in great earthquakes, J. Geophys. Res., 82, 2981–2987, 1977.
Kellogg, J. N., Camelio, G. B. F., and Mora-Páez, H.: Cenozoic tectonic evolution of the North Andes with constraints from volcanic ages, seismic reflection, and satellite geodesy, in: Andean Tectonics, edited by: Horton, B. K. and Folguera, A., Elsevier Inc., 69–102, https://doi.org/10.1016/b978-0-12-816009-1.00006-x, 2019.
Kennan, L. and Pindell, J. L.: Dextral shear, terrane accretion and basin formation in the Northern Andes: best explained by interaction with a Pacific-derived Caribbean Plate?, Geol. Soc. Lond. Spec. Publ., 328, 487–531, https://doi.org/10.1144/SP328.20, 2009.
Kerr, A. C.: Oceanic Plateaus, in: Treatise on Geochemistry, 2nd Edn., Vol. 4, edited by: Rudnick, R. L., Holland, H. D., and Turekian, K. K., Elsevier Ltd., Oxford, 631–667, https://doi.org/10.1016/B978-0-08-095975-7.00320-X, 2014.
King, D. S. H. and Marone, C.: Frictional properties of olivine at high temperature with applications to the strength and dynamics of the oceanic lithosphere, J. Geophys. Res.-Sol. Ea., 117, 1–16, https://doi.org/10.1029/2012JB009511, 2012.
Klitzke, P., Luzi-Helbing, M., Schicks, J. M., Cacace, M., Jacquey, A. B., Sippel, J., Scheck-Wenderoth, M., and Faleide, J. I.: Gas hydrate stability zone of the Barents Sea and Kara Sea region, Enrgy. Proced., 97, 302–309, https://doi.org/10.1016/j.egypro.2016.10.005, 2016.
Liu, X., Currie, C. A., and Wagner, L. S.: Cooling of the continental plate during flat-slab subduction, Geosphere, 18, 49–68, https://doi.org/10.1130/GES02402.1, 2021.
Li, Y. and Toksoz, N.: Study of the source process of the 1992 Colombia Ms=7.3 earthquake with the empirical Green's function method, Geophys. Res. Lett., 20, 1087–1090, 1993.
Lucazeau, F.: Analysis and mapping of an updated terrestrial heat flow data set, Geochem. Geophy. Geosy., 20, 4001–4024, https://doi.org/10.1029/2019gc008389, 2019.
Mackwell, S. J., Zimmerman, M. E., and Kohlstedt, D. L.: High-temperature deformation of dry diabase with application to tectonics on Venus, J. Geophys. Res.-Sol. Ea., 103, 975–984, https://doi.org/10.1029/97jb02671, 1998.
Marcaillou, B., Charvis, P., and Collot, J. Y.: Structure of the Malpelo Ridge (Colombia) from seismic and gravity modelling, Mar. Geophys. Res., 27, 289–300, https://doi.org/10.1007/s11001-006-9009-y, 2006.
Marone, C. and Saffer, D. M.: The Mechanics of Frictional Healing and Slip Instability During the Seismic Cycle, in: Treatise on Geophysics, 2nd Ed., Vol. 4, edited by: Schubert, G., Elsevier B.V., 111–138, https://doi.org/10.1016/B978-0-444-53802-4.00092-0, 2015.
Marone, C. and Scholz, C. H.: The depth of seismic faulting and the upper transition from stable to unstable slip regimes, Geophys. Res. Lett., 15, 621–624, https://doi.org/10.1029/GL015i006p00621, 1988.
McCaffrey, R. and Abers, G.: SYN3: A Program for Inversion of Teleseismic Body Wave Forms on Microcomputers. Air Force Geophysics Laboratory, Technical Report AFGL-TR-88-0099, Scientific Report No. 1, 15 pp. (+ 27 pp. appendix), https://apps.dtic.mil/sti/tr/pdf/ADA198940.pdf (last access: December 2023), 1988.
McKenzie, D., Jackson, J., and Priestley, K.: Thermal structure of oceanic and continental lithosphere, Earth Planet. Sc. Lett., 233, 337–349, https://doi.org/10.1016/j.epsl.2005.02.005, 2005.
Meeßen, C.: VelocityConversion V. v1.0.1, GFZ Data Services, https://doi.org/10.5880/GFZ.6.1.2017.001, 2017.
Mitchell, E. K., Fialko, Y., and Brown, K. M.: Frictional properties of gabbro at conditions corresponding to slow slip events in subduction zones, Geochem. Geophy. Geosy., 16, 4006–4020, https://doi.org/10.1002/2015GC006093, 2015.
Mojica, M. J., Poveda, E., and Tary, J. B.: Lithospheric and slab configurations from receiver function imaging in northwestern South America, Colombia, J. Geophys. Res.-Sol. Ea., 127, e2022JB024475, https://doi.org/10.1029/2022JB024475, 2022.
Molchan, G. M.: Strategies in strong earthquake prediction, Phys. Earth Planet. Int., 61, 84–98, https://doi.org/10.1016/0031-9201(90)90097-H, 1990.
Molchan, G. M.: Structure of optimal strategies in earthquake prediction, Tectonophysics, 193, 267–276, https://doi.org/10.1016/0040-1951(91)90336-Q, 1991.
Molchan, G. M. and Kagan, Y. Y.: Earthquake prediction and its optimization, J. Geophys. Res., 97, 4823–4838, https://doi.org/10.1029/91JB03095, 1992.
Montes, C., Rodriguez-Corcho, A. F., Bayona, G., Hoyos, N., Zapata, S., and Cardona, A.: Continental margin response to multiple arc-continent collisions: The northern Andes-Caribbean margin, Earth Sci. Rev., 198, 102903, https://doi.org/10.1016/j.earscirev.2019.102903, 2019.
Mora-Bohórquez, J. A., Oncken, O., Le Breton, E., Mejia-Ibañez, M., Veloza, G., Mora, A., Vélez, V., and De Freitas, M.: Formation and Evolution of the Lower Magdalena Valley Basin and San Jacinto Fold Belt of Northwestern Colombia: Insights from Upper Cretaceous to Recent Tectono-Stratigraphy, in: The Geology of Colombia, Volume 3 Paleogene – Neogene, Publicaciones Geológicas Especiales 37, edited by: Gómez, J. and Mateus-Zabala, D., 21–66, Servicio Geológico Colombiano, Bogotá, Colombia, https://doi.org/10.32685/pub.esp.37.2019.02 21, 2020.
Mosquera-Machado, S., Lalinde-Pulido, C., Salcedo-Hurtado, E., and Michetti, A. M.: Ground effects of the 18 October 1992, Murindo earthquake (NW Colombia), using the Environmental Seismic Intensity Scale (ESI 2007) for the assessment of intensity, Geol. Soc. Spec. Publ., 316, 123–144, https://doi.org/10.1144/SP316.7, 2009.
Nábĕlek, J. L.: Determination of Earthquake Source Parameters from Inversion of Body Waves, PhD thesis, Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences, Cambridge, Massachusetts, USA, 361 pp., http://hdl.handle.net/1721.1/15209 (last access: December 2023), 1984.
Neill, I., Kerr, A. C., Hastie, A. R., Stanek, K.-P., and Millar, I. L.: Origin of the Aves Ridge and Dutch-Venezuelan Antilles: interaction of the Cretaceous “Great Arc” and Caribbean-Colombian Oceanic Plateau?, J. Geol. Soc., 168, 333–348, https://doi.org/10.1144/0016-76492010-067, 2011.
Noriega-Londoño, S., Restrepo-Moreno, S. A., Vinasco, C., Bermúdez, M. A., and Min, K.: Thermochronologic and geomorphometric constraints on the Cenozoic landscape evolution of the Northern Andes: Northwestern Central Cordillera, Colombia, Geomorphology, 351, 106890, https://doi.org/10.1016/j.geomorph.2019.106890, 2020.
Oleskevich, D., Hyndman, R., and Wang, K.: The updip and downdip limits to great subduction earthquakes: Thermal and structural models of Cascadia, south Alaska, SW Japan, and Chile, J. Geophys. Res., 104, 14965–14991, 1999.
Omuralieva, A. M., Hasegawa, A., Matsuzawa, T., Nakajima, J., and Okada, T.: Lateral variation of the cutoff depth of shallow earthquakes beneath the Japan Islands and its implications for seismogenesis, Tectonophysics, 518–521, 93–105, https://doi.org/10.1016/j.tecto.2011.11.013, 2012.
Paris, G., Machette, M. N., Dart, R. L., and Haller, K. M.: Map and database of Quaternary faults and folds in Colombia and its offshore regions, United States Geological Survey Open-File Report 2000-284, https://doi.org/10.3133/ofr00284, 61 pp., 2000.
Pavlis, N. K., Holmes, S. A., Kenyon, S. C., and Factor, J. K.: The development and evaluation of the Earth Gravitational Model 2008 (EGM2008), J. Geophys. Res.-Sol. Ea., 117, 1–38, https://doi.org/10.1029/2011JB008916, 2012.
Pousse-Beltran, L., Vassallo, R., Audemard, F., Jouanne, F., Oropeza, J., Garambois, S., and Aray, J.: Earthquake geology of the last millennium along the Boconó Fault, Venezuela, Tectonophysics, 747–748, 40–53, https://doi.org/10.1016/j.tecto.2018.09.010, 2018.
Poveda, E., Monsalve, G., and Vargas, C.: Receiver functions and crustal structure of the northwestern Andean region, Colombia, J. Geophys. Res.-Sol. Ea., 120, 2408–2425, https://doi.org/10.1002/2014JB011304, 2015.
Poveda, E., Julià, J., Schimmel, M., and Perez-Garcia, N.: Upper and Middle Crustal Velocity Structure of the Colombian Andes From Ambient Noise Tomography: Investigating Subduction-Related Magmatism in the Overriding Plate, J. Geophys. Res.-Sol. Ea., 123, 1459–1485, https://doi.org/10.1002/2017JB014688, 2018.
Python Software Foundation: Python Language Reference, version 2.7, http://www.python.org (last access: December 2023), 2023.
Quintero, R., Zahradník, J., Güendel, F., Campos-Durán, D., Alvarado, G. E., and Boutet, J. T.: Subduction transition and relation to upper plate faults revealed by the 2019 Mw 6.0 and 6.2 Costa Rica-Panama border earthquakes, Tectonophysics, 851, 229759, https://doi.org/10.1016/j.tecto.2023.229759, 2023.
Reguzzoni, M. and Sampietro, D.: GEMMA: An Earth crustal model based on GOCE satellite data, Int. J. Appl. Earth Obs., 35, 31–43, https://doi.org/10.1016/j.jag.2014.04.002, 2015.
Restrepo, J. J. and Toussaint, J. F.: Terranes and continental accretion in the Colombian Andes, Episodes, 11, 189–193, https://doi.org/10.18814/epiiugs/1988/v11i3/006, 1988.
Rodriguez Piceda, C., Scheck-Wenderoth, M., Cacace, M., Bott, J., and Strecker, M. R.: Long-Term Lithospheric Strength and Upper-Plate Seismicity in the Southern Central Andes, 29–39∘ S, Geochem. Geophy. Geosy., 23, e2021GC010171, https://doi.org/10.1029/2021GC010171, 2022.
Schaeffer, A. J. and Lebedev, S.: Global shear speed structure of the upper mantle and transition zone, Geophys. J. Int., 194, 417–449, https://doi.org/10.1093/gji/ggt095, 2013.
Scheck-Wenderoth, M. and Maystrenko, Y. P.: Deep control on shallow heat in sedimentary basins, Enrgy. Proced., 40, 266–275, https://doi.org/10.1016/j.egypro.2013.08.031, 2013.
Schellart, W. P. and Strak, V.: Geodynamic models of short-lived, long-lived and periodic flat slab subduction, Geophys. J. Int., 226, 1517–1541, https://doi.org/10.1093/gji/ggab126, 2021.
Scholz, C. H.: The Mechanics of Earthquakes and Faulting, 3rd Edn., Cambridge University Press, 471 pp., https://doi.org/10.1017/9781316681473, 2019.
Schorlemmer, D., Mele, F., and Marzocchi, W.: A completeness analysis of the National Seismic Network of Italy, J. Geophys. Res., 115, 1–12, https://doi.org/10.1029/2008jb006097, 2010.
Servicio Geológico Colombiano: Banco de Información Petrolera, Servicio Geológico Colombiano, Bogotá, Colombia, https://www2.sgc.gov.co/ProgramasDeInvestigacion/BancoInformacionPetrolera/Paginas/banco-de-informacion-petrolera.aspx (last access: December 2023), 2020.
Servicio Geológico Colombiano: Catálogo Mecanismo Focal y Tensor Momento, http://bdrsnc.sgc.gov.co/sismologia1/sismologia/focal_seiscomp_3/index.html (last access: December 2023), 2023.
Sibson, R.: Fault zone models, heat flow, and the depth distribution of earthquakes in the continental crust of the United States, B. Seismol. Soc. Am., 72, 151–163, 1982.
Sokos, E. N. and Zahradnik, J.: ISOLA a Fortran code and a Matlab GUI to perform multiple-point source inversion of seismic data, Comput. Geosci., 34, 967–977, https://doi.org/10.1016/j.cageo.2007.07.005, 2008.
Storchak, D. A., Harris, J., Brown, L., Lieser, K., Shumba, B., and Di Giacomo, D.: Rebuild of the Bulletin of the International Seismological Centre (ISC) – part 2: 1980–2010, Geosci. Lett., 7, 18, https://doi.org/10.1186/s40562-020-00164-6, 2020.
Styron, R., García-Pelaez, J., and Pagani, M.: CCAF-DB: the Caribbean and Central American active fault database, Nat. Hazards Earth Syst. Sci., 20, 831–857, https://doi.org/10.5194/nhess-20-831-2020, 2020.
Sun, M., Bezada, M. J., Cornthwaite, J., Prieto, G. A., Niu, F., and Levander, A.: Overlapping slabs: Untangling subduction in NW South America through finite-frequency teleseismic tomography, Earth Planet. Sc. Lett., 577, 117253, https://doi.org/10.1016/j.epsl.2021.117253, 2022.
Tanaka, A.: Geothermal gradient and heat flow data in and around Japan (II): Crustal thermal structure and its relationship to seismogenic layer, Earth Planet. Space, 56, 1195–1199, https://doi.org/10.1186/BF03353340, 2004.
Tse, S. T. and Rice, J. R.: Crustal earthquake instability in relation to the depth variation of frictional slip properties, J. Geophys. Res., 91, 9452, https://doi.org/10.1029/jb091ib09p09452, 1986.
Turcotte, D. L. and Schubert, G.: Geodynamics, 3rd Edn., Cambridge University Press, Cambridge, 623 pp., https://doi.org/10.1017/CBO9780511843877, 2014.
Ueda, T., Obata, M., Ozawa, K., and Shimizu, I.: The Ductile-to-Brittle Transition Recorded in the Balmuccia Peridotite Body, Italy: Ambient Temperature for the Onset of Seismic Rupture in Mantle Rocks, J. Geophys. Res.-Sol. Ea., 125, e2019JB017385, https://doi.org/10.1029/2019JB017385, 2020.
Veloza, G., Styron, R., and Taylor, M.: Open-source archive of active faults for northwest South America, GSA Today, 22, 4–10, https://doi.org/10.1130/GSAT-G156A.1, 2012.
Vilà, M., Fernández, M., and Jiménez-Munt, I.: Radiogenic heat production variability of some common lithological groups and its significance to lithospheric thermal modeling, Tectonophysics, 490, 152–164, https://doi.org/10.1016/j.tecto.2010.05.003, 2010.
Wagner, L. S., Jaramillo, J. S., Ramírez-Hoyos, L. F., Monsalve, G., Cardona, A., and Becker, T. W.: Transient slab flattening beneath Colombia, Geophys. Res. Lett., 44, 6616–6623, https://doi.org/10.1002/2017GL073981, 2017.
Weatherall, P., Marks, K. M., Jakobsson, M., Schmitt, T., Tani, S., Arndt, J. E., Rovere, M., Chayes, D., Ferrini, V., and Wigley, R.: A new digital bathymetric model of the world's oceans, Earth Space Sci., 2, 331–345, https://doi.org/10.1002/2015EA000107, 2015.
Wessel, P. and Smith, W. H. F.: Free software helps map and display data, EOS T. Am. Geophys. Un., 72, 445–446, https://doi.org/10.1029/90EO00319, 1991.
Weston, J., Engdahl, E. R., Harris, J., Di Giacomo, D., and Storchak, D. A.: ISC-EHB: Reconstruction of a robust earthquake data set, Geophys. J. Int., 214, 474–484, https://doi.org/10.1093/gji/ggy155, 2018.
Wiemer, S. and Wyss, M.: Mapping the frequency-magnitude distribution in asperities: An improved technique to calculate recurrence times?, J. Geophys. Res.-Sol. Ea., 102, 15115–15128, https://doi.org/10.1029/97jb00726, 1997.
Wiemer, S. and Wyss, M.: Minimum magnitude of completeness in earthquake catalogs: Examples from Alaska, the Western United States, and Japan, B. Seismol. Soc. Am., 90, 859–869, https://doi.org/10.1785/0119990114, 2000.
Wimpenny, S.: Weak, Seismogenic Faults Inherited From Mesozoic Rifts Control Mountain Building in the Andean Foreland, Geochem. Geophy. Geosy., 23, 1–19, https://doi.org/10.1029/2021GC010270, 2022.
Wimpenny, S. and Watson, C. S.: gWFM: A global catalog of moderate-magnitude earthquakes studied using teleseismic body waves, Seismol. Res. Lett., 92, 212–226, https://doi.org/10.1785/0220200218, 2020.
Wimpenny, S., Copley, A., Benavente, C., and Aguirre, E.: Extension and Dynamics of the Andes Inferred From the 2016 Parina (Huarichancara) Earthquake, J. Geophys. Res.-Sol. Ea., 123, 8198–8228, https://doi.org/10.1029/2018JB015588, 2018.
Woessner, J. and Wiemer, S.: Assessing the quality of earthquake catalogues: Estimating the magnitude of completeness and its uncertainty, B. Seismol. Soc. Am., 95, 684–698, https://doi.org/10.1785/0120040007, 2005.
Wu, W. N., Yen, Y. T., Hsu, Y. J., Wu, Y. M., Lin, J. Y., and Hsu, S. K.: Spatial variation of seismogenic depths of crustal earthquakes in the Taiwan region: Implications for seismic hazard assessment, Tectonophysics, 708, 81–95, https://doi.org/10.1016/j.tecto.2017.04.028, 2017.
Zechar, J. D. and Jordan, T. H.: Testing alarm-based earthquake predictions, Geophys. J. Int., 172, 715–724, https://doi.org/10.1111/j.1365-246X.2007.03676.x, 2008.
Zeng, Y., Petersen, M., and Boyd, O.: Lower seismogenic depth model for Western U.S. earthquakes, Seismol. Res. Lett., 93, 3186–3204, https://doi.org/10.1785/0220220174, 2022.
Zielke, O., Schorlemmer, D., Jónsson, S., and Mai, P. M.: Magnitude-dependent transient increase of seismogenic depth, Seismol. Res. Lett., 91, 2182–2191, https://doi.org/10.1785/0220190392, 2020.
Zuza, A. V. and Cao, W.: Seismogenic thickness of California: Implications for thermal structure and seismic hazard, Tectonophysics, 782–783, 228426, https://doi.org/10.1016/j.tecto.2020.228426, 2020.
Short summary
We compute a realistic three-dimensional model of the temperatures down to 75 km deep within the Earth, below the Caribbean Sea and northwestern South America. Using this, we estimate at which rock temperatures past earthquakes nucleated in the region and find that they agree with those derived from laboratory experiments of rock friction. We also analyse how the thermal state of the system affects the spatial distribution of seismicity in this region.
We compute a realistic three-dimensional model of the temperatures down to 75 km deep within the...