Research article
21 Sep 2016
Research article | 21 Sep 2016
A multi-stage 3-D stress field modelling approach exemplified in the Bavarian Molasse Basin
Moritz O. Ziegler et al.
Related authors
3D crustal stress state of Western Central Europe according to a data-calibrated geomechanical model – first results
Steffen Ahlers, Andreas Henk, Tobias Hergert, Karsten Reiter, Birgit Müller, Luisa Röckel, Oliver Heidbach, Sophia Morawietz, Magdalena Scheck-Wenderoth, and Denis Anikiev
Solid Earth Discuss., https://doi.org/10.5194/se-2020-199,https://doi.org/10.5194/se-2020-199, 2020
Preprint under review for SE
Short summary
How Alpine seismicity relates to lithospheric strength
Cameron Spooner, Magdalena Scheck-Wenderoth, Mauro Cacace, and Denis Anikiev
Solid Earth Discuss., https://doi.org/10.5194/se-2020-202,https://doi.org/10.5194/se-2020-202, 2020
Preprint under review for SE
Short summary
A three-dimensional lithospheric-scale thermal model of Germany
Denis Anikiev, Adrian Lechel, Maria Laura Gomez Dacal, Judith Bott, Mauro Cacace, and Magdalena Scheck-Wenderoth
Adv. Geosci., 49, 225–234, https://doi.org/10.5194/adgeo-49-225-2019,https://doi.org/10.5194/adgeo-49-225-2019, 2019
Short summary
Density distribution across the Alpine lithosphere constrained by 3-D gravity modelling and relation to seismicity and deformation
Cameron Spooner, Magdalena Scheck-Wenderoth, Hans-Jürgen Götze, Jörg Ebbing, György Hetényi, and the AlpArray Working Group
Solid Earth, 10, 2073–2088, https://doi.org/10.5194/se-10-2073-2019,https://doi.org/10.5194/se-10-2073-2019, 2019
Short summary
Regional hydraulic model of the Upper Rhine Graben
Nora Koltzer, Magdalena Scheck-Wenderoth, Mauro Cacace, Maximilian Frick, and Judith Bott
Adv. Geosci., 49, 197–206, https://doi.org/10.5194/adgeo-49-197-2019,https://doi.org/10.5194/adgeo-49-197-2019, 2019
Short summary
3-D crustal density model of the Sea of Marmara
Ershad Gholamrezaie, Magdalena Scheck-Wenderoth, Judith Bott, Oliver Heidbach, and Manfred R. Strecker
Solid Earth, 10, 785–807, https://doi.org/10.5194/se-10-785-2019,https://doi.org/10.5194/se-10-785-2019, 2019
Short summary
3-D Simulations of Groundwater Utilization in an Urban Catchment of Berlin, Germany
Nasrin Haacke, Maximilian Frick, Magdalena Scheck-Wenderoth, Michael Schneider, and Mauro Cacace
Adv. Geosci., 45, 177–184, https://doi.org/10.5194/adgeo-45-177-2018,https://doi.org/10.5194/adgeo-45-177-2018, 2018
Short summary
The Kenya rift revisited: insights into lithospheric strength through data-driven 3-D gravity and thermal modelling
Judith Sippel, Christian Meeßen, Mauro Cacace, James Mechie, Stewart Fishwick, Christian Heine, Magdalena Scheck-Wenderoth, and Manfred R. Strecker
Solid Earth, 8, 45–81, https://doi.org/10.5194/se-8-45-2017,https://doi.org/10.5194/se-8-45-2017, 2017
Short summary
Stress field sensitivity analysis in a sedimentary sequence of the Alpine foreland, northern Switzerland
T. Hergert, O. Heidbach, K. Reiter, S. B. Giger, and P. Marschall
Solid Earth, 6, 533–552, https://doi.org/10.5194/se-6-533-2015,https://doi.org/10.5194/se-6-533-2015, 2015
Short summary
Related subject area
A systems-based approach to parameterise seismic hazard in regions with little historical or instrumental seismicity: The South Malawi Active Fault Database
Jack N. Williams, Hassan Mdala, Åke Fagereng, Luke N. J. Wedmore, Juliet Biggs, Zuze Dulanya, Patrick Chindandali, and Felix Mphepo
Solid Earth Discuss., https://doi.org/10.5194/se-2020-104,https://doi.org/10.5194/se-2020-104, 2020
Revised manuscript accepted for SE
Short summary
Control of 3-D tectonic inheritance on fold-and-thrust belts: insights from 3-D numerical models and application to the Helvetic nappe system
Richard Spitz, Arthur Bauville, Jean-Luc Epard, Boris J. P. Kaus, Anton A. Popov, and Stefan M. Schmalholz
Solid Earth, 11, 999–1026, https://doi.org/10.5194/se-11-999-2020,https://doi.org/10.5194/se-11-999-2020, 2020
Short summary
Plio-Quaternary tectonic evolution of the southern margin of the Alboran Basin (Western Mediterranean)
Manfred Lafosse, Elia d'Acremont, Alain Rabaute, Ferran Estrada, Martin Jollivet-Castelot, Juan Tomas Vazquez, Jesus Galindo-Zaldivar, Gemma Ercilla, Belen Alonso, Jeroen Smit, Abdellah Ammar, and Christian Gorini
Solid Earth, 11, 741–765, https://doi.org/10.5194/se-11-741-2020,https://doi.org/10.5194/se-11-741-2020, 2020
Short summary
Surface deformation relating to the 2018 Lake Muir earthquake sequence, southwest Western Australia: new insight into stable continental region earthquakes
Dan J. Clark, Sarah Brennand, Gregory Brenn, Matthew C. Garthwaite, Jesse Dimech, Trevor I. Allen, and Sean Standen
Solid Earth, 11, 691–717, https://doi.org/10.5194/se-11-691-2020,https://doi.org/10.5194/se-11-691-2020, 2020
Short summary
Cenozoic deformation in the Tauern Window (Eastern Alps) constrained by in situ Th-Pb dating of fissure monazite
Emmanuelle Ricchi, Christian A. Bergemann, Edwin Gnos, Alfons Berger, Daniela Rubatto, Martin J. Whitehouse, and Franz Walter
Solid Earth, 11, 437–467, https://doi.org/10.5194/se-11-437-2020,https://doi.org/10.5194/se-11-437-2020, 2020
Short summary
Subsidence associated with oil extraction, measured from time series analysis of Sentinel-1 data: case study of the Patos-Marinza oil field, Albania
Marianne Métois, Mouna Benjelloun, Cécile Lasserre, Raphaël Grandin, Laurie Barrier, Edmond Dushi, and Rexhep Koçi
Solid Earth, 11, 363–378, https://doi.org/10.5194/se-11-363-2020,https://doi.org/10.5194/se-11-363-2020, 2020
Short summary
Using seismic attributes in seismotectonic research: an application to the Norcia Mw = 6.5 earthquake (30 October 2016) in central Italy
Maurizio Ercoli, Emanuele Forte, Massimiliano Porreca, Ramon Carbonell, Cristina Pauselli, Giorgio Minelli, and Massimiliano R. Barchi
Solid Earth, 11, 329–348, https://doi.org/10.5194/se-11-329-2020,https://doi.org/10.5194/se-11-329-2020, 2020
Short summary
From subduction to collision in the Parautochthon and autochthon of the NW Variscan Iberian Massif
Francisco J. Rubio Pascual, Luis M. Martín Parra, Pablo Valverde-Vaquero, Alejandro Díez Montes, Manuel P. Hacar Rodríguez, Justo Iglesias, Rubén Díez Fernández, Gloria Gallastegui, Nemesio Heredia, and L. Roberto Rodríguez Fernández
Solid Earth Discuss., https://doi.org/10.5194/se-2020-25,https://doi.org/10.5194/se-2020-25, 2020
Preprint withdrawn
From mapped faults to fault-length earthquake magnitude (FLEM): a test on Italy with methodological implications
Fabio Trippetta, Patrizio Petricca, Andrea Billi, Cristiano Collettini, Marco Cuffaro, Anna Maria Lombardi, Davide Scrocca, Giancarlo Ventura, Andrea Morgante, and Carlo Doglioni
Solid Earth, 10, 1555–1579, https://doi.org/10.5194/se-10-1555-2019,https://doi.org/10.5194/se-10-1555-2019, 2019
Short summary
Lithosphere tearing along STEP faults and synkinematic formation of lherzolite and wehrlite in the shallow subcontinental mantle
Károly Hidas, Carlos J. Garrido, Guillermo Booth-Rea, Claudio Marchesi, Jean-Louis Bodinier, Jean-Marie Dautria, Amina Louni-Hacini, and Abla Azzouni-Sekkal
Solid Earth, 10, 1099–1121, https://doi.org/10.5194/se-10-1099-2019,https://doi.org/10.5194/se-10-1099-2019, 2019
Short summary
The Bortoluzzi Mud Volcano (Ionian Sea, Italy) and its potential for tracking the seismic cycle of active faults
Marco Cuffaro, Andrea Billi, Sabina Bigi, Alessandro Bosman, Cinzia G. Caruso, Alessia Conti, Andrea Corbo, Antonio Costanza, Giuseppe D'Anna, Carlo Doglioni, Paolo Esestime, Gioacchino Fertitta, Luca Gasperini, Francesco Italiano, Gianluca Lazzaro, Marco Ligi, Manfredi Longo, Eleonora Martorelli, Lorenzo Petracchini, Patrizio Petricca, Alina Polonia, and Tiziana Sgroi
Solid Earth, 10, 741–763, https://doi.org/10.5194/se-10-741-2019,https://doi.org/10.5194/se-10-741-2019, 2019
Short summary
Anticlockwise metamorphic pressure–temperature paths and nappe stacking in the Reisa Nappe Complex in the Scandinavian Caledonides, northern Norway: evidence for weakening of lower continental crust before and during continental collision
Carly Faber, Holger Stünitz, Deta Gasser, Petr Jeřábek, Katrin Kraus, Fernando Corfu, Erling K. Ravna, and Jiří Konopásek
Solid Earth, 10, 117–148, https://doi.org/10.5194/se-10-117-2019,https://doi.org/10.5194/se-10-117-2019, 2019
Short summary
Channel flow, tectonic overpressure, and exhumation of high-pressure rocks in the Greater Himalayas
Fernando O. Marques, Nibir Mandal, Subhajit Ghosh, Giorgio Ranalli, and Santanu Bose
Solid Earth, 9, 1061–1078, https://doi.org/10.5194/se-9-1061-2018,https://doi.org/10.5194/se-9-1061-2018, 2018
Short summary
First evidence of active transpressive surface faulting at the front of the eastern Southern Alps, northeastern Italy: insight on the 1511 earthquake seismotectonics
Emanuela Falcucci, Maria Eliana Poli, Fabrizio Galadini, Giancarlo Scardia, Giovanni Paiero, and Adriano Zanferrari
Solid Earth, 9, 911–922, https://doi.org/10.5194/se-9-911-2018,https://doi.org/10.5194/se-9-911-2018, 2018
Short summary
The seismogenic fault system of the 2017 Mw 7.3 Iran–Iraq earthquake: constraints from surface and subsurface data, cross-section balancing, and restoration
Stefano Tavani, Mariano Parente, Francesco Puzone, Amerigo Corradetti, Gholamreza Gharabeigli, Mehdi Valinejad, Davoud Morsalnejad, and Stefano Mazzoli
Solid Earth, 9, 821–831, https://doi.org/10.5194/se-9-821-2018,https://doi.org/10.5194/se-9-821-2018, 2018
Short summary
Testing the effects of topography, geometry, and kinematics on modeled thermochronometer cooling ages in the eastern Bhutan Himalaya
Michelle E. Gilmore, Nadine McQuarrie, Paul R. Eizenhöfer, and Todd A. Ehlers
Solid Earth, 9, 599–627, https://doi.org/10.5194/se-9-599-2018,https://doi.org/10.5194/se-9-599-2018, 2018
Short summary
Paleomagnetic constraints on the timing and distribution of Cenozoic rotations in Central and Eastern Anatolia
Derya Gürer, Douwe J. J. van Hinsbergen, Murat Özkaptan, Iverna Creton, Mathijs R. Koymans, Antonio Cascella, and Cornelis G. Langereis
Solid Earth, 9, 295–322, https://doi.org/10.5194/se-9-295-2018,https://doi.org/10.5194/se-9-295-2018, 2018
Short summary
Structural disorder of graphite and implications for graphite thermometry
Martina Kirilova, Virginia Toy, Jeremy S. Rooney, Carolina Giorgetti, Keith C. Gordon, Cristiano Collettini, and Toru Takeshita
Solid Earth, 9, 223–231, https://doi.org/10.5194/se-9-223-2018,https://doi.org/10.5194/se-9-223-2018, 2018
Short summary
Active faulting, 3-D geological architecture and Plio-Quaternary structural evolution of extensional basins in the central Apennine chain, Italy
Stefano Gori, Emanuela Falcucci, Chiara Ladina, Simone Marzorati, and Fabrizio Galadini
Solid Earth, 8, 319–337, https://doi.org/10.5194/se-8-319-2017,https://doi.org/10.5194/se-8-319-2017, 2017
Short summary
Tectonothermal evolution in the core of an arcuate fold and thrust belt: the south-eastern sector of the Cantabrian Zone (Variscan belt, north-western Spain)
María Luz Valín, Susana García-López, Covadonga Brime, Fernando Bastida, and Jesús Aller
Solid Earth, 7, 1003–1022, https://doi.org/10.5194/se-7-1003-2016,https://doi.org/10.5194/se-7-1003-2016, 2016
Cited articles
Aadnoy, B. S.: Inversion technique to determine the in-situ stress field from fracturing data, J. Petrol. Sci. Eng., 4, 127–141, https://doi.org/10.1016/0920-4105(90)90021-T, 1990.
Altmann, J., Müller, B., Müller, T., Heidbach, O., Tingay, M., and Weißhardt, A.: Pore pressure stress coupling in 3D and consequences for reservoir stress states and fault reactivation, Geothermics, 52, 195–204, https://doi.org/10.1016/j.geothermics.2014.01.004, 2014.
Anderson, E.: The dynamics of faulting, Transactions of the Edinburgh Geological Society, 8, 387–402, 1905.
Anderson, E.: The dynamics of faulting, Oliver and Boyd, Edinburgh, 2 edn., 1951.
Bachmann, G., Müller, M., and Weggen, K.: Evolution of the Molasse Basin (Germany, Switzerland), Tectonophysics, 137, 77–92, https://doi.org/10.1016/0040-1951(87)90315-5, 1987.
Bachmann, G. H., Dohr, G., and Mueller, M.: Exploration in a classic thrust belt and its foreland: Bavarian Alps, Germany, AAPG Bulletin, 66, 2529–2542, 1982.
Bär, K., Reinsch, T., Sippel, J., Freymark, J., Mielke, P., Strom, A., and Wiesner, P.: Internationale Datenbank petrophysikalischer Kennwerte – Grundlage zur Reservoircharakterisierung, in: Der Geothermiekongress 2015, Bundesverband Geothermie, 2015.
Bell, J.: In situ stresses in sedimentary rocks (Part 1): Measurement Techniques, Geoscience Canada, 23, 85–100, 1996.
Bell, J. and Gough, D.: Northeast-southwest compressive stress in Alberta – evidence from oil wells, Earth Planet. Sc. Lett., 45, 475–482, https://doi.org/10.1016/0012-821X(79)90146-8, 1979.
Bell, J. S.: Investigating stress regimes in sedimentary basins using information from oil industry wireline logs and drilling records, in: Geological Applications of Wireline Logs, vol. 48, pp. 305–325, Geological Society Special Publication, https://doi.org/10.1144/GSL.SP.1990.048.01.26, 1990.
Bond, C., Johnson, G., and Ellis, J.: Structural model creation: the impact of data type and creative space on geological reasoning and interpretation, Geological Society, London, Special Publications, 421, SP421–4, https://doi.org/10.1144/SP421.4, 2015.
Brown, E. E. and Hoek, E.: Trends in relationships between measured in-situ stresses and depth, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 15, 211–215, https://doi.org/10.1016/0148-9062(78)91227-5, 1978.
Brudy, M., Zoback, M. D., Fuchs, K., Rummel, F., and Baumgärtner, J.: Estimation of the complete stress tensor to 8 km depth in the KTB scientific drill holes: Implications for crustal strength, J. Geophys. Res., 102, 18453, https://doi.org/10.1029/96JB02942, 1997.
Bundesverband Geothermie: Stadtwerke München: Seismologische Untersuchungen im Großraum München, available at: http://www.geothermie.de/news-anzeigen/2015/08/27/ stadtwerke-munchen-seismologische-untersuchungen-im-grossraum-munchen.html (last access: June 2016), 2015.
Bundesverband Geothermie: Tiefe Geothermie in Deutschland, available at: http://www.geothermie.de/fileadmin/useruploads/wissenswelt/Projekte/Projektliste_Tiefe_Geothermie_2016.pdf (last access: June 2016), 2016.
Cacace, M., Blöcher, G., Watanabe, N., Moeck, I., Börsing, N., Scheck-Wenderoth, M., Kolditz, O., and Huenges, E.: Modelling of fractured carbonate reservoirs: outline of a novel technique via a case study from the Molasse Basin, southern Bavaria, Germany, Environ. Earth Sci., 70, 3585–3602, https://doi.org/10.1007/s12665-013-2402-3, 2013.
Cacas, M., Daniel, J., and Letouzey, J.: Nested geological modelling of naturally fractured reservoirs, Petrol. Geosci., 7, 43–52, https://doi.org/10.1144/petgeo.7.S.S43, 2001.
Connolly, P. and Cosgrove, J.: Prediction of static and dynamic fluid pathways within and around dilational jogs, Geological Society, London, Special Publications, 155, 105–121, https://doi.org/10.1144/GSL.SP.1999.155.01.09, 1999.
Cornet, F. and Magnenet, V.: A non-tectonic origin for the present day stress field in the sedimentary Paris Basin, EGU General Assembly Conference Abstracts, 18, 1939, 2016.
Cornet, F., Helm, J., Poitrenaud, H., and Etchecopar, A.: Seismic and aseismic slips induced by large-scale fluid injections, in: Seismicity Associated with Mines, Reservoirs and Fluid Injections, 563–583, Springer, https://doi.org/10.1007/978-3-0348-8814-1_12, 1997.
Cornet, F. H.: Elements of Crustal Geomechanics, Cambridge University Press, 2015.
Cornet, F. H. and Röckel, T.: Vertical stress profiles and the significance of ”stress decoupling”, Tectonophysics, 581, 193–205, https://doi.org/10.1016/j.tecto.2012.01.020, 2012.
Deichmann, N. and Ernst, J.: Earthquake focal mechanisms of the induced seismicity in 2006 and 2007 below Basel (Switzerland), Swiss J. Geosci., 102, 457–466, https://doi.org/10.1007/s00015-009-1336-y, 2009.
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf, D.: The shuttle radar topography mission, Rev. Geophys., 45, 1–33, https://doi.org/10.1029/2005RG000183, 2007.
Fritzer, T., Settles, E., and Dorsch, K.: Bayerischer Geothermieatlas, Tech. rep., Bayerisches Staatsministerium für Wirtschaft, Infrastruktur, Verkehr und Technologie, München, 2012.
Fuchs, K. and Müller, B.: World stress map of the Earth: A key to tectonic processes and technological applications, Naturwissenschaften, 88, 357–371, https://doi.org/10.1007/s001140100253, 2001.
Gaucher, E., Schoenball, M., Heidbach, O., Zang, A., Fokker, P. A., van Wees, J.-D., and Kohl, T.: Induced seismicity in geothermal reservoirs: A review of forecasting approaches, Renewable and Sustainable Energy Reviews, 52, 1473–1490, https://doi.org/10.1016/j.rser.2015.08.026, 2015.
Giorgi, F., Mearns, L. O., Shields, C., and McDaniel, L.: Regional nested model simulations of present day and 2 × CO2 climate over the central plains of the US, Climatic Change, 40, 457–493, https://doi.org/10.1023/A:1005384803949, 1998.
Grünthal, G.: Earthquakes, intensity, Encyclopedia of Solid Earth Geophysics, 237–242, 2011.
Grünthal, G. and Wahlström, R.: The European-Mediterranean earthquake catalogue (EMEC) for the last millennium, J. Seismol., 16, 535–570, https://doi.org/10.1007/s10950-012-9302-y, 2012.
Gunzburger, Y. and Cornet, F. H.: Rheological characterization of a sedimentary formation from a stress profile inversion, Geophys. J. Int., 168, 402–418, https://doi.org/10.1111/j.1365-246X.2006.03140.x, 2007.
Gunzburger, Y. and Magnenet, V.: Stress inversion and basement-cover stress transmission across weak layers in the Paris basin, France, Tectonophysics, 617, 44–57, https://doi.org/10.1016/j.tecto.2014.01.016, 2014.
Haimson, B. and Fairhurst, C.: In-situ stress determination at great depth by means of hydraulic fracturing, in: The 11th US Symposium on Rock Mechanics (USRMS), American Rock Mechanics Association, 1969.
Häring, M. O., Schanz, U., Ladner, F., and Dyer, B. C.: Characterisation of the Basel 1 enhanced geothermal system, Geothermics, 37, 469–495, https://doi.org/10.1016/j.geothermics.2008.06.002, 2008.
Hast, N.: The state of stress in the upper part of the earth's crust, Tectonophysics, 8, 169–211, https://doi.org/10.1016/0040-1951(69)90097-3, 1969.
Heidbach, O. and Ben-Avraham, Z.: Stress evolution and seismic hazard of the Dead Sea Fault System, Earth Planet. Sc. Lett., 257, 299–312, https://doi.org/10.1016/j.epsl.2007.02.042, 2007.
Heidbach, O., Reinecker, J., Tingay, M., Müller, B., Sperner, B., Fuchs, K., and Wenzel, F.: Plate boundary forces are not enough: Second- and third-order stress patterns highlighted in the World Stress Map database, Tectonics, 26, 1–19, https://doi.org/10.1029/2007TC002133, 2007.
Heidbach, O., Tingay, M., Barth, A., Reinecker, J., Kurfeß, D., and Müller, B.: The 2008 release of the World Stress Map, https://doi.org/10.1594/GFZ.WSM.Rel2008, 2008.
Heidbach, O., Tingay, M., Barth, A., Reinecker, J., Kurfeß, D., and Müller, B.: Global crustal stress pattern based on the World Stress Map database release 2008, Tectonophysics, 482, 3–15, https://doi.org/10.1016/j.tecto.2009.07.023, 2010.
Heidbach, O., Rajabi, M., Reiter, K., Ziegler, M., and the WSM Team: World Stress Map Database Release 2016, GFZ Data Services, https://doi.org/10.5880/WSM.2016.001, 2016.
Hergert, T. and Heidbach, O.: Geomechanical model of the Marmara Sea region-II. 3-D contemporary background stress field, Geophys. J. Int., 185, 1090–1102, https://doi.org/10.1111/j.1365-246X.2011.04992.x, 2011.
Hergert, T., Heidbach, O., Bécel, A., and Laigle, M.: Geomechanical model of the Marmara Sea region – I. 3-D contemporary kinematics, Geophys. J. Int., 185, 1073–1089, https://doi.org/10.1111/j.1365-246X.2011.04991.x, 2011.
Hergert, T., Heidbach, O., Reiter, K., Giger, S. B., and Marschall, P.: Stress field sensitivity analysis in a sedimentary sequence of the Alpine foreland, northern Switzerland, Solid Earth, 6, 533–552, https://doi.org/10.5194/se-6-533-2015, 2015.
Hornbach, M. J., DeShon, H. R., Ellsworth, W. L., Stump, B. W., Hayward, C., Frohlich, C., Oldham, H. R., Olson, J. E., Magnani, M. B., Brokaw, C., and Luetgert, J. H.: Causal factors for seismicity near Azle, Texas., Nature Communications, 6, 6728, https://doi.org/10.1038/ncomms7728, 2015.
Hubbert, M. K. and Willis, D. G.: M 18: Underground Waste Management and Environmental Implications, chap. Mechanics of Hydraulic Fracturing, 239–257, AAPG Special Volumes, 1972.
Illies, J. H. and Greiner, G.: Rhinegraben and the Alpine system, Geol. Soc. Am. Bull., 89, 770–782, https://doi.org/10.1130/0016-7606(1978)89<770:RATAS>2.0.CO;2, 1978.
Jeanne, P., Rutqvist, J., Dobson, P. F., Walters, M., Hartline, C., and Garcia, J.: The impacts of mechanical stress transfers caused by hydromechanical and thermal processes on fault stability during hydraulic stimulation in a deep geothermal reservoir, International Journal of Rock Mechanics and Mining Sciences, 72, 149–163, https://doi.org/10.1016/j.ijrmms.2014.09.005, 2014.
Koch, A.: Erstellung statistisch abgesicherter thermischer und hydraulischer Gesteinseigenschaften für den flachen und tiefen Untergrund in Deutschland Phase 2 – Westliches Nordrhein-Westfalen und bayerisches Molassebecken, Tech. rep., RWTH Aaachen, 2009.
Koch, A. and Clauser, C.: Erstellung statistisch abgesicherter thermischer und hydraulischer Gesteinseigenschaften für den flachen und tiefen Untergrund in Deutschland Phase 1 – Westliche Molasse und nördlich angrenzendes Süddeutsches Schichtstufenland RWTH Aachen, RWTH Aachen, 234 pp., 2006.
Kohl, T. and Mégel, T.: Predictive modeling of reservoir response to hydraulic stimulations at the European EGS site Soultz-sous-Forêts, International Journal of Rock Mechanics and Mining Sciences, 44, 1118–1131, https://doi.org/10.1016/j.ijrmms.2007.07.022, 2007.
Lama, R. D. and Vutukuri, V. S.: Handbook on mechanical properties of rocks – Testing Techniques and Results – Volume II, Trans Tech Publications, Clausthal, 1 edn., 1978.
Lemcke, K.: Geologie von Bayern I. –Das bayerische Alpenvorland vor der Eiszeit – Erdgeschichte – Bau – Bodenschätze, E. Schweizerbart'sche Verlagsbuchhandlung (Nägele u. Obermiller), Stuttgart, 1 edn., 1988.
Lund, B. and Zoback, M.: Orientation and magnitude of in situ stress to 6.5 km depth in the Baltic Shield, International Journal of Rock Mechanics and Mining Sciences, 36, 169–190, https://doi.org/10.1016/S0148-9062(98)00183-1, 1999.
Magri, F., Tillner, E., Wang, W., Watanabe, N., Zimmermann, G., and Kempka, T.: 3D hydro-mechanical scenario analysis to evaluate changes of the recent stress field as a result of geological CO
2 storage, Energy Procedia, 40, 375–383, https://doi.org/10.1016/j.egypro.2013.08.043, 2013.
Maury, J., Cornet, F. H., and Cara, M.: Influence of the lithosphere-asthenosphere boundary on the stress field northwest of the Alps, Geophys. J. Int., 199, 1006–1017, https://doi.org/10.1093/gji/ggu289, 2014.
McClure, M. W. and Horne, R. N.: An investigation of stimulation mechanisms in Enhanced Geothermal Systems, International Journal of Rock Mechanics and Mining Sciences, 72, 242–260, https://doi.org/10.1016/j.ijrmms.2014.07.011, 2014.
Moeck, I. and Backers, T.: Fault reactivation potential as a critical factor during reservoir stimulation, First Break, 29, 73–80, https://doi.org/10.3997/1365-2397.2011014, 2011.
Morris, A., Ferrill, D. A., and Henderson, D. B.: Slip-tendency analysis and fault reactivation, Geology, 24, 275, https://doi.org/10.1130/0091-7613(1996)024<0275:STAAFR>2.3.CO;2, 1996.
Oey, L.-Y. and Chen, P.: A nested-grid ocean model: With application to the simulation of meanders and eddies in the Norwegian Coastal Current, J. Geophys. Res.-Oceans, 97, 20063–20086, https://doi.org/10.1029/92JC01991, 1992.
Orlecka-Sikora, B.: The role of static stress transfer in mining induced seismic events occurrence, a case study of the Rudna mine in the Legnica-Glogow Copper District in Poland, Geophys. J. Int., 182, 1087–1095, https://doi.org/10.1111/j.1365-246X.2010.04672.x, 2010.
Pierdominici, S. and Heidbach, O.: Stress field of Italy – Mean stress orientation at different depths and wave-length of the stress pattern, Tectonophysics, 532–535, 301–311, https://doi.org/10.1016/j.tecto.2012.02.018, 2012.
Przybycin, A. M.: Lithospheric-scale 3D structural and thermal modelling and the assessment of the origin of thermal anomalies in the European North Alpine Foreland Basin, Ph.D. thesis, Freie Universität Berlin, 2015.
Przybycin, A. M., Scheck-Wenderoth, M., and Schneider, M.: The 3D conductive thermal field of the North Alpine Foreland Basin: influence of the deep structure and the adjacent European Alps, Geothermal Energy, 3, 17, https://doi.org/10.1186/s40517-015-0038-0, 2015.
Rajabi, M., Tingay, M., King, R., and Heidbach, O.: Present-day stress orientation in the Clarence-Moreton Basin of New South Wales, Australia: A new high density dataset reveals local stress rotations, Basin Research, https://doi.org/10.1111/bre.12175, 2016.
Reinecker, J., Tingay, M., Müller, B., and Heidbach, O.: Present-day stress orientation in the Molasse Basin, Tectonophysics, 482, 129–138, https://doi.org/10.1016/j.tecto.2009.07.021, 2010.
Reiter, K. and Heidbach, O.: 3-D geomechanical-numerical model of the contemporary crustal stress state in the Alberta Basin (Canada), Solid Earth, 5, 1123–1149, https://doi.org/10.5194/se-5-1123-2014, 2014.
Reiter, K., Heidbach, O., Reinecker, J., Müller, B., and Röckel, T.: Spannungskarte Deutschland 2015, Erdöl Erdgas Kohle, 131, 437–442, 2015.
Reiter, K., Heidbach, O., Müller, B., Reinecker, J., and Röckl, T.: Spannungskarte Deutschland 2016, GFZ Data Services, https://doi.org/10.5880/WSM.Germany2016, 2016.
Rutqvist, J., Dobson, P. F., Garcia, J., Hartline, C., Jeanne, P., Oldenburg, C. M., Vasco, D. W., and Walters, M.: The Northwest Geysers EGS Demonstration Project, California: Pre-stimulation Modeling and Interpretation of the Stimulation, Mathematical Geosciences, 47, 3–29, https://doi.org/10.1007/s11004-013-9493-y, 2013.
Sachsenhofer, R., Gratzer, R., Tschelaut, W., and Bechtel, A.: Characterisation of non-producible oil in Eocene reservoir sandstones (Bad Hall Nord field, Alpine foreland basin, Austria), Mar. Petrol. Geol., 23, 1–15, https://doi.org/10.1016/j.marpetgeo.2005.07.002, 2006.
Schmid, S. M., Bernoulli, D., Fügenschuh, B., Matenco, L., Schefer, S., Schuster, R., Tischler, M., and Ustaszewski, K.: The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units, Swiss J. Geosci., 101, 139–183, https://doi.org/10.1007/s00015-008-1247-3, 2008.
Schmitt, D. R., Currie, C. A., and Zhang, L.: Crustal stress determination from boreholes and rock cores: Fundamental principles, Tectonophysics, 580, 1–26, https://doi.org/10.1016/j.tecto.2012.08.029, 2012.
Scholz, C. H.: The mechanics of earthquakes and faulting, Cambridge University Press, 2002.
Sedlacek, R.: Untertage-Gasspeicherung in Deutschland – Underground Gas Storage in Germany, Erdöl Erdgas Kohle, 125, 412–426, 2009.
Seithel, R., Steiner, U., Müller, B., Hecht, C., and Kohl, T.: Local stress anomaly in the Bavarian Molasse Basin, Geothermal Energy, 3, 4, https://doi.org/10.1186/s40517-014-0023-z, 2015.
Simpson, R. W.: Quantifying Anderson's fault types, J. Geophys. Res.-Solid Earth (1978–2012), 102, 17909–17919, https://doi.org/10.1029/97JB01274, 1997.
Sjöberg, J., Christiansson, R., and Hudson, J.: ISRM suggested methods for rock stress estimation – Part 2: overcoring methods, International Journal of Rock Mechanics and Mining Sciences, 40, 999–1010, https://doi.org/10.1016/j.ijrmms.2003.07.012, 2003.
Sperner, B., Muller, B., Heidbach, O., Delvaux, D., Reinecker, J., and Fuchs, K.: Tectonic stress in the Earth's crust: advances in the World Stress Map project, Geological Society, London, Special Publications, 212, 101–116, https://doi.org/10.1144/GSL.SP.2003.212.01.07, 2003.
Stadtwerke München: SWM Vision: Fernwärmeversorgung bis 2040 zu 100 % aus erneuerbaren Energien, 2012.
Sulem, J.: Stress orientation evaluated from strain localisation analysis in Aigion Fault, Tectonophysics, 442, 3–13, https://doi.org/10.1016/j.tecto.2007.03.005, 2007.
Tingay, M., Heidbach, O., Davies, R., and Swarbrick, R.: Triggering of the Lusi mud eruption: Earthquake versus drilling initiation, Geology, 36, 639–642, https://doi.org/10.1130/G24697A.1, 2008.
Townend, J. and Zoback, M.: Regional tectonic stress near the San Andreas fault in central and southern California, Geophys. Res. Lett., 31, 1–5, https://doi.org/10.1029/2003GL018918, 2004.
Townend, J. and Zoback, M. D.: How faulting keeps the crust strong, Geology, 28, 399–402, https://doi.org/10.1130/0091-7613(2000)28<399:HFKTCS>2.0.CO;2, 2000.
Van Wees, J., Buijze, L., Van Thienen-Visser, K., Nepveu, M., Wassing, B., Orlic, B., and Fokker, P.: Geomechanics response and induced seismicity during gas field depletion in the Netherlands, Geothermics, 52, 206–219, https://doi.org/10.1016/j.geothermics.2014.05.004, 2014.
Warner, T. T. and Hsu, H.-M.: Nested-model simulation of moist convection: The impact of coarse-grid parameterized convection on fine-grid resolved convection, Mon. Weather Rev., 128, 2211–2231, https://doi.org/10.1175/1520-0493(2000)128<2211:NMSOMC>2.0.CO;2, 2000.
Warpinski, N.: Determining the minimum in situ stress from hydraulic fracturing through perforations, in: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, vol. 26, 523–531, Elsevier, https://doi.org/10.1016/0148-9062(89)91430-7, 1989.
Wellmann, J. F.: Information Theory for Correlation Analysis and Estimation of Uncertainty Reduction in Maps and Models, Entropy, 15, 1464–1485, https://doi.org/10.3390/e15041464, 2013.
Wellmann, J. F. and Regenauer-Lieb, K.: Uncertainties have a meaning: Information entropy as a quality measure for 3-D geological models, Tectonophysics, 526, 207–216, https://doi.org/10.1016/j.tecto.2011.05.001, 2012.
Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J., and Wobbe, F.: Generic Mapping Tools: Improved Version Released, Eos, Transactions American Geophysical Union, 94, 409–410, https://doi.org/10.1002/2013EO450001, 2013.
Westerhaus, M., Altmann, J., and Heidbach, O.: Using topographic signatures to classify internally and externally driven tilt anomalies at Merapi Volcano, Java, Indonesia, Geophys. Res. Lett., 35, https://doi.org/10.1029/2007GL032262, 2008.
Yoon, J. S., Zimmermann, G., and Zang, A.: Discrete element modeling of cyclic rate fluid injection at multiple locations in naturally fractured reservoirs, International Journal of Rock Mechanics and Mining Sciences, 74, 15–23, https://doi.org/10.1016/j.ijrmms.2014.12.003, 2015.
Zang, A. and Stephansson, O.: Stress Field of the Earth's Crust, Springer Netherlands, Dordrecht, https://doi.org/10.1007/978-1-4020-8444-7, 2010.
Zang, A., Stephansson, O., Heidbach, O., and Janouschkowetz, S.: World Stress Map Database as a Resource for Rock Mechanics and Rock Engineering, Geotechnical and Geological Engineering, 30, 625–646, https://doi.org/10.1007/s10706-012-9505-6, 2012.
Zang, a., Yoon, J. S., Stephansson, O., and Heidbach, O.: Fatigue hydraulic fracturing by cyclic reservoir treatment enhances permeability and reduces induced seismicity, Geophys. J. Int., 195, 1282–1287, https://doi.org/10.1093/gji/ggt301, 2013.
Zang, A., Oye, V., Jousset, P., Deichmann, N., Gritto, R., McGarr, A., Majer, E., and Bruhn, D.: Analysis of induced seismicity in geothermal reservoirs – An overview, Geothermics, 52, 6–21, https://doi.org/10.1016/j.geothermics.2014.06.005, 2014.
Ziegler, M., Reiter, K., Heidbach, O., Zang, A., Kwiatek, G., Stromeyer, D., Dahm, T., Dresen, G., and Hofmann, G.: Mining-Induced Stress Transfer and Its Relation to a
Mw 1.9 Seismic Event in an Ultra-deep South African Gold Mine, Pure Appl. Geophys., 172, 2557–2570, https://doi.org/10.1007/s00024-015-1033-x, 2015.
Ziegler, M., Rajabi, M., Heidbach, O., Hersir, G. P., Ágústsson, K., Árnadóttir, S., and Zang, A.: The Stress Pattern of Iceland, Tectonophysics, 674, 101–113, https://doi.org/10.1016/j.tecto.2016.02.008, 2016.
Zoback, M.: Reservoir Geomechanics, Cambridge University Press, Cambridge, 2010.
Zoback, M., Barton, C., Brudy, M., Castillo, D., Finkbeiner, T., Grollimund, B., Moos, D., Peska, P., Ward, C., and Wiprut, D.: Determination of stress orientation and magnitude in deep wells, International Journal of Rock Mechanics and Mining Sciences, 40, 1049–1076, https://doi.org/10.1016/j.ijrmms.2003.07.001, 2003.
Zoback, M. D., Moos, D., Mastin, L., and Anderson, R. N.: Well bore breakouts and in situ stress, J. Geophys. Res.-Solid Earth, 90, 5523–5530, https://doi.org/10.1029/JB090iB07p05523, 1985.
Zoback, M. L.: First- and second-order patterns of stress in the lithosphere: The World Stress Map Project, J. Geophys. Res., 97, 11703, https://doi.org/10.1029/92JB00132, 1992.