Articles | Volume 8, issue 3
https://doi.org/10.5194/se-8-671-2017
https://doi.org/10.5194/se-8-671-2017
Research article
 | 
13 Jun 2017
Research article |  | 13 Jun 2017

Electric resistivity and seismic refraction tomography: a challenging joint underwater survey at Äspö Hard Rock Laboratory

Mathias Ronczka, Kristofer Hellman, Thomas Günther, Roger Wisén, and Torleif Dahlin

Related authors

Geophysical analysis of an area affected by subsurface dissolution – case study of an inland salt marsh in northern Thuringia, Germany
Sonja H. Wadas, Hermann Buness, Raphael Rochlitz, Peter Skiba, Thomas Günther, Michael Grinat, David C. Tanner, Ulrich Polom, Gerald Gabriel, and Charlotte M. Krawczyk
Solid Earth, 13, 1673–1696, https://doi.org/10.5194/se-13-1673-2022,https://doi.org/10.5194/se-13-1673-2022, 2022
Short summary
Large-scale electrical resistivity tomography in the Cheb Basin (Eger Rift) at an International Continental Drilling Program (ICDP) monitoring site to image fluid-related structures
Tobias Nickschick, Christina Flechsig, Jan Mrlina, Frank Oppermann, Felix Löbig, and Thomas Günther
Solid Earth, 10, 1951–1969, https://doi.org/10.5194/se-10-1951-2019,https://doi.org/10.5194/se-10-1951-2019, 2019
Short summary
A remote-control datalogger for large-scale resistivity surveys and robust processing of its signals using a software lock-in approach
Frank Oppermann and Thomas Günther
Geosci. Instrum. Method. Data Syst., 7, 55–66, https://doi.org/10.5194/gi-7-55-2018,https://doi.org/10.5194/gi-7-55-2018, 2018
Short summary
Impacts of a capillary barrier on infiltration and subsurface stormflow in layered slope deposits monitored with 3-D ERT and hydrometric measurements
Rico Hübner, Thomas Günther, Katja Heller, Ursula Noell, and Arno Kleber
Hydrol. Earth Syst. Sci., 21, 5181–5199, https://doi.org/10.5194/hess-21-5181-2017,https://doi.org/10.5194/hess-21-5181-2017, 2017
Short summary
Monitoring hillslope moisture dynamics with surface ERT for enhancing spatial significance of hydrometric point measurements
R. Hübner, K. Heller, T. Günther, and A. Kleber
Hydrol. Earth Syst. Sci., 19, 225–240, https://doi.org/10.5194/hess-19-225-2015,https://doi.org/10.5194/hess-19-225-2015, 2015

Related subject area

Geophysics
Numerical modeling of stresses and deformation in the Zagros–Iranian Plateau region
Srishti Singh and Radheshyam Yadav
Solid Earth, 14, 937–959, https://doi.org/10.5194/se-14-937-2023,https://doi.org/10.5194/se-14-937-2023, 2023
Short summary
Advanced seismic characterization of a geothermal carbonate reservoir – insight into the structure and diagenesis of a reservoir in the German Molasse Basin
Sonja H. Wadas, Johanna F. Krumbholz, Vladimir Shipilin, Michael Krumbholz, David C. Tanner, and Hermann Buness
Solid Earth, 14, 871–908, https://doi.org/10.5194/se-14-871-2023,https://doi.org/10.5194/se-14-871-2023, 2023
Short summary
Electrical conductivity of anhydrous and hydrous gabbroic melt under high temperature and high pressure: implications for the high-conductivity anomalies in the mid-ocean ridge region
Mengqi Wang, Lidong Dai, Haiying Hu, Ziming Hu, Chenxin Jing, Chuanyu Yin, Song Luo, and Jinhua Lai
Solid Earth, 14, 847–858, https://doi.org/10.5194/se-14-847-2023,https://doi.org/10.5194/se-14-847-2023, 2023
Short summary
Ground motion emissions due to wind turbines: observations, acoustic coupling, and attenuation relationships
Laura Gaßner and Joachim Ritter
Solid Earth, 14, 785–803, https://doi.org/10.5194/se-14-785-2023,https://doi.org/10.5194/se-14-785-2023, 2023
Short summary
Formation and geophysical character of transitional crust at the passive continental margin around Walvis Ridge, Namibia
Gesa Franz, Marion Jegen, Max Moorkamp, Christian Berndt, and Wolfgang Rabbel
Solid Earth, 14, 237–259, https://doi.org/10.5194/se-14-237-2023,https://doi.org/10.5194/se-14-237-2023, 2023
Short summary

Cited articles

Bäckblom, G., Gustafsson, G., Stanfors, R., and Wikberg, P.: A synopsis of predictions before the construction of the Äspö Hard Rock Laboratory and the process of their validation, Tech. rep., SKB, Stockholm, 1990.
Berglund, J., Curtis, P., Eliasson, T., Olsson, T., Starzec, P., and Tullborg, E.: Äspö Hard Rock Laboratory, Update of the geological model 2002, Tech. rep., SKB (Swedish Nuclear Fuel and Waste Management Company), Stockholm, 2003.
Bergman, B., Tryggvason, A., and Juhlin, C.: Seismic tomography studies of cover thickness and near-surface bedrock velocities, Geophysics, 71, U77–U84, https://doi.org/10.1190/1.2345191, 2006.
Brodic, B., Malehmir, A., and Juhlin, C.: Fracture System Characterization Using Wave-mode Conversions and Tunnel-surface Seismics, in: EAGE Near Surface Geophusics, EAGE, Barcelona, Spain, 2016.
Comaniciu, D. and Meer, P.: Mean Shift: A Robust Approach Toward Feature Space Analysis, IEEE T. Pattern Anal. Mach. Intell., 24, 603–619, 2002.
Download
Short summary
Pre-investigation for tunnelling below water passages is a challenging task with the main objective of locating fracture zones that lead to low rock quality and thus reduced stability. An inversion approach was tested that combines different geophysical methods to improve the reliability of the results. A fracture zone and previously unknown sedimentary deposits were successfully detected. Synthetic studies pointed out the importance of 3-D effects and model resolution properties.