Research article
13 Sep 2017
Research article | 13 Sep 2017
Flexible parallel implicit modelling of coupled thermal–hydraulic–mechanical processes in fractured rocks
Mauro Cacace and Antoine B. Jacquey
Related authors
How Alpine seismicity relates to lithospheric strength
Cameron Spooner, Magdalena Scheck-Wenderoth, Mauro Cacace, and Denis Anikiev
Solid Earth Discuss., https://doi.org/10.5194/se-2020-202,https://doi.org/10.5194/se-2020-202, 2020
Preprint under review for SE
Short summary
A three-dimensional lithospheric-scale thermal model of Germany
Denis Anikiev, Adrian Lechel, Maria Laura Gomez Dacal, Judith Bott, Mauro Cacace, and Magdalena Scheck-Wenderoth
Adv. Geosci., 49, 225–234, https://doi.org/10.5194/adgeo-49-225-2019,https://doi.org/10.5194/adgeo-49-225-2019, 2019
Short summary
Regional hydraulic model of the Upper Rhine Graben
Nora Koltzer, Magdalena Scheck-Wenderoth, Mauro Cacace, Maximilian Frick, and Judith Bott
Adv. Geosci., 49, 197–206, https://doi.org/10.5194/adgeo-49-197-2019,https://doi.org/10.5194/adgeo-49-197-2019, 2019
Short summary
Permeability of matrix-fracture systems under mechanical loading – constraints from laboratory experiments and 3-D numerical modelling
Guido Blöcher, Christian Kluge, Harald Milsch, Mauro Cacace, Antoine B. Jacquey, and Jean Schmittbuhl
Adv. Geosci., 49, 95–104, https://doi.org/10.5194/adgeo-49-95-2019,https://doi.org/10.5194/adgeo-49-95-2019, 2019
Short summary
3-D Simulations of Groundwater Utilization in an Urban Catchment of Berlin, Germany
Nasrin Haacke, Maximilian Frick, Magdalena Scheck-Wenderoth, Michael Schneider, and Mauro Cacace
Adv. Geosci., 45, 177–184, https://doi.org/10.5194/adgeo-45-177-2018,https://doi.org/10.5194/adgeo-45-177-2018, 2018
Short summary
The Kenya rift revisited: insights into lithospheric strength through data-driven 3-D gravity and thermal modelling
Judith Sippel, Christian Meeßen, Mauro Cacace, James Mechie, Stewart Fishwick, Christian Heine, Magdalena Scheck-Wenderoth, and Manfred R. Strecker
Solid Earth, 8, 45–81, https://doi.org/10.5194/se-8-45-2017,https://doi.org/10.5194/se-8-45-2017, 2017
Short summary
How Alpine seismicity relates to lithospheric strength
Cameron Spooner, Magdalena Scheck-Wenderoth, Mauro Cacace, and Denis Anikiev
Solid Earth Discuss., https://doi.org/10.5194/se-2020-202,https://doi.org/10.5194/se-2020-202, 2020
Preprint under review for SE
Short summary
Cross-Diffusion Waves as a trigger for multiscale, multiphysics Instabilities: Application to earthquakes
Klaus Regenauer-Lieb, Manman Hu, Christoph Schrank, Xiao Chen, Santiago Peña Clavijo, Ulrich Kelka, Ali Karrech, Oliver Gaede, Tomasz Blach, Hamid Roshan, Antoine B. Jacquey, and Piotr Szymczak
Solid Earth Discuss., https://doi.org/10.5194/se-2020-149,https://doi.org/10.5194/se-2020-149, 2020
Preprint under review for SE
Short summary
A three-dimensional lithospheric-scale thermal model of Germany
Denis Anikiev, Adrian Lechel, Maria Laura Gomez Dacal, Judith Bott, Mauro Cacace, and Magdalena Scheck-Wenderoth
Adv. Geosci., 49, 225–234, https://doi.org/10.5194/adgeo-49-225-2019,https://doi.org/10.5194/adgeo-49-225-2019, 2019
Short summary
Regional hydraulic model of the Upper Rhine Graben
Nora Koltzer, Magdalena Scheck-Wenderoth, Mauro Cacace, Maximilian Frick, and Judith Bott
Adv. Geosci., 49, 197–206, https://doi.org/10.5194/adgeo-49-197-2019,https://doi.org/10.5194/adgeo-49-197-2019, 2019
Short summary
Permeability of matrix-fracture systems under mechanical loading – constraints from laboratory experiments and 3-D numerical modelling
Guido Blöcher, Christian Kluge, Harald Milsch, Mauro Cacace, Antoine B. Jacquey, and Jean Schmittbuhl
Adv. Geosci., 49, 95–104, https://doi.org/10.5194/adgeo-49-95-2019,https://doi.org/10.5194/adgeo-49-95-2019, 2019
Short summary
3-D Simulations of Groundwater Utilization in an Urban Catchment of Berlin, Germany
Nasrin Haacke, Maximilian Frick, Magdalena Scheck-Wenderoth, Michael Schneider, and Mauro Cacace
Adv. Geosci., 45, 177–184, https://doi.org/10.5194/adgeo-45-177-2018,https://doi.org/10.5194/adgeo-45-177-2018, 2018
Short summary
The Kenya rift revisited: insights into lithospheric strength through data-driven 3-D gravity and thermal modelling
Judith Sippel, Christian Meeßen, Mauro Cacace, James Mechie, Stewart Fishwick, Christian Heine, Magdalena Scheck-Wenderoth, and Manfred R. Strecker
Solid Earth, 8, 45–81, https://doi.org/10.5194/se-8-45-2017,https://doi.org/10.5194/se-8-45-2017, 2017
Short summary
Related subject area
A systems-based approach to parameterise seismic hazard in regions with little historical or instrumental seismicity: The South Malawi Active Fault Database
Jack N. Williams, Hassan Mdala, Åke Fagereng, Luke N. J. Wedmore, Juliet Biggs, Zuze Dulanya, Patrick Chindandali, and Felix Mphepo
Solid Earth Discuss., https://doi.org/10.5194/se-2020-104,https://doi.org/10.5194/se-2020-104, 2020
Revised manuscript accepted for SE
Short summary
Control of 3-D tectonic inheritance on fold-and-thrust belts: insights from 3-D numerical models and application to the Helvetic nappe system
Richard Spitz, Arthur Bauville, Jean-Luc Epard, Boris J. P. Kaus, Anton A. Popov, and Stefan M. Schmalholz
Solid Earth, 11, 999–1026, https://doi.org/10.5194/se-11-999-2020,https://doi.org/10.5194/se-11-999-2020, 2020
Short summary
Plio-Quaternary tectonic evolution of the southern margin of the Alboran Basin (Western Mediterranean)
Manfred Lafosse, Elia d'Acremont, Alain Rabaute, Ferran Estrada, Martin Jollivet-Castelot, Juan Tomas Vazquez, Jesus Galindo-Zaldivar, Gemma Ercilla, Belen Alonso, Jeroen Smit, Abdellah Ammar, and Christian Gorini
Solid Earth, 11, 741–765, https://doi.org/10.5194/se-11-741-2020,https://doi.org/10.5194/se-11-741-2020, 2020
Short summary
Surface deformation relating to the 2018 Lake Muir earthquake sequence, southwest Western Australia: new insight into stable continental region earthquakes
Dan J. Clark, Sarah Brennand, Gregory Brenn, Matthew C. Garthwaite, Jesse Dimech, Trevor I. Allen, and Sean Standen
Solid Earth, 11, 691–717, https://doi.org/10.5194/se-11-691-2020,https://doi.org/10.5194/se-11-691-2020, 2020
Short summary
Cenozoic deformation in the Tauern Window (Eastern Alps) constrained by in situ Th-Pb dating of fissure monazite
Emmanuelle Ricchi, Christian A. Bergemann, Edwin Gnos, Alfons Berger, Daniela Rubatto, Martin J. Whitehouse, and Franz Walter
Solid Earth, 11, 437–467, https://doi.org/10.5194/se-11-437-2020,https://doi.org/10.5194/se-11-437-2020, 2020
Short summary
Subsidence associated with oil extraction, measured from time series analysis of Sentinel-1 data: case study of the Patos-Marinza oil field, Albania
Marianne Métois, Mouna Benjelloun, Cécile Lasserre, Raphaël Grandin, Laurie Barrier, Edmond Dushi, and Rexhep Koçi
Solid Earth, 11, 363–378, https://doi.org/10.5194/se-11-363-2020,https://doi.org/10.5194/se-11-363-2020, 2020
Short summary
Using seismic attributes in seismotectonic research: an application to the Norcia Mw = 6.5 earthquake (30 October 2016) in central Italy
Maurizio Ercoli, Emanuele Forte, Massimiliano Porreca, Ramon Carbonell, Cristina Pauselli, Giorgio Minelli, and Massimiliano R. Barchi
Solid Earth, 11, 329–348, https://doi.org/10.5194/se-11-329-2020,https://doi.org/10.5194/se-11-329-2020, 2020
Short summary
From subduction to collision in the Parautochthon and autochthon of the NW Variscan Iberian Massif
Francisco J. Rubio Pascual, Luis M. Martín Parra, Pablo Valverde-Vaquero, Alejandro Díez Montes, Manuel P. Hacar Rodríguez, Justo Iglesias, Rubén Díez Fernández, Gloria Gallastegui, Nemesio Heredia, and L. Roberto Rodríguez Fernández
Solid Earth Discuss., https://doi.org/10.5194/se-2020-25,https://doi.org/10.5194/se-2020-25, 2020
Preprint withdrawn
From mapped faults to fault-length earthquake magnitude (FLEM): a test on Italy with methodological implications
Fabio Trippetta, Patrizio Petricca, Andrea Billi, Cristiano Collettini, Marco Cuffaro, Anna Maria Lombardi, Davide Scrocca, Giancarlo Ventura, Andrea Morgante, and Carlo Doglioni
Solid Earth, 10, 1555–1579, https://doi.org/10.5194/se-10-1555-2019,https://doi.org/10.5194/se-10-1555-2019, 2019
Short summary
Lithosphere tearing along STEP faults and synkinematic formation of lherzolite and wehrlite in the shallow subcontinental mantle
Károly Hidas, Carlos J. Garrido, Guillermo Booth-Rea, Claudio Marchesi, Jean-Louis Bodinier, Jean-Marie Dautria, Amina Louni-Hacini, and Abla Azzouni-Sekkal
Solid Earth, 10, 1099–1121, https://doi.org/10.5194/se-10-1099-2019,https://doi.org/10.5194/se-10-1099-2019, 2019
Short summary
The Bortoluzzi Mud Volcano (Ionian Sea, Italy) and its potential for tracking the seismic cycle of active faults
Marco Cuffaro, Andrea Billi, Sabina Bigi, Alessandro Bosman, Cinzia G. Caruso, Alessia Conti, Andrea Corbo, Antonio Costanza, Giuseppe D'Anna, Carlo Doglioni, Paolo Esestime, Gioacchino Fertitta, Luca Gasperini, Francesco Italiano, Gianluca Lazzaro, Marco Ligi, Manfredi Longo, Eleonora Martorelli, Lorenzo Petracchini, Patrizio Petricca, Alina Polonia, and Tiziana Sgroi
Solid Earth, 10, 741–763, https://doi.org/10.5194/se-10-741-2019,https://doi.org/10.5194/se-10-741-2019, 2019
Short summary
Anticlockwise metamorphic pressure–temperature paths and nappe stacking in the Reisa Nappe Complex in the Scandinavian Caledonides, northern Norway: evidence for weakening of lower continental crust before and during continental collision
Carly Faber, Holger Stünitz, Deta Gasser, Petr Jeřábek, Katrin Kraus, Fernando Corfu, Erling K. Ravna, and Jiří Konopásek
Solid Earth, 10, 117–148, https://doi.org/10.5194/se-10-117-2019,https://doi.org/10.5194/se-10-117-2019, 2019
Short summary
Channel flow, tectonic overpressure, and exhumation of high-pressure rocks in the Greater Himalayas
Fernando O. Marques, Nibir Mandal, Subhajit Ghosh, Giorgio Ranalli, and Santanu Bose
Solid Earth, 9, 1061–1078, https://doi.org/10.5194/se-9-1061-2018,https://doi.org/10.5194/se-9-1061-2018, 2018
Short summary
First evidence of active transpressive surface faulting at the front of the eastern Southern Alps, northeastern Italy: insight on the 1511 earthquake seismotectonics
Emanuela Falcucci, Maria Eliana Poli, Fabrizio Galadini, Giancarlo Scardia, Giovanni Paiero, and Adriano Zanferrari
Solid Earth, 9, 911–922, https://doi.org/10.5194/se-9-911-2018,https://doi.org/10.5194/se-9-911-2018, 2018
Short summary
The seismogenic fault system of the 2017 Mw 7.3 Iran–Iraq earthquake: constraints from surface and subsurface data, cross-section balancing, and restoration
Stefano Tavani, Mariano Parente, Francesco Puzone, Amerigo Corradetti, Gholamreza Gharabeigli, Mehdi Valinejad, Davoud Morsalnejad, and Stefano Mazzoli
Solid Earth, 9, 821–831, https://doi.org/10.5194/se-9-821-2018,https://doi.org/10.5194/se-9-821-2018, 2018
Short summary
Testing the effects of topography, geometry, and kinematics on modeled thermochronometer cooling ages in the eastern Bhutan Himalaya
Michelle E. Gilmore, Nadine McQuarrie, Paul R. Eizenhöfer, and Todd A. Ehlers
Solid Earth, 9, 599–627, https://doi.org/10.5194/se-9-599-2018,https://doi.org/10.5194/se-9-599-2018, 2018
Short summary
Paleomagnetic constraints on the timing and distribution of Cenozoic rotations in Central and Eastern Anatolia
Derya Gürer, Douwe J. J. van Hinsbergen, Murat Özkaptan, Iverna Creton, Mathijs R. Koymans, Antonio Cascella, and Cornelis G. Langereis
Solid Earth, 9, 295–322, https://doi.org/10.5194/se-9-295-2018,https://doi.org/10.5194/se-9-295-2018, 2018
Short summary
Structural disorder of graphite and implications for graphite thermometry
Martina Kirilova, Virginia Toy, Jeremy S. Rooney, Carolina Giorgetti, Keith C. Gordon, Cristiano Collettini, and Toru Takeshita
Solid Earth, 9, 223–231, https://doi.org/10.5194/se-9-223-2018,https://doi.org/10.5194/se-9-223-2018, 2018
Short summary
Active faulting, 3-D geological architecture and Plio-Quaternary structural evolution of extensional basins in the central Apennine chain, Italy
Stefano Gori, Emanuela Falcucci, Chiara Ladina, Simone Marzorati, and Fabrizio Galadini
Solid Earth, 8, 319–337, https://doi.org/10.5194/se-8-319-2017,https://doi.org/10.5194/se-8-319-2017, 2017
Short summary
Tectonothermal evolution in the core of an arcuate fold and thrust belt: the south-eastern sector of the Cantabrian Zone (Variscan belt, north-western Spain)
María Luz Valín, Susana García-López, Covadonga Brime, Fernando Bastida, and Jesús Aller
Solid Earth, 7, 1003–1022, https://doi.org/10.5194/se-7-1003-2016,https://doi.org/10.5194/se-7-1003-2016, 2016
Cited articles
Balay, S., Abhyankhar, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Eijkhout, V., Gropp, W. D., Kaushik, D., Knepley, M. G., Curfman McInnes, L., Rupp, K., Smith, B. F., Zampini, S., and Zhang, H.: PETSc Users Manual, Tech. rep., Argonne National Laboratory, available at: https://www.mcs.anl.gov/petsc (last access: 11 September 2017), 2016.
Bear, J.: Dynamics of Fluids in Porous Media, Dover, Dover book edn., New York, NY, USA, 1988.
Biot, M. A.: General Solutions of the Equations of Elasticity and Consolidation for a Porous Material, J. Appl. Mech., 78, 91–96, 1956.
Biot, M. A.: Nonlinear and semilinear rheology of porous solids, J. Geophys. Res., 78, 4924–4937, https://doi.org/10.1029/JB078i023p04924, 1973.
Biot, M. A. and Willis, D.: Theory of Consolidation, in: Theoretical Soil Mechanics, 265–296, John Wiley & Sons, Inc., Hoboken, NJ, USA, https://doi.org/10.1002/9780470172766.ch13, 1957.
Blöcher, G., Reinsch, T., Hassanzadegan, A., Milsch, H., and Zimmermann, G.: Direct and indirect laboratory measurements of poroelastic properties of two consolidated sandstones, Int. J. Rock Mech. Min., 67, 191–201, https://doi.org/10.1016/j.ijrmms.2013.08.033, 2014.
Blöcher, G., Cacace, M., Reinsch, T., and Watanabe, N.: Evaluation of three exploitation concepts for a deep geothermal system in the North German Basin, Comput. Geosci., 82, 120–129, https://doi.org/10.1016/j.cageo.2015.06.005, 2015.
Brooks, A. N. and Hughes, T. J.: Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Method. Appl. M., 32, 199–259, https://doi.org/10.1016/0045-7825(82)90071-8, 1982.
Cacace, M. and Blöcher, G.: MeshIt – a software for three dimensional volumetric meshing of complex faulted reservoirs, Environ. Earth Sci., 74, 5191–5209, https://doi.org/10.1007/s12665-015-4537-x, 2015.
Chabab, E. and Kempka, T.: Quantification of Fluid Migration Via faults Requires two-way Coupled Hydromechanical Simulations, Energy Procedia, 97, 372–378, https://doi.org/10.1016/j.egypro.2016.10.025, 2016.
Chow, E., Clearly, A. J., and Falgout, R. D.: Design of the hypre Preconditioner Library, in: Proc. of the SIAM Workshop on Object Priented Methods for Inter-operable Scientific and Engineering Computing, edited by: Henderson, M., Anderson, C., and Lyons, S., SIAM press, Yorktown Heights, New York, USA, 1998.
Diersch, H.-J. and Kolditz, O.: Coupled groundwater flow and transport: 2. Thermohaline and 3D convection systems, Adv. Water Resour., 21, 401–425, https://doi.org/10.1016/S0309-1708(97)00003-1, 1998.
Drucker, D.: Some implications of work-hardening and ideal plasticity, Q. Appl. Math., 7, 411–418, 1950.
Elder, J. W.: Transient convection in a porous medium, J. Fluid Mech., 27, 609–623, https://doi.org/10.1017/S0022112067000576, 1967.
Galeão, A., Almeida, R., Malta, S., and Loula, A.: Finite element analysis of convection dominated reaction–diffusion problems, Appl. Numer. Math., 48, 205–222, https://doi.org/10.1016/j.apnum.2003.10.002, 2004.
Gaston, D., Newman, C., Hansen, G., and Lebrun-Grandié, D.: MOOSE: A parallel computational framework for coupled systems of nonlinear equations, Nucl. Eng. Des., 239, 1768–1778, https://doi.org/10.1016/j.nucengdes.2009.05.021, 2009.
Geertsma, J.: A remark on the analogy between thermoelasticity and the elasticity of saturated porous media, J. Mech. Phys. Solids, 6, 13–16, https://doi.org/10.1016/0022-5096(57)90042-X, 1957.
Giudice, S. D., Comini, G., and Nonino, C.: A physical interpretation of conservative and non-conservative finite element formulations of convection-type problems, Int. J. Numer. Meth. Eng., 35, 709–727, https://doi.org/10.1002/nme.1620350406, 1992.
Guermond, J.-L., Pasquetti, R., and Popov, B.: Entropy viscosity method for nonlinear conservation laws, J. Comput. Phys., 230, 4248–4267, https://doi.org/10.1016/j.jcp.2010.11.043, 2011.
Heroux, M. A., Phipps, E. T., Salinger, A. G., Thornquist, H. K., Tuminaro, R. S., Willenbring, J. M., Williams, A., Stanley, K. S., Bartlett, R. A., Howle, V. E., Hoekstra, R. J., Hu, J. J., Kolda, T. G., Lehoucq, R. B., Long, K. R., and Pawlowski, R. P.: An overview of the Trilinos project, ACM T. Math. Software, 31, 397–423, https://doi.org/10.1145/1089014.1089021, 2005.
IAPWS: Release on the IAPWS Formulation 2008 for the Viscosity of Ordinary Water Substance, Tech. rep., IAPWS, available at: http://www.iapws.org (last access: 1 May 2017), 2008a.
IAPWS: Release on the IAPWS Formulation 2008 for the Thermodynamic Properties of Seawater, Tech. rep., IAPWS, available at: http://www.iapws.org (last access: 1 May 2017), 2008b.
Jacquey, A. B., Cacace, M., Blöcher, G., Watanabe, N., and Scheck-Wenderoth, M.: Hydro-Mechanical Evolution of Transport Properties in Porous Media: Constraints for Numerical Simulations Roman symbols, Transport Porous Med., 110, 409–428, https://doi.org/10.1007/s11242-015-0564-z, 2015.
Jacquey, A. B., Urpi, L., Cacace, M., Blöcher, G., Zimmermann, G., and Scheck-Wenderoth, M.: Poroelastic response of geothermal reservoirs to hydraulic stimulation treatment: theory and application to the Groß Schönebeck geothermal research facility, J. Geophys. Res.-Sol. Ea., under review, 2017.
Jha, B. and Juanes, R.: A locally conservative finite element framework for the simulation of coupled flow and reservoir geomechanics, Acta Geotech., 2, 139–153, https://doi.org/10.1007/s11440-007-0033-0, 2007.
Jiang, H. and Xie, Y.: A note on the Mohr-Coulomb and Drucker-Prager strength criteria, Mech. Res. Commun., 38, 309–314, https://doi.org/10.1016/j.mechrescom.2011.04.001, 2011.
Jing, L.: A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering, Int. J. Rock Mech. Min., 40, 283–353, https://doi.org/10.1016/S1365-1609(03)00013-3, 2003.
Kempka, T., Nakaten, B., De Lucia, M., Nakaten, N., Otto, C., Pohl, M., Tillner, E., and Kühn, M.: Flexible Simulation Framework to Couple Processes in Complex 3D Models for Subsurface Utilization Assessment, Energy Procedia, 97, 494–501, https://doi.org/10.1016/j.egypro.2016.10.058, 2016.
Kim, J., Wang, W., and Regueiro, R. A.: Hybrid time integration and coupled solution methods for nonlinear finite element analysis of partially saturated deformable porous media at small strain, Int. J. Numer. Anal. Met., 39, 1073–1103, https://doi.org/10.1002/nag.2350, 2015.
Kirk, B. S., Peterson, J. W., Stogner, R. H., and Carey, G. F.: libMesh: a C+ + library for parallel adaptive mesh refinement/coarsening simulations, Eng. Comput., 22, 237–254, https://doi.org/10.1007/s00366-006-0049-3, 2006.
Knoll, D. and Keyes, D.: Jacobian-free Newton–Krylov methods: a survey of approaches and applications, J. Comput. Phys., 193, 357–397, https://doi.org/10.1016/j.jcp.2003.08.010, 2004.
Kolditz, O., Bauer, S., Bilke, L., Böttcher, N., Delfs, J. O., Fischer, T., Görke, U. J., Kalbacher, T., Kosakowski, G., McDermott, C. I., Park, C. H., Radu, F., Rink, K., Shao, H., Shao, H. B., Sun, F., Sun, Y. Y., Singh, a. K., Taron, J., Walther, M., Wang, W., Watanabe, N., Wu, Y., Xie, M., Xu, W., and Zehner, B.: OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media, Environ. Earth Sci., 67, 589–599, https://doi.org/10.1007/s12665-012-1546-x, 2012.
McTigue, D. F.: Thermoelastic response of fluid-saturated porous rock, J. Geophys. Res., 91, 9533, https://doi.org/10.1029/JB091iB09p09533, 1986.
Mura, T.: Micromechanics of defects in solids, vol. 3 of Mechanics of Elastic and Inelastic Solids, Springer Netherlands, Dordrecht, https://doi.org/10.1007/978-94-009-3489-4, 1987.
Ogata, A. and Banks, R. B.: A solution of the differential equation of longitudinal dispersion in porous media, Tech. rep., US Geological Survey, available at: http://pubs.er.usgs.gov/publication/pp411A (last access: 11 September 2017), 1961.
Poulet T. and Veveakis, E.: A viscoplastic approach for pore collapse in saturated soft rocks using REDBACK: an open-source parallel simulator for Rock mEchanics with Dissipative feedBACKs, Comput. Geotech., 74, 211–221, https://doi.org/10.1016/j.compgeo.2015.12.015, 2016.
Preisig, M. and Prévost, J. H.: Coupled multi-phase thermo-poromechanical effects. Case study: CO
2 injection at In Salah, Algeria, Int. J. Greenh. Gas Con., 5, 1055–1064, https://doi.org/10.1016/j.ijggc.2010.12.006, 2011.
Rutqvist, J.: Status of the TOUGH-FLAC simulator and recent applications related to coupled fluid flow and crustal deformations, Comput. Geosci., 37, 739–750, https://doi.org/10.1016/j.cageo.2010.08.006, 2011.
Simo, J. C. and Hughes, T. J. R.: Computational Inelasticity, vol. 7 of Interdisciplinary Applied Mathematics, Springer-Verlag, New York, https://doi.org/10.1007/b98904, 1998.
Stephansson, O., Hudson, J. A., and Jing, L.: Coupled Thermo-Hydro-Mechanical-Chemical processes in geo-systems. Fundamentals, ModeModel, Experiments and Applications, Elsevier Geo-Engineering book series volume 2, Amsterdam, the Netherlands, 2004.
Strack, O.: Assessment of effectiveness of geologic isolation systems. Analytic modeling of flow in a permeable fissured medium, Tech. rep., Pacific Northwest National Laboratory (PNNL), Richland, WA, USA, https://doi.org/10.2172/5399775, 1982.
Sun, W.: A stabilized finite element formulation for monolithic thermo-hydro-mechanical simulations at finite strain, Int. J. Numer. Meth. Eng., 103, 798–839, https://doi.org/10.1002/nme.4910, 2015.
Watanabe, N.: Finite element method for coupled thermo-hydro-mechanical processes in discretely fractured and non-fractured porous media, PhD thesis, Dresden Technical University, Dresden, Germany, 2011.