Articles | Volume 10, issue 4
https://doi.org/10.5194/se-10-1385-2019
https://doi.org/10.5194/se-10-1385-2019
Research article
 | 
21 Aug 2019
Research article |  | 21 Aug 2019

What happens to fracture energy in brittle fracture? Revisiting the Griffith assumption

Timothy R. H. Davies, Maurice J. McSaveney, and Natalya V. Reznichenko

Related authors

Exploratory analysis of the annual risk to life from debris flows
Mark Bloomberg, Tim Davies, Elena Moltchanova, Tom Robinson, and David Palmer
EGUsphere, https://doi.org/10.5194/egusphere-2023-2695,https://doi.org/10.5194/egusphere-2023-2695, 2023
Short summary
Significance of substrate soil moisture content for rockfall hazard assessment
Louise Mary Vick, Valerie Zimmer, Christopher White, Chris Massey, and Tim Davies
Nat. Hazards Earth Syst. Sci., 19, 1105–1117, https://doi.org/10.5194/nhess-19-1105-2019,https://doi.org/10.5194/nhess-19-1105-2019, 2019
Short summary
Review Article: Potential geomorphic consequences of a future great (Mw = 8.0+) Alpine Fault earthquake, South Island, New Zealand
T. R. Robinson and T. R. H. Davies
Nat. Hazards Earth Syst. Sci., 13, 2279–2299, https://doi.org/10.5194/nhess-13-2279-2013,https://doi.org/10.5194/nhess-13-2279-2013, 2013

Related subject area

Subject area: Crustal structure and composition | Editorial team: Seismics, seismology, paleoseismology, geoelectrics, and electromagnetics | Discipline: Geophysics
Comparison of surface-wave techniques to estimate S- and P-wave velocity models from active seismic data
Farbod Khosro Anjom, Frank Adler, and Laura Valentina Socco
Solid Earth, 15, 367–386, https://doi.org/10.5194/se-15-367-2024,https://doi.org/10.5194/se-15-367-2024, 2024
Short summary
Complex fault system revealed by 3-D seismic reflection data with deep learning and fault network analysis
Thilo Wrona, Indranil Pan, Rebecca E. Bell, Christopher A.-L. Jackson, Robert L. Gawthorpe, Haakon Fossen, Edoseghe E. Osagiede, and Sascha Brune
Solid Earth, 14, 1181–1195, https://doi.org/10.5194/se-14-1181-2023,https://doi.org/10.5194/se-14-1181-2023, 2023
Short summary
Advanced seismic characterization of a geothermal carbonate reservoir – insight into the structure and diagenesis of a reservoir in the German Molasse Basin
Sonja H. Wadas, Johanna F. Krumbholz, Vladimir Shipilin, Michael Krumbholz, David C. Tanner, and Hermann Buness
Solid Earth, 14, 871–908, https://doi.org/10.5194/se-14-871-2023,https://doi.org/10.5194/se-14-871-2023, 2023
Short summary
Electrical conductivity of anhydrous and hydrous gabbroic melt under high temperature and high pressure: implications for the high-conductivity anomalies in the mid-ocean ridge region
Mengqi Wang, Lidong Dai, Haiying Hu, Ziming Hu, Chenxin Jing, Chuanyu Yin, Song Luo, and Jinhua Lai
Solid Earth, 14, 847–858, https://doi.org/10.5194/se-14-847-2023,https://doi.org/10.5194/se-14-847-2023, 2023
Short summary
Formation and geophysical character of transitional crust at the passive continental margin around Walvis Ridge, Namibia
Gesa Franz, Marion Jegen, Max Moorkamp, Christian Berndt, and Wolfgang Rabbel
Solid Earth, 14, 237–259, https://doi.org/10.5194/se-14-237-2023,https://doi.org/10.5194/se-14-237-2023, 2023
Short summary

Cited articles

Abraham, F. F.: How fast can cracks move? A research adventure in materials failure using millions of atoms and big computers, Adv. Phys., 52, 727–790, 2003. 
Ball, A. and Payne, B. W.: The tensile fracture of quartz crystals, J. Mater. Sci., 11, 731–740, 1976. 
Barber, T. and Griffith, W. A.: Experimental constraints on dynamic fragmentation as a dissipative process during seismic slip, Phil. T. R. Soc. A, 375, 20160002, https://doi.org/10.1098/rsta.2016.0002, 2017. 
Burnett, J. K.: Theory and Uses of Acoustic Emissions, Nova Science Publishers, Incorporated, 2011, ProQuest Ebook Central, available at: https://ebookcentral.proquest.com/lib/canterbury/detail.action?docID=3021604 (last access: 8 March 2019), 2011. 
Carpinteri, A., Lacidogna, G., Manuello, A., Niccolini, G., Schiavi, A., and Agosto, A.: Mechanical and Electromagnetic Emissions Related to Stress-Induced Cracks, Exp. Techniques, 36, 53–64, 2012. 
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
Griffith (1921) assumed that energy used to create new surface area by breaking intact rock immediately becomes surface energy which is not available for further breakage. Our lab data disprove this assumption; we created much more new surface area, 90 % on submicron fragments, than the energy involved should allow. As technology allows ever smaller fragments to be measured, continued use of the Griffith assumption will lead to incorrect energy budgets for earthquakes and rock avalanches.