Journal cover Journal topic
Solid Earth An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.921 IF 2.921
  • IF 5-year value: 3.087 IF 5-year
    3.087
  • CiteScore value: 4.8 CiteScore
    4.8
  • SNIP value: 1.314 SNIP 1.314
  • IPP value: 2.87 IPP 2.87
  • SJR value: 0.993 SJR 0.993
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 38 Scimago H
    index 38
  • h5-index value: 36 h5-index 36
SE | Articles | Volume 10, issue 3
Solid Earth, 10, 839–850, 2019
https://doi.org/10.5194/se-10-839-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: Understanding the unknowns: the impact of uncertainty in the...

Solid Earth, 10, 839–850, 2019
https://doi.org/10.5194/se-10-839-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 13 Jun 2019

Research article | 13 Jun 2019

Constraining the geotherm beneath the British Isles from Bayesian inversion of Curie depth: integrated modelling of magnetic, geothermal, and seismic data

Ben Mather and Javier Fullea

Related subject area

Subject area: Crustal structure and composition | Editorial team: Seismics, seismology, geoelectrics, and electromagnetics | Discipline: Geophysics
Seismic evidence for failed rifting in the Ligurian Basin, Western Alpine domain
Anke Dannowski, Heidrun Kopp, Ingo Grevemeyer, Dietrich Lange, Martin Thorwart, Jörg Bialas, and Martin Wollatz-Vogt
Solid Earth, 11, 873–887, https://doi.org/10.5194/se-11-873-2020,https://doi.org/10.5194/se-11-873-2020, 2020
Short summary
Azimuth-, angle- and frequency-dependent seismic velocities of cracked rocks due to squirt flow
Yury Alkhimenkov, Eva Caspari, Simon Lissa, and Beatriz Quintal
Solid Earth, 11, 855–871, https://doi.org/10.5194/se-11-855-2020,https://doi.org/10.5194/se-11-855-2020, 2020
Short summary
Characteristics of a fracture network surrounding a hydrothermally altered shear zone from geophysical borehole logs
Eva Caspari, Andrew Greenwood, Ludovic Baron, Daniel Egli, Enea Toschini, Kaiyan Hu, and Klaus Holliger
Solid Earth, 11, 829–854, https://doi.org/10.5194/se-11-829-2020,https://doi.org/10.5194/se-11-829-2020, 2020
Short summary
Bayesian full-waveform inversion of tube waves to estimate fracture aperture and compliance
Jürg Hunziker, Andrew Greenwood, Shohei Minato, Nicolás Daniel Barbosa, Eva Caspari, and Klaus Holliger
Solid Earth, 11, 657–668, https://doi.org/10.5194/se-11-657-2020,https://doi.org/10.5194/se-11-657-2020, 2020
Short summary
Correlation of core and downhole seismic velocities in high-pressure metamorphic rocks: a case study for the COSC-1 borehole, Sweden
Felix Kästner, Simona Pierdominici, Judith Elger, Alba Zappone, Jochem Kück, and Christian Berndt
Solid Earth, 11, 607–626, https://doi.org/10.5194/se-11-607-2020,https://doi.org/10.5194/se-11-607-2020, 2020
Short summary

Cited articles

Afonso, J. C., Fullea, J., Yang, Y., Connolly, J. A. D., and Jones, A. G.: 3-D multi-observable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle. II: General methodology and resolution analysis, J. Geophys. Res.-Sol. Ea., 118, 1650–1676, https://doi.org/10.1002/jgrb.50123, 2013. a
Al-Kindi, S., White, N., Sinha, M., England, R., and Tiley, R.: Crustal trace of a hot convective sheet, Geology, 31, 207–210, https://doi.org/10.1130/0091-7613(2003)031<0207:CTOAHC>2.0.CO;2, 2003. a
Amante, C.: ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis, Boulder, Colo.: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information Service, National Geophysical Data Center, Marine Geology and Geophysics Division, https://doi.org/10.7289/V5C8276M, 2009. a, b
Arrowsmith, S. J., Kendall, M., White, N., VanDecar, J. C., and Booth, D. C.: Seismic imaging of a hot upwelling beneath the British Isles, Geology, 33, 345–348, https://doi.org/10.1130/G21209.1, 2005. a
Baykiev, E., Guerri, M., and Fullea, J.: Integrating Gravity and Surface Elevation With Magnetic Data: Mapping the Curie Temperature Beneath the British Isles and Surrounding Areas, Front. Earth Sci., 6, 1–19, https://doi.org/10.3389/feart.2018.00165, 2018. a, b, c, d, e, f, g
Publications Copernicus
Download
Short summary
The temperature in the crust can be constrained by the Curie depth, which is often interpreted as the 580 °C isotherm. We cast the estimation of Curie depth, from maps of the magnetic anomaly, within a Bayesian framework to properly quantify its uncertainty across the British Isles. We find that uncertainty increases considerably for deeper Curie depths, which demonstrates that generally this method is only reliable in hotter regions, such as Scotland and Northern Ireland.
The temperature in the crust can be constrained by the Curie depth, which is often interpreted...
Citation