Articles | Volume 11, issue 5
Research article
29 Oct 2020
Research article |  | 29 Oct 2020

Crustal structures beneath the Eastern and Southern Alps from ambient noise tomography

Ehsan Qorbani, Dimitri Zigone, Mark R. Handy, Götz Bokelmann, and AlpArray-EASI working group

Related authors

Site selection for a countrywide temporary network in Austria: noise analysis and preliminary performance
F. Fuchs, P. Kolínský, G. Gröschl, M.-T. Apoloner, E. Qorbani, F. Schneider, and G. Bokelmann
Adv. Geosci., 41, 25–33,,, 2015
Short summary
The installation campaign of 9 seismic stations around the KTB site to test anisotropy detection by the Receiver Function Technique
I. Bianchi, M. Anselmi, M. T. Apoloner, E. Qorbani, K. Gribovski, and G. Bokelmann
Adv. Geosci., 41, 11–23,,, 2015

Related subject area

Subject area: Crustal structure and composition | Editorial team: Seismics, seismology, paleoseismology, geoelectrics, and electromagnetics | Discipline: Seismology
Frequency-dependent shear wave attenuation across the Central Anatolia region, Türkiye
Gizem Izgi, Tuna Eken, Peter Gaebler, Tülay Kaya-Eken, and Tuncay Taymaz
Solid Earth, 15, 657–669,,, 2024
Short summary
Thermal structure of the southern Caribbean and northwestern South America: implications for seismogenesis
Ángela María Gómez-García, Álvaro González, Mauro Cacace, Magdalena Scheck-Wenderoth, and Gaspar Monsalve
Solid Earth, 15, 281–303,,, 2024
Short summary
Extraction of Pre-earthquake Anomalies in Borehole Strain Data Using Graph WaveNet: A Case Study of the Lushan Earthquake
Chenyang Li, Yu Duan, Ying Han, Zining Yu, Chengquan Chi, and Dewang Zhang
EGUsphere,,, 2023
Short summary
Reference seismic crustal model of the Dinarides
Katarina Zailac, Bojan Matoš, Igor Vlahović, and Josip Stipčević
Solid Earth, 14, 1197–1220,,, 2023
Short summary
The impact of seismic noise produced by wind turbines on seismic borehole measurements
Fabian Limberger, Georg Rümpker, Michael Lindenfeld, and Hagen Deckert
Solid Earth, 14, 859–869,,, 2023
Short summary

Cited articles

AlpArray: AlpArray Seismic Network, AlpArray Seismic Network (AASN) temporary component, AlpArray Working Group, Other/Seismic Network,, 2015. a
AlpArray-EASI: AlpArray Seismic Network, Eastern Alpine Seismic Investigation (EASI) – AlpArray Complimentary Experiment. AlpArray Working Group, Other/Seismic Network,, 2014. a
Barmin, M. P., Ritzwoller, M. H., and Levshin, A. L.: A Fast and Reliable Method for Surface Wave Tomography, Pure Appl. Geophys., 158, 1351–1375,, 2001. a, b
Behm, M., Brückl, E., Chwatal, W., and Thybo, H.: Application of stacking and inversion techniques to three-dimensional wide-angle reflection and refraction seismic data of the Eastern Alps, Geophys. J. Int., 170, 275–298,, 2007a. a, b, c, d
Behm, M., Bruckl, E., Mitterbauer, U., CELEBRATION 2000, and ALP 2002 Working Groups: A New Seismic Model of the Eastern Alps and its Relevance for Geodesy and Geodynamics, Vermessung and Geoinformation, 2, 121–133, 2007b. a
Short summary
The crustal structure of the Eastern and Southern Alps is complex. Although several seismological studies have targeted the crust, the velocity structure under this area is still not fully understood. Here we study the crustal velocity structure using seismic ambient noise tomography. Our high-resolution models image several velocity anomalies and contrasts and reveal details of the crustal structure. We discuss our new models of the crust with respect to the geologic and tectonic features.