Articles | Volume 12, issue 5
https://doi.org/10.5194/se-12-1051-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-12-1051-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Transversely isotropic lower crust of Variscan central Europe imaged by ambient noise tomography of the Bohemian Massif
Jiří Kvapil
CORRESPONDING AUTHOR
Institute of Geophysics, Czech Academy of Sciences, 141 31 Prague 4, Czech Republic
Jaroslava Plomerová
Institute of Geophysics, Czech Academy of Sciences, 141 31 Prague 4, Czech Republic
Hana Kampfová Exnerová
Institute of Geophysics, Czech Academy of Sciences, 141 31 Prague 4, Czech Republic
Vladislav Babuška
Institute of Geophysics, Czech Academy of Sciences, 141 31 Prague 4, Czech Republic
György Hetényi
Institute of Earth Sciences, University of Lausanne, CH-1015 Lausanne,
Switzerland
For further information regarding the team, please see the link given in the “Team List” section of the paper.
Related authors
No articles found.
Shiba Subedi, Nadja Valenzuela, Priyanka Dhami, Maren Böse, György Hetényi, Lauriane Chardot, Lok Bijaya Adhikari, Mukunda Bhattarai, Rabindra Prasad Dhakal, Sarah Houghton, and Bishal Nath Upreti
EGUsphere, https://doi.org/10.5194/egusphere-2025-4131, https://doi.org/10.5194/egusphere-2025-4131, 2025
This preprint is open for discussion and under review for Geoscience Communication (GC).
Short summary
Short summary
An interactive exhibition in Pokhara, Nepal, held on the tenth anniversary of the 2015 earthquake, helped school students understand why earthquakes occur and how to protect themselves. After taking part, most felt more confident and prepared, and many planned to share safety tips with their families and friends. This ripple effect shows how hands-on learning can spread awareness, inspire action, and help entire communities build resilience for future earthquakes.
Andrew Greenwood, György Hetényi, Ludovic Baron, Alberto Zanetti, Othmar Müntener, and the MOS field team
Sci. Dril., 33, 219–236, https://doi.org/10.5194/sd-33-219-2024, https://doi.org/10.5194/sd-33-219-2024, 2024
Short summary
Short summary
A set of seismic reflection surveys were conducted in May 2019 in the Ossola Valley, Western Italian Alps, to image the geologic structure below two proposed boreholes. The boreholes plan to penetrate the upper 2 km of the lower continental crust, a zone of much scientific interest. The seismic surveys have defined the valley structure to depths of 550 m, determined the dip of geological banding, and ruled out the possibility of major geologic drilling hazards that could be encountered.
Konstantinos Michailos, György Hetényi, Matteo Scarponi, Josip Stipčević, Irene Bianchi, Luciana Bonatto, Wojciech Czuba, Massimo Di Bona, Aladino Govoni, Katrin Hannemann, Tomasz Janik, Dániel Kalmár, Rainer Kind, Frederik Link, Francesco Pio Lucente, Stephen Monna, Caterina Montuori, Stefan Mroczek, Anne Paul, Claudia Piromallo, Jaroslava Plomerová, Julia Rewers, Simone Salimbeni, Frederik Tilmann, Piotr Środa, Jérôme Vergne, and the AlpArray-PACASE Working Group
Earth Syst. Sci. Data, 15, 2117–2138, https://doi.org/10.5194/essd-15-2117-2023, https://doi.org/10.5194/essd-15-2117-2023, 2023
Short summary
Short summary
We examine the spatial variability of the crustal thickness beneath the broader European Alpine region by using teleseismic earthquake information (receiver functions) on a large amount of seismic waveform data. We compile a new Moho depth map of the broader European Alps and make our results freely available. We anticipate that our results can potentially provide helpful hints for interdisciplinary imaging and numerical modeling studies.
Jaroslava Plomerová, Helena Žlebčíková, György Hetényi, Luděk Vecsey, Vladislav Babuška, and AlpArray-EASI and AlpArray working
groups
Solid Earth, 13, 251–270, https://doi.org/10.5194/se-13-251-2022, https://doi.org/10.5194/se-13-251-2022, 2022
Short summary
Short summary
We present high-resolution tomography images of upper mantle structure beneath the E Alps and the adjacent Bohemian Massif. The northward-dipping lithosphere, imaged down to ∼200 km beneath the E Alps without signs of delamination, is probably formed by a mixture of a fragment of detached European plate and the Adriatic plate subductions. A detached high-velocity anomaly, sub-parallel to and distinct from the E Alps heterogeneity, is imaged at ∼100–200 km beneath the southern part of the BM.
Pavol Zahorec, Juraj Papčo, Roman Pašteka, Miroslav Bielik, Sylvain Bonvalot, Carla Braitenberg, Jörg Ebbing, Gerald Gabriel, Andrej Gosar, Adam Grand, Hans-Jürgen Götze, György Hetényi, Nils Holzrichter, Edi Kissling, Urs Marti, Bruno Meurers, Jan Mrlina, Ema Nogová, Alberto Pastorutti, Corinne Salaun, Matteo Scarponi, Josef Sebera, Lucia Seoane, Peter Skiba, Eszter Szűcs, and Matej Varga
Earth Syst. Sci. Data, 13, 2165–2209, https://doi.org/10.5194/essd-13-2165-2021, https://doi.org/10.5194/essd-13-2165-2021, 2021
Short summary
Short summary
The gravity field of the Earth expresses the overall effect of the distribution of different rocks at depth with their distinguishing densities. Our work is the first to present the high-resolution gravity map of the entire Alpine orogen, for which high-quality land and sea data were reprocessed with the exact same calculation procedures. The results reflect the local and regional structure of the Alpine lithosphere in great detail. The database is hereby openly shared to serve further research.
Shiba Subedi, György Hetényi, and Ross Shackleton
Geosci. Commun., 3, 279–290, https://doi.org/10.5194/gc-3-279-2020, https://doi.org/10.5194/gc-3-279-2020, 2020
Short summary
Short summary
We study the impact of an educational seismology program on earthquake awareness and preparedness in Nepal. We see that educational activities implemented in schools are effective at raising awareness levels and in improving adaptive capacities and preparedness for future earthquakes. Knowledge also reached the broader community though social learning, leading to broadscale awareness. The result observed in this study is encouraging for the continuation and expansion of the program.
Cited articles
Ackermann, L., Bizimis, M., Haluzová, E., Sláma, J., Svojtka, M.,
Hirajima, T., and Erban, V.: Re-Os and Lu-Hf isotopic constraints on the
formation and age of mantle pyroxenites from the Bohemian Massif, Lithos
256/257, 197–210, 2016.
Almqvist, B. S. G. and Mainprice, D.: Seismic properties and anisotropy of
the continental crust: Predictions based on mineral texture and rock
microstructure, Rev. Geophys, 55, 367–433, https://doi.org/10.1002/2016RG000552, 2017.
AlpArray Seismic Network: AlpArray Seismic Network (AASN) temporary
component, AlpArray Working Group, Other/Seismic Network,
https://doi.org/10.12686/alparray/z3_2015, 2015.
Amaru, M.: Global travel time tomography with 3-D reference models, Geol.
Traiectina, 274, PhD thesis, Utrecht University, The Netherlands, 174 pp., 2007.
Artemieva, I. and Thybo, H.: EUNAseis: A seismic model for Moho and crustal
structure in Europe, Greenland, and the North Atlantic region,
Tectonophysics, 609, 97–153, https://doi.org/10.1016/j.tecto.2013.08.004,
2013.
Babuška, V. and Plomerová, J.: Boundaries of mantle-lithosphere
domains in the Bohemian Massif as extinct exhumation channels for
high-pressure rocks, Gondwana Res., 23, 973–987, 2013.
Babuška, V. and Plomerová, J.: Lateral displacement of crustal units
relative to underlying mantle-lithosphere: example from the Bohemian Massif,
Massif as extinct exhumation channels for high-pressure rocks, Gondwana
Res., 52, 125–138, 2017.
Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., Levshin, A. L., Lin, F.,
Moschetti, M. P., Shapiro, N. M., and Yang, Y.: Processing seismic ambient
noise data to obtain reliable broad-band surface wave dispersion
measurements, Geophys. J. Int., 169, 1239–1260, https://doi.org/10.1111/j.1365-246X.2007.03374.x,
2007.
Beránek, B., Dudek, A., and Zounková, M.: Velocity models of the
crust in the Bohemian Massif and the Western Carpathians (Rychlostní
modely stavby zemské kůry v Českém masívu a
Západních Karpatech), J. Geol. Sci. Appl. Geophys. (Sborník
geologických věd, Užitá Geofyzika), 13, 7–17,
1975 (in Czech).
Beyreuther, M., Barsch, R., Krischer, L., Megies, T, Behr, Y., and
Wassermann, J.: ObsPy: A Python Toolbox for Seismology, Seismol. Res. Lett., 81, 530–533, https://doi.org/10.1785/gssrl.81.3.530, 2010.
Bues, C., Dörr,W., Fiala, J., Vejnar, Z., and Zulauf, G.: Emplacement
depths and radiometric ages of Paleozoic plutons of the Neukirchen–Kdyne
Massif: differential uplift and exhumation of Cadomian basement due to
Carboniferous orogenic collapse (Bohemian Massif), Tectonophysics, 352,
225–243, 2002.
Brückl, E., Blebinhaus, F., Gosar, A., Grad, M., Guterch, A.,
Hrubcová, P., Keller, G., Majdański, M., Šumanovac, F., Tiira,
T., Yliniemi, J., Hegedüs, E., and Thybo, H.: Crustal structure due
collisional and escape tectonics in the eastern Alps region based on
profiles Alp01 and Alp02 from the Alp 2002 seismic experiment, J. Geophys.
Res., 112, B06308, https://doi.org/10.1029/2006JB004687, 2007.
Burov, E. B. and Watts, A. B.: The long-term strength of continental
lithosphere: “jelly sandwich” or “creme brulee”?, GSA Today, 16, 4–10, https://doi.org/10.1130/1052-5173(2006)016<4:tltSOc>2.0.cO;2, 2006.
Carbonell, R., Levander, A., and Kind, R.: The Mohorovičić
discontinuity beneath the continental crust: An overview of seismic
constraints, Tectonophysics 609, 353–376, 2013.
Červený, V., Novotný, O., Plešinger, A., and Plomerová,
J.: Structure of the Earth's crust in southwestern Bohemia from spectral
ratios of long-period P waves (preliminary results), Travaux Inst. Geophys.
Tchecosl. Acad. Sci., XXV, No. 482, Geofysikální sborník XXV
(1977), Academia, Praha 1977, 113–129, 1977.
Cháb, J. and Žáček, V.: Metamorphism of the Teplá
crystalline complex, KTB Report, vol. 94, pp. 33–37, Niedersächsisches Landesamt für Bodenforschung, Hannover, Germany, 1994.
Cole, J., Hacker, B., Ratschbacher, L., Dolan, J., Seward, G., Frost, E.,
and Frank, W.: Localized ductile shear below the seismogenic zone:
Structural analysis of an exhumed strike-slip fault, Austrian Alps, J. Geophys. Res., 112, B12304, https://doi.org/10.1029/2007JB004975,
2007.
de Wall, H., Schaarschmidt, A., Kammlein, M., Gerald, G., Bestmann, M., and
Scharfenberg, L.: Subsurface granites in the Franconian Basin as the source
of enhanced geothermal gradients: a key study from gravity and thermal
modeling of the Bayreuth Granite, Int. J. Earth Sci. 108, 1913–1936, 2019.
Denele, Y., Olivier, P., Gleizes, G., and Barbey, P.: Decoupling between the
middle and upper crust during transpression-related lateral flow: Variscan
evolution of the Aston gneissdome (Pyrenees, France), Tectonophysics, 477,
244–261, 2009.
Dunkin, J. W.: Computation of modal solutions in layered, elastic media at
high frequencies, B. Seismol. Soc. Am., 55, 335–358, 1965.
Elter, F. M., Gaggero L., Mantovani, F., Pandeli E., and Costamagna, L.G.:
The Atlas-East Variscan -Elbe shear system and its role in the
formation of the pull-apart Late Palaeozoic basins, Int. J. Earth Sci., 109, 739–760,
https://doi.org/10.1007/s00531-020-01830-y, 2020.
Fichtner, A. and Villasenor, A.: Crust and upper mantle of the western
Mediterranean–Constraints from full-waveform inversion, Earth Planet. Sci.
Lett., 428, 52–62, https://doi.org/10.1016/j.epsl.2015.07.038, 2015.
Finger, F., Gerdes, A., Janoušek, V., René, M., and Riegler, G.:
Resolving the Variscan evolution of the Moldanubian sector of the Bohemian
Massif: the significance of the Bavarian and the Moravo–Moldanubian
tectonometamorphic phases, J. Geosci. 52, 9–28, 2007.
Franke, W., Cocks, L. R. M., and Torsvik, T. H.: The Paleozoic Variscan
ocean revisited, Gondwana Res. 48, 257–284, 2017.
Grad, M., Guterch, A., Mazur, S., Keller, G. R., Špičák, A.,
Hrubcová, P., and Geissler, W. H.: Lithospheric structure of the
Bohemian Massif and adjacent Variscan belt in central Europe based on
profile S01 from the SUDETES 2003 experiment, J. Geophys. Res., 113, B10304,
https://doi.org/10.1029/2007JB005497, 2008.
Hacker, B. R., Kelemen, P. B., and Behn, M. D.: Continetal lower crust,
Annu. Rev. Earth Planet. Sci. 43, 167–205, 2015.
Heron, P. J., Pysklywec, R. N., and Stephenson, R.: Identifying mantle
lithosphere inheritance in controlling intraplate orogenesis, J. Geophys.
Res.-Earth, 121, 6966e6987. https://doi.org/10.1002/2016JB013460, 2016.
Hetényi, G., Cattin, R., Vergne, J., and Nábělek, J. L.: The
effective elastic thickness of the India Plate from receiver function
imaging, gravity anomalies and thermomechanical modelling, Geophys. J. Int.
167, 1106–1118, https://doi.org/10.1111/j.1365-246X.2006.03198.x, 2006.
Hetényi, G., Molinari, I., Clinton, J., Bokelmann, G., Bondár, I.,
Crawford, W. C., Dessa, J-X., Doubre, C., Friederich, W., Fuchs, F.,
Giardini, D., Gráczer, Z., Handy, M. R., Herak, M., Jia, Y., Kissling,
E., Kopp, H., Korn, M., Margheriti, L., Meier, T., Mucciarelli, M., Paul,
A., Pesaresi, D., Piromallo, C., Plenefisch, T., Plomerová, J., Ritter,
J., Rümpker, G., Šipka, V., Spallarossa, D., Thomas, C., Tilmann,
F., Wassermann, J., Weber, M., Wéber, Z., Wesztergom, V.,
Živčić, M., AlpArray Seismic Network Team, AlpArray OBS Cruise
Crew, and AlpArray Working Group: The AlpArray Seismic Network: a
large-scale European experiment to image the Alpine orogeny, Surv. Geophys, 39, 1009–1033, https://doi.org/10.1007/s10712-018-9472-4, 2018a.
Hetényi, G., Plomerová, J., Bianchi, I., Kampfová Exnerová,
H., Bokelmann, G., Handy, M. R., Babuska, V., and AlpArray-EASI Working
Group: From mountain summits to roots: Crustal structure of the Eastern Alps
and Bohemian Massif along longitude 13.3∘ E, Tectonophysics, 744,
239–255, https://doi.org/10.1016/j.tecto.2018.07.001, 2018b.
Hrubcová, P., Środa, P., Špičák, A., Guterch, A., Grad,
M., Keller, G. R., Brückl, E., and Thybo, H.: Crustal and uppermost
mantle stucture of the Bohemian Massif based on CELEBRATION 2000 data, J.
Geophys. Res., 110, B11305, https://doi.org/10.1029/2004JB003080, 2005.
Hrubcová, P. and Środa, P.: Crustal structure at the easternmost
termination of the Variscan belt based on CELEBRATION 2000 and ALP 2002
data, Tectonophysics. 460, 55–75, https://doi.org/10.1016/j.tecto.2008.07.009, 2008.
Hrubcová, P., Środa, P., Grad, M., Geissler, W. H., Guterch, A.,
Vozár, J., Hegedüs, E., and Sudetes 2003 Working Group: From the
Variscan to the Alpine Orogeny: crustal structure of the Bohemian Massif and
the Western Carpathians in the light of the SUDETES 2003 seismic data,
Geophys. J. Int., 183, 611–633, https://doi.org/10.1111/j.1365-246X.2010.04766.x, 2010.
Hunter, J. D: Matplotlib: A 2D Graphics Environment, Comput. Sci. Eng., 9, 90–95, https://doi.org/10.1109/MCSE.2007.55, 2007.
Ji, S., Shao, T., Michibayashi, K., Long, C., Wang, Q., Kondo, Y., Zhao, W.,
Wang, H., and Salisbury, M. H.: A new calibration of seismic velocities,
anisotropy, fabrics, and elastic moduli of amphibole-rich rocks, J. Geophys.
Res.-Earth, 118, 4699–4728, https://doi.org/10.1002/jgrb.50352, 2013.
Kästle, E. D., El-Sharkawy, A., Boschi, L., Meier, T., Rosenberg, C.,
Bellahsen, N., Cristiano, L., and Weidle, C.: Surface wave tomography of the
alps using ambient-noise and earthquake phase velocity measurements, J.
Geophys. Res., 123, 1770–1792, 2018.
Karousová, H., Plomerová, J., and Babuška, V.: A
three-dimensional velocity model of the crust of the Bohemian Massif, Stud.
Geophys. Geod., 56, 249–267, 2012.
Karousová, H., Plomerova, J., and Babuska, V.: Upper-mantle structure
beneath the southern Bohemian Massif and its surroundings imaged by
high-resolution tomography, Geophys. J. Int., 194,
1203–1215, https://doi.org/10.1093/gji/ggt159, 2013.
Kennett, B. and Engdahl, R.: Travel times for global earthquake location and
phase identification, Geophys. J. Int., 105, 429–465, 1991.
Klemperer, S. L.: Crustal flow in Tibet: Geophysical evidence for the
physical state of Tibetan lithosphere, and inferred patterns of active flow,
Geological Society, London, Special Publications, 268, 39–70,
https://doi.org/10.1144/GSL.SP.2006.268.01.03, 2006.
Kokoska, S. and Zwillinger, D.: CRC Standard Probability and Statistics
Tables and Formulae, Student Edition, CRC Press LLC, Boca Raton, Florida, USA, https://doi.org/10.1201/b16923, 2000.
Konopásek, J., Schulmann, K., and
Johan, V.: Eclogite-facies metamorphism at the eastern margin of the
Bohemian Massif–subduction prior to continental underthrusting?, Eur. J. Mineral., 14, 701–713, 2002.
Konopásek, J., Anczkiewicz, R., Jeřábek, P., Corfu, F., and
Žáčková, E.: Chronology of the Saxothuringian subduction in
the West Sudetes (Bohemian Massif, Czech Republic and Poland), Journal of
the Geological Society London, 176, 492–504, https://doi.org/10.1144/jgs2018-173, 2019.
Kvapil, J. and Plomerová, J.: CRAB1.0 – A regional-scale crustal model of Bohemian Massif at 0.2 ∘N × 0.3∘ E from ambient noise tomography, available at: https://www.ig.cas.cz/en/teams/seismology/lithosphere-team/#crab1.0, last access: 1 May 2021.
Lay, T. and Wallace, T. C. (Eds.): Modern Global Seismology, Academic Press, New York, 521 pp., ISBN 0-12-732870-X, 1995.
Lecocq, T., Corentin C., and Brenguier, F.: MSNoise, a Python Package for
Monitoring Seismic Velocity Changes Using Ambient Seismic Noise,
Seismol. Res. Lett., 85, 715–726,
https://doi.org/10.1785/0220130073, 2014.
Levshin, A. L. and Ritzwoller, M. H.: Automated detection, extraction, and
measurement of regional surface waves, Pure Appl. Geophys., 158,
1531–1545, 2001.
Lobkis, O. I. and Weaver, R. L.: On the emergence of the Green's function in
the correlations of a diffuse field, J. Acoust. Soc. Am. 110, 3011–3017,
https://doi.org/10.1121/1.1417528, 2001.
Lu, Y., Stehly, L., Paul, A., and AlpArray Working Group: High-resolution
surface wave tomography of the European crust and uppermost mantle from
ambient seismic noise, Geophys. J. Int., 214, 1136–1150,
https://doi.org/10.1093/gji/ggy188, 2018.
Lu, Y., Stehly, L., Brossier, R., Paul, A., and AlpArray Working Group:
Imaging Alpine crust using ambient noise wave-equation tomography, Geophys.
J. Int., 222, 69–85, https://doi.org/10.1093/gji/ggaa145, 2020.
Luo, Y., Xu, Y., and Yang, Y.: Crustal radial anisotropy beneath the Dabie
orogenic belt from ambient noise tomography, Geophys. J. Int., 195, 1149–1164, 2013.
Majdanski, M. and Polkowski, M.: The Uncertainty of 2D Models Along Wide
Angle Seismic Profiles, Pure Appl. Geophys., 171, 2277–2287,
https://doi.org/10.1007/s00024-014-0840-9, 2014.
Medaris, L. G., Beard, B. L., and Jelínek, E.: Mantle-derived, UHP
garnet pyroxenite and eclogite in the Moldanubian Gföhl Nappe, Bohemian
Massif: a geochemical review, new p–t determinations, and tectonic
interpretation, Int. Geol. Rev. 48, 765–777,
https://doi.org/10.2747/0020-6814.48.9.765, 2006.
Molinari, I., Obermann, A., Kissling, E., Hetényi, G., Boschi, L., and
AlpArray-EASI working Group: 3D crustal structure of the Eastern Alpine
region from ambient noise tomography, Results in Geophysical Sciences, 1–4,
100006, https://doi.org/10.1016/j.ringps.2020.100006, 2020.
Mooney, W. D., Prodehl, C., and Pavlenkova, N. I.: 54 – Seismic Velocity Structure of the Continental Lithosphere from Controlled Source
Data, International Geophysics, 81, 887–910, https://doi.org/10.1016/S0074-6142(02)80261-3, 2002.
Okaya, D., Vel, S. S., Song, W. J., and Johnson, S. E.: Modification of
crustal seismic anisotropy by geological structures (“structural geometric
anisotropy”), Geosphere 15, 146–170, https://doi.org/10.1130/GES01655.1,
2018.
Phinney, R. A.: Structure of the Earth's crust from spectral behavior of
long-period body waves, J. Geophys. Res. 69, 2997–3017,
https://doi.org/10.1029/JZ069i014p02997, 1964.
Pitra, P., Burg, J. P., and Guiraud, M.: Late Variscan strike-slip tectonics
between the Teplá-Barrandian and Moldanubian terranes (Czech Bohemian
Massif): petrostructural evidence, J. Geol. Soc. London, 156, 1003–1020,
1999.
Plešinger, A. and Horálek, J.: Seismic broadband recording and data
processing system FBV/DPS and its seismological application, J. Geophys., 42, 201–217, 1976.
Plomerová, J., Babuška, V., and Ruprechtová, L.: Velocities of
seismic waves propagating through the Bohemian Massif from foci in Poland,
Studia Geophys. et Geod., 28, 56–66, 1984.
Plomerová, J., Achauer, U., Babuška, V., Vecsey, L., and BOHEMA
working group: Upper mantle beneath the Eger Rift (Central Europe): plume or
asthenosphere upwelling?, Geophys. J. Int., 169, 675–682;
https://doi.org/10.1111/j.1365-246X.2007.03361.x, 2007.
Plomerová, J., Vecsey, L., and Babuška, V.: Mapping seismic
anisotropy of the lithospheric mantle beneath the northern and eastern
Bohemian Massif (central Europe), Tectonophysics 564, 38–53, 2012.
Plomerová, J., Munzarová, H., Vecsey, L., Kissling, E., Achauer, U.,
and Babuška, V.: Cenozoic volcanism in the Bohemian Massif in the context of P- and S-velocity high-resolution teleseismic tomography of the upper mantle, Geochem. Geophys. Geosyst., 17, 3326–3349, https://doi.org/10.1002/2016GC006318, 2016.
Qiao, L., Yao, H., Lai, Y-C., Huang, B.-S., and Zhang, P.: Crustal structure
of southwest China and northern Vietnam from ambient noise tomography:
Implication for the large-scale material transport model in SE Tibet,
Tectonics, 37, 1492–1506, https://doi.org/10.1029/2018TC004957, 2018.
Qorbani, E., Zigone, D., Handy, M. R., Bokelmann, G., and AlpArray-EASI working group: Crustal structures beneath the Eastern and Southern Alps from ambient noise tomography, Solid Earth, 11, 1947–1968, https://doi.org/10.5194/se-11-1947-2020, 2020.
Rawlinson, N. and Sambridge M.: The fast marching method: An effective tool
for tomographic imaging and tracking multiple phases in complex layered
media, Explor. Geophys., 36, 341–350, 2005.
Rawlinson, N.: FMST: fast marching surface tomography package, Research
School of Earth Sciences, Australian National University, Canberra,
available at: http://rses.anu.edu.au/~nick/surftomo.html (last access: 1 May 2021), 2005.
Ren, Y., Grecu, B., Stuart, G., Houseman, G., Hegedüs, E., and South
Carpathian Project Working Group: Crustal structure of the
Carpathian–Pannonian region from ambient noise tomography, Geophys. J.
Int., 195, 1351–1369, https://doi.org/10.1093/gji/ggt316, 2013.
Šafanda, J., Dědeček, P., Krešl, M., and Čermák, V.:
Report on the geothermic research drill hole (Litoměřice) (in
Czech), Geophysical Institute, Acad. Sci. of the Czech Rep, Praha, 2007.
Sambridge, M.: Geophysical inversion with a neighbourhood algorithm: I.
Searching a parameter space, Geophys. J. Int., 138, 479–494, 1999.
Shapiro, N. M. and Campillo, M.: Emergence of broadband Rayleigh waves from
correlations of the ambient seismic noise, Geophys. Res. Lett., 31, L07614,
https://doi.org/10.1029/2004GL019491, 2004.
Shapiro, N. M., Campillo, M., Stehly, L., and Ritzwoller, M. H.: High
resolution surface wave tomography from ambient seismic
noise, Science, 307, 1615–1618, 2005.
Schippkus, S., Zigone, D., Bokelmann, G., and AlpArray Working Group:
Ambient-noise tomography of the wider Vienna Basin region, Geophys. J. Int.,
215, 102–117, https://doi.org/10.1093/gji/ggy259, 2018.
Soergel, D., Pedersen, H., Stehly, L., Margerin, L., Paul, A., and AlpArray
Working Group: Coda-Q in the 2.5–20 s period band from seismic noise:
application to the greater Alpine area, Geophys. J. Int., 220, 202–217,
https://doi.org/10.1093/gji/ggz443, 2020.
Thybo, H., Artemieva, L. M., and Kennett, B.: Moho: 100 years after Andria
Mohorovičić, Tectonophysics 609, 1–8, 2013.
Van Buer, N. J., Jagoutz, O., Upadhyay, R., and Guillong, M.: Mid-crustal
detachment beneath western Tibet exhumed where conjugate Karakoram and
Longmu-Gozha Co faults intersect, Earth Planet. Sci. Lett. 413, 144–157,
2015.
Valentová, L., Gallovič, F., and Maierová, P.: Three-dimensional
S-wave velocity model of the Bohemian Massif from Bayesian ambient noise
tomography, Tectonophysics, 717, 484–498,
https://doi.org/10.1016/j.tecto.2017.08.033, 2017.
Wathelet, M., Jongmans, D., and Ohrnberger, M.: Surface wave inversion using
a direct search algorithm and its application to ambient vibration
measurements, Near Surf. Geophys. 2, 211–221, 2004.
Wathelet, M.: An improved. neighborhood algorithm: parameter conditions and
dynamic scaling, Geophys. Res. Lett., 35, L09301,
https://doi.org/10.1029/2008GL033256, 2008.
Wathelet, M., Chatelain, J-L., Cornou, C., Di Giulio, G., Guillier, B.,
Ohrnberger, M., and Savvaidis, A.: Geopsy: A User-Friendly Open-Source Tool
Set for Ambient Vibration Processing, Seismol. Res. Lett., 91,
1878–1889, https://doi.org/10.1785/0220190360, 2020.
Wessel, P. and Smith, W. H. F.: Free software helps map and display
data, EOS Trans. AGU, 72, 445–446, https://doi.org/10.1029/90EO00319, 1991.
Wilde-Piórko, M., Geissler, W. H., Plomerová, J., and PASSEQ Working
Group: PASSEQ 2006-2008: passive seismic experiment in Trans-European Suture
Zone, Stud. Geophys. Geod., 52, 439–448, 2008.
Yang, Z., Ritzwoller, M. H., Levshin, A. L., and Shapiro, N. M.: Ambient
noise Rayleigh wave tomography across Europe, Geophys. J. Int., 168,
259–274, https://doi.org/10.1111/j.1365-246X.2006.03203.x, 2007.
Yoshizawa, K. and Kennett, B. L. N.: Sensitivity kernels for
finite-frequency surface waves, Geophys. J. Int., 162, 910–926, https://doi.org/10.1111/j.1365-246X.2005.02707.x, 2005
Žák, J., Verner, K., Janoušek, V., Holub, F., Kachlík, V.,
Finger, F., Hajná, J., Tomek, F., Vondrovic, L., and Trubač, J.: A
plate-kinematic model for the assembly of the Bohemian Massif constrained by
structural relationships around granitoid plutons, Geological Society,
London, Special Publications, 405, 169–196,
https://doi.org/10.1144/SP405.9, 2014.
Zhu, L. and Kanamori, H.: Moho depth variation in southern California from
teleseismic receiver functions, J. Geophys. Res. 105, 2969–2980, 2000.
Short summary
This paper presents a high-resolution 3-D shear wave velocity (vS) model of the Bohemian Massif crust imaged from high-density data and enhanced depth sensitivity of tomographic inversion. The dominant features of the model are relatively higher vS in the upper crust than in its surrounding, a distinct intra-crustal interface, and a velocity decrease in the lower part of the crust. The low vS in the lower part of the crust is explained by the anisotropic fabric of the lower crust.
This paper presents a high-resolution 3-D shear wave velocity (vS) model of the Bohemian Massif...