Articles | Volume 12, issue 5
https://doi.org/10.5194/se-12-1087-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-12-1087-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Relocation of earthquakes in the southern and eastern Alps (Austria, Italy) recorded by the dense, temporary SWATH-D network using a Markov chain Monte Carlo inversion
GFZ German Research Centre for Geosciences, Potsdam, Germany
Institute of Geosciences, Potsdam University, Potsdam, Germany
Christian Haberland
GFZ German Research Centre for Geosciences, Potsdam, Germany
Trond Ryberg
GFZ German Research Centre for Geosciences, Potsdam, Germany
Vincent F. Verwater
Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
Eline Le Breton
Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
Mark R. Handy
Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
Michael Weber
GFZ German Research Centre for Geosciences, Potsdam, Germany
A full list of authors appears at the end of the paper.
Related authors
No articles found.
Trond Ryberg, Moritz Kirsch, Christian Haberland, Raimon Tolosana-Delgado, Andrea Viezzoli, and Richard Gloaguen
Solid Earth, 13, 519–533, https://doi.org/10.5194/se-13-519-2022, https://doi.org/10.5194/se-13-519-2022, 2022
Short summary
Short summary
Novel methods for mineral exploration play an important role in future resource exploration. The methods have to be environmentally friendly, socially accepted and cost effective by integrating multidisciplinary methodologies. We investigate the potential of passive, ambient noise tomography combined with 3D airborne electromagnetics for mineral exploration in Geyer, Germany. We show that the combination of the two geophysical data sets has promising potential for future mineral exploration.
Mark R. Handy, Stefan M. Schmid, Marcel Paffrath, Wolfgang Friederich, and the AlpArray Working Group
Solid Earth, 12, 2633–2669, https://doi.org/10.5194/se-12-2633-2021, https://doi.org/10.5194/se-12-2633-2021, 2021
Short summary
Short summary
New images from the multi-national AlpArray experiment illuminate the Alps from below. They indicate thick European mantle descending beneath the Alps and forming blobs that are mostly detached from the Alps above. In contrast, the Adriatic mantle in the Alps is much thinner. This difference helps explain the rugged mountains and the abundance of subducted and exhumed units at the core of the Alps. The blobs are stretched remnants of old ocean and its margins that reach down to at least 410 km.
Marcel Paffrath, Wolfgang Friederich, Stefan M. Schmid, Mark R. Handy, and the AlpArray and AlpArray-Swath D Working Group
Solid Earth, 12, 2671–2702, https://doi.org/10.5194/se-12-2671-2021, https://doi.org/10.5194/se-12-2671-2021, 2021
Short summary
Short summary
The Alpine mountain belt was formed by the collision of the Eurasian and African plates in the geological past, during which parts of the colliding plates sank into the earth's mantle. Using seismological data from distant earthquakes recorded by the AlpArray Seismic Network, we have derived an image of the current location of these subducted parts in the earth's mantle. Their quantity and spatial distribution is key information needed to understand how the Alpine orogen was formed.
Vincent F. Verwater, Eline Le Breton, Mark R. Handy, Vincenzo Picotti, Azam Jozi Najafabadi, and Christian Haberland
Solid Earth, 12, 1309–1334, https://doi.org/10.5194/se-12-1309-2021, https://doi.org/10.5194/se-12-1309-2021, 2021
Short summary
Short summary
Balancing along geological cross sections reveals that the Giudicarie Belt comprises two kinematic domains. The SW domain accommodated at least ~ 18 km Late Oligocene to Early Miocene shortening. Since the Middle Miocene, the SW domain experienced at least ~ 12–22 km shortening, whereas the NE domain underwent at least ~ 25–35 km. Together, these domains contributed to ~ 40–47 km of sinistral offset of the Periadriatic Fault along the Northern Giudicarie Fault since the Late Oligocene.
Gilda Currenti, Philippe Jousset, Rosalba Napoli, Charlotte Krawczyk, and Michael Weber
Solid Earth, 12, 993–1003, https://doi.org/10.5194/se-12-993-2021, https://doi.org/10.5194/se-12-993-2021, 2021
Short summary
Short summary
We investigate the capability of distributed acoustic sensing (DAS) to record dynamic strain changes related to Etna volcano activity in 2019. To validate the DAS measurements, we compute strain estimates from seismic signals recorded by a dense broadband array. A general good agreement is found between array-derived strain and DAS measurements along the fibre optic cable. Localised short wavelength discrepancies highlight small-scale structural heterogeneities in the investigated area.
Eline Le Breton, Sascha Brune, Kamil Ustaszewski, Sabin Zahirovic, Maria Seton, and R. Dietmar Müller
Solid Earth, 12, 885–913, https://doi.org/10.5194/se-12-885-2021, https://doi.org/10.5194/se-12-885-2021, 2021
Short summary
Short summary
The former Piemont–Liguria Ocean, which separated Europe from Africa–Adria in the Jurassic, opened as an arm of the central Atlantic. Using plate reconstructions and geodynamic modeling, we show that the ocean reached only 250 km width between Europe and Adria. Moreover, at least 65 % of the lithosphere subducted into the mantle and/or incorporated into the Alps during convergence in Cretaceous and Cenozoic times comprised highly thinned continental crust, while only 35 % was truly oceanic.
Ángela María Gómez-García, Eline Le Breton, Magdalena Scheck-Wenderoth, Gaspar Monsalve, and Denis Anikiev
Solid Earth, 12, 275–298, https://doi.org/10.5194/se-12-275-2021, https://doi.org/10.5194/se-12-275-2021, 2021
Short summary
Short summary
The Earth’s crust beneath the Caribbean Sea formed at about 90 Ma due to large magmatic activity of a mantle plume, which brought molten material up from the deep Earth. By integrating diverse geophysical datasets, we image for the first time two fossil magmatic conduits beneath the Caribbean. The location of these conduits at 90 Ma does not correspond with the present-day Galápagos plume. Either this mantle plume migrated in time or these conduits were formed above another unknown plume.
Cited articles
Amato, A., Barnaba, P. F., Finetti, I., Groppi, G., Martins, B., and Muzzin,
A.: Geodynamic outline and seismicity of Friuli Venetia Julia region,
B. Geofis. Teor. Appl., 18, 217–256, 1976. a
Anderson, H. and Jackson, J.: Active tectonics of the Adriatic Region,
Geophys. J. Int., 91, 937–983, 1987. a
Avanzini, M., Bargossi, G., Borsato, A., and Selli, L.: Note
Illustrative della Carta Geologica d'Italia alla scala 1:50 000, foglio
060 “Trento”, APAT, Servizio Geologico d'Italia, 2010. a
Bartolomei, G., Corsi, M., Dal Cin, R., D'Amico, C., Gatto, G., Nardin, M., Rossi, D., Sacerdotti, M., and Semenza, E.: Note illustrative della Carta Geologico d'Italia,
foglio 21 “Trento”, Servizio Geologico d'Italia, 1967. a
Bayes, T.: An essay towards solving a problem in the doctrine of chances,
Philos. T. R. Soc. Lond., 53, 370–418, https://doi.org/10.1098/rstl.1763.0053, 1763. a
Bertrand, A., Rosenberg, C., and Garcia, S.: Fault slip analysis and late
exhumation of the Tauern Window, Eastern Alps, Tectonophysics, 649, 1–17,
2015. a
Bigi, G., Castellarin, A., Catalano, R., Coli, M., Cosentino, D., Dal Piaz, G., Lentini, F., Parotto, M., Patacca, E., Praturlon, A., Salvini, F., Sartori, R., Scandone, P., and Vai, G.: Synthetic structural-kinematic map of Italy, Sheets 1 and 2, C.N.R., Progetto Finalizzato Geodinamica, SELCA, Florence, Italy, 1989. a, b
Blundell, D. J., Freeman, R., and Mueller, S.: A continent
revealed: The European Geotraverse, structure and dynamic evolution,
Cambridge University Press, Cambridge, UK, 1992. a
Bodin, T., Sambridge, M., Gallagher, K., and Rawlinson, N.: Transdimensional
inversion of receiver functions and surface wave dispersion,
J. Geophys. Res.-Sol. Ea., 117, 1411–1436, https://doi.org/10.1029/2011JB008560, 2012a. a, b
Bodin, T., Sambridge, M., Rawlinson, N., and Arroucau, P.: Transdimensional
tomography with unknown data noise, Geophys. J. Int., 189,
1536–1556, https://doi.org/10.1111/j.1365-246X.2012.05414.x, 2012b. a, b
Bosellini, A., Carraro, F., Corsi, M., De Vecchi, G., Gatto, G., Malaroda, R., Sturani, C., Ungaro, S., and Zanettin, B.: Note illustrative della Carta
Geologico d'Italia, foglio 49 “Verona”, Servizio Geologico d'Italia, 1967. a
Braga, G., Gatto, G., Gatto, P., Gregnanin, A., Massari, F., Medizza, F., and Semenza, E.: Note illustrative
della Carta Geologico d'Italia, foglio 22 “Feltre”, Servizio Geologico d'Italia, Rome, Italy, 1971. a
Burrato, P., Poli, M. E., Vannoli, P., Zanferrari, A., Basili, R., and
Galadini, F.: Sources of Mw 5+ earthquakes in northeastern Italy and western Slovenia: an updated view based on geological and seismological evidence, Tectonophysics, 453, 157–176, 2008. a
Cagnetti, V. and Pasquale, V.: The earthquake sequence in Friuli, Italy,
1976, B. Seismol. Soc. Am., 69, 1797–1818, 1979. a
Castellarin, A., Corsi, M., De Vecchi, G., Gatto, G., Largaiolli, T., Mozzi,
G., Piccoli, G., Sassi, F., Zanettin, B., and Zirpoli, G.: Note illustrative
della Carta Geologico d'Italia alla scala 1:100 000, foglio 36
“Schio”, Servizio Geologico d'Italia, Rome, Italy, 1968. a
Castellarin, A., Picotti, V., Cantelli, L., Claps, M., Trombetta, L., Selli,
L., and Carton, A.: Note illustrative della Carta Geologico d'Italia alla
scala 1:50 000, foglio 080 “Riva Del Garda, Provincia Autonoma di
Trento”, APAT, Servizio Geologico d'Italia, Florence, Italy, 2005. a
Christensen, N. I. and Mooney, W. D.: Seismic velocity structure and
composition of the continental crust: A global view, J. Geophys. Res.-Sol. Ea., 100, 9761–9788, https://doi.org/10.1029/95JB00259, 1995. a
Dal Piaz, G., Castellarin, A., Martin, S., Selli, L., Carton, A., Pellegrini, G., Casolari, E., Daminato, F., Montresor, L., Picotti, V., Prosser, G., Santuliana, E., and Cantelli, L.: Note
Illustrative della Carta Geologica d'Italia alla scala 1:50 000, Foglio 042
“Malé”, Servizio Geologico d'Italia, Rome, Italy, 2007. a
Doglioni, C. and Bosellini, A.: Eoalpine and mesoalpine tectonics in the
Southern Alps, Geol. Rundsch., 76, 735–754, 1987. a
Duijndam, A.: Bayesian estimation in seismic inversion, Part I: Principles,
Geophys. Prospect., 36, 878–898, 1988a. a
Duijndam, A.: Bayesian estimation in seismic inversion, Part II: Uncertainty
analysis, Geophys. Prospect., 36, 899–918, 1988b. a
Gallagher, K., Charvin, K., Nielsen, S., Sambridge, M., and Stephenson, J.:
Markov chain Monte Carlo (MCMC) sampling methods to determine optimal
models, model resolution and model choice for Earth Science problems,
Mar. Petrol. Geol., 26, 525–535, 2009. a
Hammerl, C.: Historical earthquake research in Austria, Geoscience Letters,
4, 121–158, 2017. a
Heit, B., Weber, M., Tilmann, F., Haberland, C., Jia, Y., and Pesaresi, D.:
The Swath-D Seismic Network in Italy and Austria, Other/Seismic Network, GFZ Data Services, https://doi.org/10.14470/MF7562601148, 2017. a, b, c
Heit, B., Cristiano, L., Haberland, C., Tilmann, F., Pesaresi, D., Jia, Y.,
Hausmann, H., Hemmleb, S., Haxter, M., Zieke, T., Jaeckl, K.‐H., Schloemer, A., and Weber, M.: The SWATH-D
seismological network in the Eastern Alps, Seismol. Res. Lett., 92, 1592–1609, https://doi.org/10.1785/0220200377,
2021. a, b
Hetényi, G., Molinari, I., Clinton, J., Bokelmann, G., Bondár, I.,
Crawford, W., Dessa, J., Doubre, C., Friederich, W., Fuchs, F., Giardini, D.,
Gráczer, Z., Handy, M. R., Herak, M., Jia, Y., Kissling, E., Kopp, H.,
Korn, M., Margheriti, L., Živčić, M., and Team, A. S. N.:
The AlpArray Seismic Network: A Large-Scale European Experiment to Image the
Alpine Orogen, Surv. Geophys., 39, 1009–1033, 2018. a, b
Kennett, B., Engdahl, E., and Buland, R.: Constraints on seismic velocities in the Earth from traveltimes, Geophys. J. Int., 122,
108–124, 1995. a
Kisslinger, C. and Engdahl, E. R.: The interpretation of the Wadati diagram
with relaxed assumptions, B. Seismol. Soc. Am., 63, 1723–1736, 1973. a
Kohavi, R. and Provost, F.: Glossary of Terms, Mach. Learn., 30,
271–274, 1998. a
Le Breton, E., Handy, M. R., Molli, G., and Ustaszewski, K.: Post-20 Ma motion of the Adriatic Plate: New constraints from surrounding orogens and
implications for crust-mantle decoupling, Tectonics, 36, 3135–3154, 2017. a
Lippitsch, R., Kissling, E., and Ansorge, J.: Upper mantle structure beneath
the Alpine orogen from high-resolution teleseismic tomography,
J. Geophys. Res., 108, 2376, https://doi.org/10.1029/2002JB002016, 2003. a
Mantovani, E., Albarello, D., Tamburelli, C., and Babbucci, D.: Evolution of
the Tyrrhenian basin and surrounding regions as a result of the
Africa-Eurasia convergence, J. Geodyn., 21, 35–72, 1996. a
Merlini, S., Doglioni, C., and Ponton, M.: Analisi strutturale lungo un
profilo geologico tra la linea Fella-Sava e l'avampaese adriatico (Friouli
Venezia Giulia-Italia), Mem. Soc. Geol. Ital., 57, 293–300, 2002. a
Métois, M., D'Agostino, N., Avallone, A., Chamot-Rooke, N., Rabaute, A.,
Duni, L., Kuka, N., Koci, R., and Georgiev, I.: Insights on continental
collisional processes from GPS data: Dynamics of the peri-Adriatic belts,
J. Geophys. Res.-Sol. Ea., 120, 8701–8719, 2015. a
Mosegaard, K. and Tarantola, A.: Monte Carlo sampling of solutions to inverse problems, J. Geophys. Res., 100, 12431–12447, https://doi.org/10.1029/94JB03097, 1995. a
Petersen, G. M., Cesca, S., Heimann, S., Niemz, P., Dahm, T., Kühn, D., Kummerow, J., Plenefisch, T., and the AlpArray Working Group: Regional centroid MT inversion of small to moderate earthquakes in the Alps using the dense AlpArray seismic network: challenges and seismotectonic insights, Solid Earth Discuss. [preprint], https://doi.org/10.5194/se-2021-13, in review, 2021. a, b, c
Poli, M. E., Peruzza, L., Rebez, A., Renner, G., Slejko, D., and Zanferrari,
A.: New seismotectonic evidence from the analysis of the 1976–1977 and
1977–1999 seismicity in Friuli (NE Italy), B. Geofis. Teor. Appl., 43, 53–78, 2002. a
Reiter, F., Ortner, H., and Brandner, R.: Seismically active Inntal fault
zone: inverted European rift structures control upper plate deformation,
Mem. Soc. Geol. Ital., 54, 233–234, 2003. a
Reiter, F., Lenhardt, W. A., and Brandner, R.: Indications for activity of the Brenner Normal Fault zone (Tyrol, Austria) from seismological and GPS data, Austrian J. Earth Sci., 97, 16–23, 2005. a
Rosenberg, C. L. and Kissling, E.: Three-dimensional insight into
Central-Alpine collision: Lower-plate or upper-plate indentation?, Geology,
41, 1219–1222, 2013. a
Rosenberg, C. L., Schneider, S., Scharf, A., Bertrand, A., Hammerschmidt, K.,
Rabaute, A., and Brun, J.-P.: Relating collisional kinematics to exhumation
processes in the Eastern Alps, Earth-Sci. Rev., 176, 311–344, 2018. a
Sánchez, L., Völksen, C., Sokolov, A., Arenz, H., and Seitz, F.: Present-day surface deformation of the Alpine region inferred from geodetic techniques, Earth Syst. Sci. Data, 10, 1503–1526, https://doi.org/10.5194/essd-10-1503-2018, 2018. a, b, c, d
Scafidi, D., Barani, S., Ferrari, R. D., Ferretti, G., Pasta, M., Pavan, M.,
Spallarossa, D., and Turino, C.: Seismicity of Northwestern Italy during the
last 30 years, J. Seismol., 19, 201–218, 2015. a
Scharf, A., Handy, M. R., Ziemann, M. A., and Schmid, S. M.: Peak-temperature patterns of polyphase metamorphism resulting from accretion, subduction and collision (eastern Tauern Window, European Alps) – A study with Raman microspectroscopy on carbonaceous material (RSCM), J. Metamorph. Geol., 31, 863–880, 2013. a, b
Schmid, S. and Froitzheim, N.: Oblique slip and block rotation along the
Engadine line, Eclogae Geol. Helv., 86, 569–593, 1993. a
Schmid, S. M., Scharf, A., Handy, M. R., and Rosenberg, C.: The Tauern Window (Eastern Alps, Austria): a new tectonic map, with cross-sections and a
tectonometamorphic synthesis, Swiss J. Geosci., 106, 1–32, 2013. a
Sippl, C., Schurr, B., Yuan, X., Mechie, J., Schneider, F., Gadoev, M.,
Orunbaev, S., Oimahmadov, I., Haberland, C., Abdybachaev, U., Minaev, V.,
Negmatullaev, S., and Radjabov, N.: Geometry of the Pamir-Hindu Kush
intermediate-depth earthquake zone from local seismic data, J. Geophys. Res., 118, 1438–1457, 2013. a, b, c
Solarino, S., Kissling, E., Sellami, S., Smriglio, G., Thouvenot, F., Granet,
M., Bonjer, K. P., and Slejko, D.: Compilation of a recent seismicity
data base of the greater Alpine region from several seismological networks
and preliminary 3D tomographic results, Ann. Geophys.-Italy, 11, 161–174,
http://hdl.handle.net/2122/1542, 1997. a
Tarantola, A. and Valette, B.: Inverse problems = quest for information, J. Geophys. Res., 50, 159–170, 1982. a
Thurber, C. H.: Earthquake locations and three-dimensional crustal structure
in the Coyote Lake Area, central California, J. Geophys. Res.-Sol. Ea., 88, 8226–8236, 1983. a
Tryggvason, A. and Bergman, B.: A traveltime reciprocity discrepancy in the
Podvin and Lecomte time3d finite difference algorithm, Geophys. J. Int., 165, 432–435, 2006. a
Verwater, V. F., Le Breton, E., Handy, M. R., Picotti, V., Jozi Najafabadi, A., and Haberland, C.: Neogene kinematics of the Giudicarie Belt and eastern Southern Alpine orogenic front (Northern Italy), Solid Earth Discuss. [preprint], https://doi.org/10.5194/se-2021-19, in review, 2021. a, b, c, d
Wadati, K.: On the travel time of earthquake waves, Part II, J. Meteorol. Soc. Jpn. Ser. II,
7, 14–28, https://doi.org/10.2151/jmsj1923.11.1_14, 1933. a
Walter, W. R., Dodge, D. A., Ichinose, G., Myers, S. C., Pasyanos, M. E., and
R. F.: Body‐Wave Methods of Distinguishing between Explosions, Collapses,
and Earthquakes: Application to Recent Events in North Korea,
Seismol. Res. Lett., 89, 2131–2138, 2018. a
Wessel, P. and Smith, W. H. F.: Free software helps map and display data,
Eos, 72, 441–446, 1991. a
Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F.,
and Tian, D.: The Generic Mapping Tools version 6,
Geochem. Geophy. Geosy., 20, 5556–5564, 2019. a
Short summary
This study achieved high-precision hypocenters of 335 earthquakes (1–4.2 ML) and 1D velocity models of the Southern and Eastern Alps. The general pattern of seismicity reflects head-on convergence of the Adriatic Indenter with the Alpine orogenic crust. The relatively deeper seismicity in the eastern Southern Alps and Giudicarie Belt indicates southward propagation of the Southern Alpine deformation front. The derived hypocenters form excellent data for further seismological studies, e.g., LET.
This study achieved high-precision hypocenters of 335 earthquakes (1–4.2 ML) and 1D velocity...