Articles | Volume 12, issue 5
https://doi.org/10.5194/se-12-1143-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/se-12-1143-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Seismic imaging across fault systems in the Abitibi greenstone belt – an analysis of pre- and post-stack migration approaches in the Chibougamau area, Quebec, Canada
Saeid Cheraghi
CORRESPONDING AUTHOR
Mineral Exploration Research Centre, Harquail School of Earth
Sciences, Goodman School of Mines, Laurentian University, Sudbury, Ontario, Canada
Alireza Malehmir
Department of Earth Science, Uppsala University, Uppsala, Sweden
Mostafa Naghizadeh
Mineral Exploration Research Centre, Harquail School of Earth
Sciences, Goodman School of Mines, Laurentian University, Sudbury, Ontario, Canada
David Snyder
Mineral Exploration Research Centre, Harquail School of Earth
Sciences, Goodman School of Mines, Laurentian University, Sudbury, Ontario, Canada
Lucie Mathieu
Centre d'études sur les ressources minérales (CERM),
Département des Sciences appliquées, Université du Québec
à Chicoutimi (UQAC), Chicoutimi, Québec, Canada
Pierre Bedeaux
Centre d'études sur les ressources minérales (CERM),
Département des Sciences appliquées, Université du Québec
à Chicoutimi (UQAC), Chicoutimi, Québec, Canada
Related authors
No articles found.
Samuel Zappalá, Alireza Malehmir, Haralambos Kranis, George Apostolopoulos, and Myrto Papadopoulou
Solid Earth, 16, 409–423, https://doi.org/10.5194/se-16-409-2025, https://doi.org/10.5194/se-16-409-2025, 2025
Short summary
Short summary
Three 2D seismic profiles were acquired in the Thinia valley, an isthmus connecting the main part of the island to the Paliki peninsula, to improve the subsurface knowledge of the tectonically peculiar Kefalonia island. Here the presence of a possible channel has been largely disputed in ongoing investigations for the possible location of Homer’s Ithaca. Results from different analyses further constrain the recent tectonic history of the area and thus the long-debated presence of a historic water channel in the valley.
Michael Westgate, Musa S. D. Manzi, Alireza Malehmir, Ian James, and Christian Schiffer
EGUsphere, https://doi.org/10.5194/egusphere-2025-1844, https://doi.org/10.5194/egusphere-2025-1844, 2025
Short summary
Short summary
This study makes use of advanced seismic imaging techniques to look beneath the surface of South Africa’s Kheis region. The results reveal hidden faults and folded rocks that help explain how ancient continents collided. The findings challenge older ideas about major geological boundaries and suggest a new model for how the crust formed and evolved. This work shows how old data, when re-analyzed with new methods and integrated with supporting data, can disclose important geological qualities.
David B. Snyder, Jack M. Simmons, John A. Ayer, Mostafa Naghizadeh, Ademola Q. Adetunji, Taus R. C. Jørgensen, Graham J. Hill, Eric A. Roots, and Saeid Cheraghi
EGUsphere, https://doi.org/10.5194/egusphere-2025-390, https://doi.org/10.5194/egusphere-2025-390, 2025
Short summary
Short summary
Sub-surface geometries of ancient faults must be mapped using high-resolution geophysical surveys using reflected seismic waves. Several such surveys in southern Canada map faults, many of which host significant gold or nickel deposits. Reflectors are considered upper crustal brittle, lava flows if folded or broken or mid-crustal if mostly parallel. Steep fault zones formed first in ocean settings when the lavas erupted. Folds and horizontal shortening occurred during later mountain building.
Brij Singh, Michał Malinowski, Andrzej Górszczyk, Alireza Malehmir, Stefan Buske, Łukasz Sito, and Paul Marsden
Solid Earth, 13, 1065–1085, https://doi.org/10.5194/se-13-1065-2022, https://doi.org/10.5194/se-13-1065-2022, 2022
Short summary
Short summary
Fast depletion of shallower deposits is pushing the mining industry to look for cutting-edge technologies for deep mineral targeting. We demonstrated a joint workflow including two state-of-the-art technologies: full-waveform inversion and reverse time migration. We produced Earth images with significant details which can help with better estimation of areas with high mineralisation, better mine planning and safety measures.
Felix Hloušek, Michal Malinowski, Lena Bräunig, Stefan Buske, Alireza Malehmir, Magdalena Markovic, Lukasz Sito, Paul Marsden, and Emma Bäckström
Solid Earth, 13, 917–934, https://doi.org/10.5194/se-13-917-2022, https://doi.org/10.5194/se-13-917-2022, 2022
Short summary
Short summary
Methods for mineral exploration play an important role within the EU. Exploration must be environmentally friendly, cost effective, and feasible in populated areas. Seismic methods have the potential to deliver detailed images of mineral deposits but suffer from these demands. We show the results for a sparse 3D seismic dataset acquired in Sweden. The 3D depth image allows us to track the known mineralizations beyond the known extent and gives new insights into the geometry of the deposit.
Yinshuai Ding and Alireza Malehmir
Solid Earth, 12, 1707–1718, https://doi.org/10.5194/se-12-1707-2021, https://doi.org/10.5194/se-12-1707-2021, 2021
Short summary
Short summary
In this article, we investigate the potential of reverse time migration (RTM) for deep targeting iron oxide deposits and the possible AVO effect that is potentially seen in the common image gathers from this migration algorithm. The results are promising and help to delineate the deposits and host rock structures using a 2D dataset from the Ludvika mines of central Sweden.
Alireza Malehmir, Magdalena Markovic, Paul Marsden, Alba Gil, Stefan Buske, Lukasz Sito, Emma Bäckström, Martiya Sadeghi, and Stefan Luth
Solid Earth, 12, 483–502, https://doi.org/10.5194/se-12-483-2021, https://doi.org/10.5194/se-12-483-2021, 2021
Short summary
Short summary
A smooth transition toward decarbonization demands access to more minerals of critical importance. Europe has a good geology for many of these mineral deposits, but at a depth requiring sensitive, environmentally friendly, and cost-effective methods for their exploration. In this context, we present a sparse 3D seismic dataset that allowed identification of potential iron oxide resources at depth and helped to characterise key geological structures and a historical tailing in central Sweden.
Cited articles
Adam, E., Milkereit, B., and Mareschal, M.: Seismic reflection and borehole
geophysical investigations in the Matagami mining camp, Can. J.
Earth Sci., 35, 686–695, 1998.
Adam, E., Perron, G., Milkereit, B., Wu, J., Calvert, A. J., Salisbury, M.,
Verpaelst, P., and Dion, D. J.: A review of high-resolution seismic profiling
across the Sudbury, Selbaie, Noranda, and Matagami mining camps, Can. J. Earth Sci., 37, 503–516, 2000.
Adam, E., Perron, G., Arnold, G., Matthews, L., and Milkeriet, B.: 3D
seismic imaging for VMS deposit exploration, Matagami, Quebec, in: Hardrock
seismic exploration, edited by: Eaton, D. W., Milkereit, B., and Salisbury, M. H., SEG, 229–246, 2003.
Ahmadi, O., Juhlin, C., Malehmir, A., and Munck, M.: High-resolution 2D
seismic imaging and forward modeling of a polymetallic sulfide deposit at
Garpenberg, central Sweden, Geophysics, 78, 339–350, 2013.
Beasley, C. J.: Quality Assurance of Spatial Sampling: SEG, Washington,
544–547, 1993.
Beasley, C. J. and Klotz, R.: Equalization of DMO for Irregular Spatial
Sampling, SEG, New Orleans, 970–973, 1992.
Bedeaux, P., Brochu, A., Mathieu, L., Gaboury, D., and Daigneault, R.:
Structural analysis and metamorphism of the Barlow Fault Zone, Chibougamau
area, Neoarchean Abitibi Subprovince: Implications for gold mineralization,
Can. J. Earth Sci., https://doi.org/10.1139/cjes-2020-0048, 2020.
Bellefleur, G., Barnes, A., Calvert, A. J., Hubert, C., and Mareschal, M.: Seismic reflection constraints from Lithoprobe line 29 on the upper
crustal structures of the northern Abitibi greenstone belt, Can. J. Earth Sci., 32, 128–134, 1995.
Bellefleur, G., Calvert, A. J., and Chouteau, M. C.: Crustal geometry of the
Abitibi Subprovince, in light of three-dimensional seismic reflector
orientation, Can. J. Earth Sci., 35, 569–582, 1998.
Bellefleur, G., Schetselaar, E., White, D., Miah, K., and Dueck, P.: 3D
seismic imaging of the Lalor volcanogenic massive sulphide deposit,
Manitoba, Canada, Geophys. Prospect., 63, 813–832, 2015.
Bellefleur, G., Cheraghi, S., and Malehmir, A.: Reprocessing legacy 3D
seismic data from the Halfmile Lake and Brunswick No. 6 VMS deposits, New
Brunswick, Canada, Can. J. Earth Sci., 56, 569–583,
2019.
Bédard, J. H., Leclerc, F., Harris, L. B., and Goulet, N.: Intra-sill
magmatic evolution in the Cummings Complex, Abitibi greenstone belt:
Tholeiitic to calc-alkaline magmatism recorded in an Archaean subvolcanic
conduit system, Lithos, 111, 47–71, 2009.
Braunig, L., Buske, S., Malehmir, A., Backstrom, E., Schon, M., and Marsden,
P.: Seismic depth imaging of iron-oxide deposits and their host rocks in the
Ludvika mining area of central Sweden, Geophys. Prospect., 68, 24–43,
2020.
Canning, A. and Gardner, G. H. F.: Reducing 3D acquisition footprint for 3D
DMO and 3D prestack migration, Geophysics, 63, 1177–1183, 1998.
Cheraghi, S., Malehmir, A., and Bellefleur, G.: Crustal-scale reflection
seismic investigations in the Bathurst Mining Camo, New Brunswick, Canada,
Tectonophysics, 506, 55–72, 2011.
Cheraghi, S., Malehmir, A., and Bellefleur, G.: 3D imaging challenges in
steeply dipping mining structures: new lights on acquisition geometry and
processing from the Brunswick No. 6 seismic data, Canada, Geophysics, 77,
109–122, 2012.
Cheraghi, S., Malehmir, A., Bellefleur, G., Bongajum, E., and Bastani, M.:
Scaling behavior and the effects of heterogeneity on shallow seismic imaging
of mineral deposits: A case study from Brunswick No. 6 mining area, Canada,
J. Appl. Geophys., 90, 1–18, 2013.
Cheraghi, S., Naghizadeh, M., Snyder, D. B., and Mathieu, L.: Crustal-scale
seismic investigation in Chibougamau, Quebec, Canada, 2nd Conference on
Geophysics for Mineral Exploration and Mining, Workshop: worldwide Mineral
Exploration Challenges and Cost-effective Geophysical Methods, EAGE, Porto,
Portugal, Abstract, 2018.
Deregowski, S. M.: Dip-moveout and reflector point dispersal, Geophys.
Prospect., 30, 318–322, 1982.
Daigneault, R., St-Julien, P., and Allard, G. O.: Tectonic evolution of the
northeast portion of the Archean Abitibi greenstone belt, Chibougamau area,
Quebec, Can. J. Earth Sci., 27, 1714–1736, 1990.
Daigneault, R.: Couloirs de déformation de la Sousprovince de
l'Abitibi, Ministère des Ressources Naturelles du Québec, MB, 140 p., 1996.
David, J., Vaillancourt, D., Bandyayera, D., Simard, M., Goutier, J.,
Pilote, P., Dion, C., and Barbe, P.: Datations U-Pb Effectuées dans les Sousprovinces
d'Ashuanipi, de La Grande, d'Opinaca et d'Abitibi en 2008–2009. MERN report,
RP-2010-11; Ministère de l'Énergie et des Ressources Naturelles:
Québec, QC, Canada, 2011.
Dimroth, E., Rochelau, M., Mueller, W., Archer, P., Brisson, H., Fortin, G.,
Jutras, M., Lefebvre, C., Piche, M., Pilote, P., and Simoneau, P.:
Paleogeographic and paleotectonic response to magmatic processes – a
case-history from the Archean sequence in the Chibougamau area, Quebec,
Geologische Rundschau, 74, 11–32, 1985.
Dimroth, E., Mueller, W., Daigneault, R., Brisson, H., Poitras, A., and
Rocheleau, M.: Diapirism during regional compression: the structural pattern
in the Chibougamau region of the Archean Abitibi Belt, Quebec, Geologische
Rundschau, 75, 715–736, 1986.
Ferber, R.: What is DMO coverage, 59th Annual International Meeting,
EAGE, Geneva, Switzerland, A049, 2 pp., 1997.
Fowler, P. J.: A comparative overview of prestack time migration methods,
67th Annual International meeting, SEG, 1571–1574, 1997.
Fowler, P. J.: A comparative overview of dip moveout methods, Annual Meeting,
SEG, 1744, 1998.
Groves, D. I., Goldfarb, R. J., Gebre-Mariam, M., Hagemann, S. G., and Robert,
F.: Orogenic gold deposits – a proposed classification in the context of
their crustal distribution and relationship to other gold deposit types, Ore
Geol. Rev., 13, 7–27, 1998.
Hale, D.: A nonaliased integral method for dip moveout: Geophysics, 56, 795–805, 1991.
Heinonen, S., Malinowski, M., Hloušek, F., Gislason, G., Buske, S.,
Koivisto, E., and Wojdyla, M.: Cost-effective seismic exploration: 2D
reflection imaging at the Kylylahti massive sulfide deposit, Finland,
Minerals, 9, 263, https://doi.org/10.3390/min9050263, 2019.
Jakubowicz, H.: A simple efficient method of dip-moveout correction,
Geophys. Prospect., 38, 221–245, 1990.
Juhlin, C.: Imaging of fracture zones in the Finnsjön area, central
Sweden, using the seismic reflection method, Geophysics, 60, 66–75, 1995.
Juhlin, C., Kashubin, A. S., Knapp, J., Makovsky, V., and Ryberg, T.:
EUROPROBE seismic reflection profiling in the Urals: The ESRU project, EOS,
76, 193–198, 1995.
Juhlin, C., Dehghannejad, M., Lund, B., Malehmir, A., and Pratt, G.:
Reflection seismic imaging of the end-glacial Pärvie Fault system,
northern Sweden, Appl. Geophys., 70, 307–316, 2010.
Kashubin, A. S. and Juhlin, C.: Mapping of crustal scale tectonic boundaries
in the Ossa-Morena Zone using reprocessed IBERSEIS re?ection seismic data,
Tectonophysics, 489, 139–158, 2010.
Lafrance, B.: Travaux ď exploration 2016-2017, Project Richardson,
Chibougamau, Quebec, Tarku Resources, GM 70535, 132 p., 2018.
Larner, K. L., Gibson, B. R., Chambers, R., and Wiggins, R. A.: Simultaneous
estimation of residual static and crossdip corrections, Geophysics, 44,
1175–1192, 1979.
Leclerc, F., Harris, L. B., Bedard, J. H., van Breemen, O., and Goulet, N.:
Structural and stratigraphic controls on magmatic, volcanogenic, and shear
zone-hosted mineralization in the Chapais-Chibougamau mining camp,
northeastern Abitibi, Canada, Eco. Geol., 107, 963–989, 2012.
Leclerc, F., Roy, P., Houle, P., Pilote, P., Bedard, J. H., Harris, L. B.,
McNicoll, V., Van Breemen, O., David, J., and Goulet, N.: Géologie de la
région de Chibougamau, Ministère de l'Énergie et des Ressources
Naturelles, RG 2015-03, 97 p., 2015.
Leclerc, F., Roy, P., Pilote, P., Bédard, J. H., Harris, L. B., McNicoll,
V. J., Van Breemen, O., David, J., and Goulet, N.: Géologie de la Région de Chibougamau : MERN report RG
2015-03, Ministère de l'Énergie et des Ressources Naturelles,
Québec, QC, 97 pp., Canada, 2017.
Lundberg, E. and Juhlin, C.: High resolution reflection seismic imaging of
the Ullared Deformation Zone, southern Sweden, Precambrian Research, 190,
25–34, 2011.
Malehmir, A. and Bellefleur, G.: Reflection seismic imaging and physical
properties of base-metal and associated iron deposits in the Bathurst Mining
Camp, New Brunswick, Canada, Ore Geol. Rev., 38, 319–333, 2010.
Malehmir, A., Bellefleur, G., and Müller, C.: 3D diffraction and mode
converted scattering signatures of base-metal deposits, Bathurst Mining
Camp, Canada, First Break, 28, 41–45, 2010.
Malehmir, A. Dahlin, P., Lundberg, E., Juhlin, C., Sjöström, H., and
Högdahl, K.: Reflection seismic investigations in the Dannemora area,
central Sweden: Insights into the geometry of polyphase deformation zones
and magnetite-skarn deposits, J. Geophys. Res., 116, B11307, https://doi.org/doi:10.1029/2011JB008643, 2011.
Malehmir, A., Durrheim, R., Bellefleur, G., Urosevic, M., Juhlin, C., White,
D., Milkeriet, B., and Campell, G.: Seismic methods in mineral exploration
and mine planning: A general overview of past and present case histories and
a look into the future, Geophysics, 77, 173–190, 2012.
Mathieu, L. and Racicot, D.: Petrogenetic Study of the Multiphase
Chibougamau Pluton: Archaean Magmas Associated with Cu-Au
Magmato-Hydrothermal Systems, Minerals, 9, 174, https://doi.org/10.3390/min9030174, 2019.
Mathieu, L., Crépon, A., and Kontak, D. J.: Tonalite-dominated magmatism
in the Abitibi Subprovince, Canada, and significance for Cu-Au
magmatic-hydrothermal systems, Minerals, 10, 242, https://doi.org/10.3390/min10030242, 2020a.
Mathieu, L., Snyder, D. B., Bedeaux, P., Cheraghi, S., Lafrance, B.,
Thurston, P., and Sherlock, R.: Deep into the Chibougamau area, Abitibi
Subprovince: structure of a Neoarchean crust revealed by seismic reflection
profiling, Tectonics, 38, 1–25, 2020b.
Mercier-Langevin, P., Lafrance, B., Bécu, V., Dubé, B., Kjarsgaard,
I., and Guha, J.: The Lemoine auriferous volcanogenic massive sulfide
deposit, Chibougamau camp, Abitibi greenstone belt, Quebec, Canada: Geology
and genesis, Eco. Geol., 109, 231–269, 2014.
Milkereit, B. and Eaton, D.: Imaging and interpreting the shallow crust,
Tectonophysics, 286, 5–18, 1998.
Mueller, W., Chown, E. H., Sharma, K. N. M., Tait, L., and Rocheleau, M.:
Paleogeographic and paleotectonic evolution of a basement-controlled Archean
supracrustal sequence, Chibougamau-Caopatina, Quebec, J. Geol., 97, 399–420, 1989.
Naghizadeh, M., Snyder, D. B., Cheraghi, S., Foster, S., Cilensek, S.,
Feloreani, E., and Mackie, J.: Acquisition and Processing of Wider Bandwidth
Seismic Data in Crystalline Crust: Progress with the Metal Earth Project,
Minerals, 9, 145, https://doi.org/10.3390/min9030145, 2019.
Nedimovic, M. R. and West, G. F.: Crooked-line 2D seismic reflection
imaging in crystalline terrains: Part 1, data processing, Geophysics, 68,
274–285, 2003.
Perron, G. and Calvert, A. J.: Shallow, high-resolution seismic imaging at
the Ansil mining camp in the Abitibi greenstone belt, Geophysics, 63,
379–391, 1998.
Perron, G., Milkereit, B., Reed, L. E., Salisbury, M., Adam, E., and Wu, J.:
Integrated seismic reflection and borehole geophysical studies at Les Mines
Selbaie, Quebec, CIM Bulletin, 90, 75–82, 1997
Pilote, P., Dion, C., Joanisse, A., David, J., Machado, N., Kirkham, R. V.,
and Robert, F.: Géochronologie des minéralisations d'affiliation
magmatique de l'Abitibi, secteurs Chibougamau et de Troilus-Frotet:
implications géotectoniques, in: Programme et résumés,
Séminaire d'information sur la recherche géologique (p. 47), MRN
report, DV-97-03, Ministère des Ressources Naturelles, Québec, QC,
Canada, 1997.
Phillips, G. N. and Powell, R.: Formation of gold deposits: a metamorphic
devolatilization model, J. Metamor. Geol., 28, 689–718,
2010.
Robert, F., Poulsen, K. H., Cassidy, K. F., and Hodgson, C. J.: Gold
metallogeny of the Superior and Yilgarn cratons, Economic Geology, 100,
1001–1033, 2005.
Rodriguez-Tablante, J., Tryggvason, A., Malehmir, A., Juhlin, C., and Palm,
H.: Cross-profile acquisition and cross-dip analysis for extracting 3D
information from 2D surveys, a case study from the western Skellefte
District, northern Sweden, J. Appl. Geophys., 63, 1–12, 2007.
Ronen, S., Nichols, D., Bale, R., and Ferber, R.: Dealiasing DMO: Good-pass,
bad-pass, and unconstrained, SEG, Houston, 743–745, 1995.
Salisbury, M. H., Harvey, C. W., and Matthews, L.: The acoustic properties of
ores and host rocks in hardrock terranes, in: Hard rock seismic exploration,
edited by: Eaton, D. W., Milkereit, B., and Salisbury, M. H., SEG, 9–19, 2003.
Sawyer, E. W. and Benn, K.: Structure of the high-grade Opatica Belt and
adjacent low-grade Abitibi Subprovince, Canada: An Archaean mountain front,
J. Struct. Geol., 15, 1443–1458, 1993.
Schmelzbach, C., Juhlin, C., Carbonell, R., and Simancas, J. F.: Prestack and
poststack migration of crooked-line seismic reflection data: a case study
from the South Portuguese Zone fold belt, southwestern Iberia, Geophysics,
72, 9–18, 2007.
Schuster, G. T. and Liu, Z.: Seismic array theorem and rapid calculation of
acquisition footprint noise, Geophysics, 66, 1843–1849, 2001.
Singh, B., Malinowski, M., Hlousek, F., Koivisto, E., Heinonen, S., Hellwig,
O., Buske, S., Chamarczuk, M., and Juurela, S.: Sparse 3D Seismic Imaging in
the Kylylahti Mine Area, Eastern Finland: Comparison of Time Versus Depth
Approach, Minerals, 9, 305, https://doi.org/10.3390/min9050305, 2019.
Vermeer, G. J. O.: Seismic wavefield sampling, SEG, 1990.
Vermeer, G. J. O.: 3D symmetric sampling, 64th annual International
Metting, SEG, extended abstreract, 906–909, 1994.
Vermeer, G. J. O.: 3D symmetric sampling, Geophysics, 63, 1629–1647,
1998.
Vermeer, G. J. O.: 3D symmetric sampling of sparse acquisition geometries,
Geophysics, 75, 3–14, 2010.
Vermeer, G. J. O.: 3D seismic survey design, second edition, SEG, 263–270,
2012.
Williams, R. G. and Marcoux, M.: Model-constrained anti-alias filtering for
improved 3-D DMO, 51st Annual International Meeting, EAGE, 1989.
Yilmaz, Ö.: Seismic data analysis, Processing, inversion, and
interpretation of seismic data, SEG, 2001.
Short summary
High-resolution seismic profiles in 2D are acquired in the north and south of the Chibougamau area, Quebec, Canada located in the northeast of the Abitibi Greenstone belt. The area mostly includes volcanic rocks, and both profiles cross over several fault zones. The seismic method is acquired to image the subsurface down to depth of 12 km. The main aim of this study is to image major fault zones and the geological formations connected to those faults to investigate metal endowment in the area.
High-resolution seismic profiles in 2D are acquired in the north and south of the Chibougamau...
Special issue