Articles | Volume 12, issue 11
https://doi.org/10.5194/se-12-2597-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-12-2597-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
3D crustal structure of the Ligurian Basin revealed by surface wave tomography using ocean bottom seismometer data
GEOMAR Helmholtz Centre for Ocean Research Kiel, 24148 Kiel,
Germany
Dietrich Lange
GEOMAR Helmholtz Centre for Ocean Research Kiel, 24148 Kiel,
Germany
Anke Dannowski
GEOMAR Helmholtz Centre for Ocean Research Kiel, 24148 Kiel,
Germany
Martin Thorwart
Institute of Geosciences, Kiel University, 24118 Kiel, Germany
Wayne Crawford
Laboratoire de Géosciences Marines, Institut de Physique du
Globe de Paris, Paris, 75238 CEDEX 5, France
Lars Wiesenberg
Institute of Geosciences, Kiel University, 24118 Kiel, Germany
Ingo Grevemeyer
GEOMAR Helmholtz Centre for Ocean Research Kiel, 24148 Kiel,
Germany
Heidrun Kopp
GEOMAR Helmholtz Centre for Ocean Research Kiel, 24148 Kiel,
Germany
Institute of Geosciences, Kiel University, 24118 Kiel, Germany
A full list of authors appears at the end of the paper.
Related authors
No articles found.
Guilherme W. S. de Melo, Ingo Grevemeyer, Sibiao Liu, Marcia Maia, and Lars Rüpke
EGUsphere, https://doi.org/10.5194/egusphere-2025-1826, https://doi.org/10.5194/egusphere-2025-1826, 2025
Short summary
Short summary
The St. Paul Transform System on the equatorial Mid-Atlantic Ridge is a seismically active multi-fault system. This study re-examines the focal depths of 35 earthquakes (Mw 5.3-6.9) from Transforms A, B, and C. The data suggest that the seismogenic zone ranges from 5 to 18 km deep, with the deepest occurring in cooler lithosphere around the center of the transform segments. This challenges earlier hypotheses and indicates a global pattern of cooler mantle in center of oceanic transform faults.
Yueyang Xia, Dirk Klaeschen, Heidrun Kopp, and Michael Schnabel
Solid Earth, 13, 367–392, https://doi.org/10.5194/se-13-367-2022, https://doi.org/10.5194/se-13-367-2022, 2022
Short summary
Short summary
Geological interpretations based on seismic depth images depend on an accurate subsurface velocity model. Reflection tomography is one method to iteratively update a velocity model based on depth error analysis. We used a warping method to estimate closely spaced data-driven depth error displacement fields. The application to a multichannel seismic line across the Sunda subduction zone illustrates the approach which leads to more accurate images of complex geological structures.
Martin Thorwart, Anke Dannowski, Ingo Grevemeyer, Dietrich Lange, Heidrun Kopp, Florian Petersen, Wayne C. Crawford, Anne Paul, and the AlpArray Working Group
Solid Earth, 12, 2553–2571, https://doi.org/10.5194/se-12-2553-2021, https://doi.org/10.5194/se-12-2553-2021, 2021
Short summary
Short summary
We analyse broadband ocean bottom seismometer data of the AlpArray OBS network in the Ligurian Basin. Two earthquake clusters with thrust faulting focal mechanisms indicate compression of the rift basin. The locations of seismicity suggest reactivation of pre-existing rift structures and strengthening of crust and uppermost mantle during rifting-related extension. Slightly different striking directions of faults may mimic the anti-clockwise rotation of the Corsica–Sardinia block.
Yueyang Xia, Jacob Geersen, Dirk Klaeschen, Bo Ma, Dietrich Lange, Michael Riedel, Michael Schnabel, and Heidrun Kopp
Solid Earth, 12, 2467–2477, https://doi.org/10.5194/se-12-2467-2021, https://doi.org/10.5194/se-12-2467-2021, 2021
Short summary
Short summary
The 2 June 1994 Java tsunami earthquake ruptured in a seismically quiet subduction zone and generated a larger-than-expected tsunami. Here, we re-process a seismic line across the rupture area. We show that a subducting seamount is located up-dip of the mainshock in a region that did not rupture during the earthquake. Seamount subduction modulates the topography of the marine forearc and acts as a seismic barrier in the 1994 earthquake rupture.
Cited articles
Adimah, N. I. and Padhy, S.: Ambient noise Rayleigh wave tomography across
the Madagascar island, Geophys. J. Int., 220, 1657–1676,
https://doi.org/10.1093/gji/ggz542, 2020.
Aki, K.: Space and Time Spectra of Stationary Stochastic Waves, with Special
Reference to Microtremors, Bull. Earthq. Res. Inst. Univ. Tokyo, 415–456, 1957.
AlpArray Seismic Network: AlpArray Seismic Network (AASN) temporary component, AlpArray Working Group, Other/Seismic Network [data set], https://doi.org/10.12686/alparray/z3_2015, 2015.
André, G., Garreau, P., Garnier, V., and Fraunié, P.: Modelled
variability of the sea surface circulation in the North-western
Mediterranean Sea and in the Gulf of Lions, Ocean Dynam., 55, 294–308,
https://doi.org/10.1007/s10236-005-0013-6, 2005.
Barmin, M. P., Ritzwoller, M. H., and Levshin, A. L.: A Fast and Reliable
Method for Surface Wave Tomography, in: Monitoring the Comprehensive
Nuclear-Test-Ban Treaty: Surface Waves, Birkhäuser Basel, Basel,
1351–1375, https://doi.org/10.1007/978-3-0348-8264-4_3,
2001.
Bell, S. W., Forsyth, D. W., and Ruan, Y.: Removing Noise from the Vertical
Component Records of Ocean-Bottom Seismometers: Results from Year One of the
Cascadia Initiative, B. Seismol. Soc. Am., 105, 300–313,
https://doi.org/10.1785/0120140054, 2015.
Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., Levshin, A. L., Lin, F.,
Moschetti, M. P., Shapiro, N. M., and Yang, Y.: Processing seismic ambient
noise data to obtain reliable broad-band surface wave dispersion
measurements, Geophys. J. Int., 169, 1239–1260,
https://doi.org/10.1111/j.1365-246X.2007.03374.x, 2007.
Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., and
Wassermann, J.: ObsPy: A Python Toolbox for Seismology, Seismol. Res. Lett.,
81, 530–533, https://doi.org/10.1785/gssrl.81.3.530, 2010.
Boschi, L., Weemstra, C., Verbeke, J., Ekström, G., Zunino, A., and
Giardini, D.: On measuring surface wave phase velocity from station–station
cross-correlation of ambient signal, Geophys. J. Int., 192, 346–358,
https://doi.org/10.1093/gji/ggs023, 2013.
Campillo, M. and Paul, A.: Long-Range Correlations in the Diffuse Seismic
Coda, Science, 299, 547–549, https://doi.org/10.1126/science.1078551, 2003.
Campillo, M. and Roux, P.: Seismic Imaging and Monitoring with Ambient Noise
Correlations, in: Treatise on Geophysics, Elservier, Amsterdam, 2014.
Carlson, R. L. and Miller, D. J.: Mantle wedge water contents estimated from
seismic velocities in partially serpentinized peridotites, Geophys. Res.
Lett., 30, 12–15, https://doi.org/10.1029/2002gl016600, 2003.
Contrucci, I., Nercessian, A., Béthoux, N., Mauffret, A., and Pascal,
G.: A Ligurian (Western Mediterranean Sea) geophysical transect revisited,
Geophys. J. Int., 146, 74–97,
https://doi.org/10.1046/j.0956-540x.2001.01418.x, 2001.
Cox, C., Deaton, T., and Webb, S.: A Deep-Sea Differential Pressure Gauge,
J. Atmospheric Ocean. Technol., 1, 237–246,
https://doi.org/10.1175/1520-0426(1984)001<0237:ADSDPG>2.0.CO;2, 1984.
Crawford, W. C. and Webb, S. C.: Identifying and Removing Tilt Noise from
Low-Frequency (<0.1 Hz) Seafloor Vertical Seismic Data, B.
Seismol. Soc. Am., 90, 952–963, https://doi.org/10.1785/0119990121, 2000.
Crawford, W. C., Webb, S. C., and Hildebrand, J. A.: Estimating shear
velocities in the oceanic crust from compliance measurements by
two-dimensional finite difference modeling, J. Geophys. Res.-Sol. Ea.,
103, 9895–9916, https://doi.org/10.1029/97JB03532, 1998.
Dannowski, A., Kopp, H., Grevemeyer, I., Lange, D., Thorwart, M., Bialas, J., and Wollatz-Vogt, M.: Seismic evidence for failed rifting in the Ligurian Basin, Western Alpine domain, Solid Earth, 11, 873–887, https://doi.org/10.5194/se-11-873-2020, 2020.
Dewangan, P., Reddy, R., Kamesh Raju, K. A., Singha, P., Aswini, K. K.,
Yatheesh, V., Samudrala, K., and Shuhail, M.: Nature of the Ambient Noise,
Site Response, and Orientation of Ocean-Bottom Seismometers (OBSs):
Scientific Results of a Passive Seismic Experiment in the Andaman Sea, B.
Seismol. Soc. Am., 108, 248–259, https://doi.org/10.1785/0120170163, 2018.
Dziewonski, A. M. and Anderson, D. L.: Preliminary reference Earth model,
Phys. Earth Planet. In., 25, 297–356,
https://doi.org/10.1016/0031-9201(81)90046-7, 1981.
Dziewonski, A. M., Bloch, S., and Landisman, M.: A Technique for the
Analysis of Transient Seismic Signals, B. Seismol. Soc. Am., 59,
427–444, 1969.
Faccenna, C., Funiciello, F., Giardini, D., and Lucente, P.: Episodic
back-arc extension during restricted mantle convection in the Central
Mediterranean, Earth Planet. Sc. Lett., 187, 105–116,
https://doi.org/10.1016/S0012-821X(01)00280-1, 2001.
Finetti, I. R., Boccaletti, M., Bonini, M., Del Ben, A., Pipan, M., Prizzon,
A., and Sani, F.: Lithospheric tectono-stratigraphic setting of the Ligurian
Sea–Northern Apennines–Adriatic Foreland from integrated CROP seismic
data, in: Deep Seismic Exploration of the Central Mediterranean and Italy,
CROP PROJECT, Vol. 8, Trieste, Italy, 119–158, 2005.
Foti, S., Hollender, F., Garofalo, F., Albarello, D., Asten, M., Bard, P.
Y., Comina, C., Cornou, C., Cox, B., Di Giulio, G., Forbriger, T., Hayashi,
K., Lunedei, E., Martin, A., Mercerat, D., Ohrnberger, M., Poggi, V.,
Renalier, F., Sicilia, D., and Socco, V.: Guidelines for the good practice
of surface wave analysis: a product of the InterPACIFIC project, B.
Earthq. Eng., 16, 2367–2420, https://doi.org/10.1007/s10518-017-0206-7,
2018.
Gailler, A., Klingelhoefer, F., Olivet, J.-L. L., and Aslanian, D.: Crustal
structure of a young margin pair: New results across the Liguro–Provencal
Basin from wide-angle seismic tomography, Earth Planet. Sc. Lett., 286,
333–345, https://doi.org/10.1016/j.epsl.2009.07.001, 2009.
Gattacceca, J., Deino, A., Rizzo, R., Jones, D. S., Henry, B., Beaudoin, B.,
and Vadeboin, F.: Miocene rotation of Sardinia: New paleomagnetic and
geochronological constraints and geodynamic implications, Earth Planet. Sc.
Lett., 258, 359–377, https://doi.org/10.1016/j.epsl.2007.02.003, 2007.
Goutorbe, B., de Oliveira Coelho, D. L., and Drouet, S.: Rayleigh wave group
velocities at periods of 6–23 s across Brazil from ambient noise
tomography, Geophys. J. Int., 203, 869–882,
https://doi.org/10.1093/gji/ggv343, 2015.
Gueguen, E., Doglioni, C., and Fernandez, M.: On the post-25 Ma geodynamic
evolution of the western Mediterranean, Tectonophysics, 298, 259–269,
https://doi.org/10.1016/S0040-1951(98)00189-9, 1998.
Guerin, G., Rivet, D., Deschamps, A., Larroque, C., Mordret, A., Dessa,
J.-X., and Martin, X.: High resolution ambient noise tomography of the
Southwestern Alps and the Ligurian margin, Geophys. J. Int., 220, 806–820,
https://doi.org/10.1093/gji/ggz477, 2020.
Hansen, P. C.: Analysis of Discrete Ill-Posed Problems by Means of the
L-Curve, SIAM Rev., 34, 561–580, https://doi.org/10.1137/1034115, 1992.
Harmon, N., Forsyth, D., and Webb, S.: Using Ambient Seismic Noise to
Determine Short-Period Phase Velocities and Shallow Shear Velocities in
Young Oceanic Lithosphere, B. Seismol. Soc. Am., 97, 2009–2023,
https://doi.org/10.1785/0120070050, 2007.
Harmon, N., Henstock, T., Tilmann, F., Rietbrock, A., and Barton, P.: Shear
velocity structure across the Sumatran Forearc-Arc, Geophys. J. Int., 189,
1306–1314, https://doi.org/10.1111/j.1365-246X.2012.05446.x, 2012.
Herrmann, R. B.: Computer Programs in Seismology: An Evolving Tool for
Instruction and Research, Seismol. Res. Lett., 84, 1081–1088,
https://doi.org/10.1785/0220110096, 2013.
Hetényi, G., Molinari, I., Clinton, J., Bokelmann, G., Bondár, I.,
Crawford, W. C., Dessa, J.-X., Doubre, C., Friederich, W., Fuchs, F.,
Giardini, D., Gráczer, Z., Handy, M. R., Herak, M., Jia, Y., Kissling,
E. E., Kopp, H., Korn, M., Margheriti, L., Meier, T., Mucciarelli, M., Paul,
A., Pesaresi, D., Piromallo, C., Plenefisch, T., Plomerová, J., Ritter,
J., Rümpker, G., Šipka, V., Spallarossa, D., Thomas, C., Tilmann,
F., Wassermann, J., Weber, M., Wéber, Z., Wesztergom, V., and
Živčić, M.: The AlpArray Seismic Network: A Large-Scale European
Experiment to Image the Alpine Orogen, Surv. Geophys., 39, 1009–1033,
https://doi.org/10.1007/s10712-018-9472-4, 2018.
INGV Seismological Data Centre: Rete Sismica Nazionale (RSN), Istituto Nazionale di Geofisica e Vulcanologia (INGV), Italy [data set], https://doi.org/10.13127/SD/X0FXNH7QFY, 2006.
Jolivet, L. and Faccenna, C.: Mediterranean extension and the Africa-Eurasia
collision, Tectonics, 19, 1095–1106, https://doi.org/10.1029/2000TC900018,
2000.
Jolivet, L., Gorini, C., Smit, J., and Leroy, S.: Continental breakup and
the dynamics of rifting in back-arc basins: The Gulf of Lion margin,
Tectonics, 34, 662–679, https://doi.org/10.1002/2014TC003570, 2015.
Kästle, E. D., El-Sharkawy, A., Boschi, L., Meier, T., Rosenberg, C.,
Bellahsen, N., Cristiano, L., and Weidle, C.: Surface Wave Tomography of the
Alps Using Ambient-Noise and Earthquake Phase Velocity Measurements, J.
Geophys. Res.-Sol. Ea., 123, 1770–1792,
https://doi.org/10.1002/2017JB014698, 2018.
Kästle, E. D., Rosenberg, C., Boschi, L., Bellahsen, N., Meier, T., and El-Sharkawy, A.: Slab Break-offs in the Alpine Subduction Zone, Solid Earth Discuss. [preprint], https://doi.org/10.5194/se-2019-17, 2019.
Krischer, L., Megies, T., Barsch, R., Beyreuther, M., Lecocq, T., Caudron,
C., and Wassermann, J.: ObsPy: a bridge for seismology into the scientific
Python ecosystem, Comput. Sci. Discov., 8, 014003–014003,
https://doi.org/10.1088/1749-4699/8/1/014003, 2015.
Laubscher, H., Biella, G. C., Cassinis, R., Gelati, R., Lozej, A.,
Scarascia, S., and Tabacco, I.: The collisional knot in Liguria, Geol.
Rundsch., 81, 275–289, https://doi.org/10.1007/BF01828598, 1992.
Le Breton, E., Handy, M. R., Molli, G., and Ustaszewski, K.: Post-20 Ma
Motion of the Adriatic Plate: New Constraints From Surrounding Orogens and
Implications for Crust-Mantle Decoupling, Tectonics, 36, 3135–3154,
https://doi.org/10.1002/2016TC004443, 2017.
Le Pichon, X., Rangin, C., Hamon, Y., Loget, N., Lin, J. Y., Andreani, L.,
and Flotte, N.: Geodynamics of the France Southeast Basin, B. Soc. Géol.
Fr., 181, 477–501, 2010.
Lin, P.-Y. P., Gaherty, J. B., Jin, G., Collins, J. A., Lizarralde, D.,
Evans, R. L., and Hirth, G.: High-resolution seismic constraints on flow
dynamics in the oceanic asthenosphere, Nature, 535, 538–541,
https://doi.org/10.1038/nature18012, 2016.
Lobkis, O. I. and Weaver, R. L.: On the emergence of the Green's function in
the correlations of a diffuse field, J. Acoust. Soc. Am., 110, 3011–3017,
https://doi.org/10.1121/1.1417528, 2001.
Lu, Y., Stehly, L., and Paul, A.: High-resolution surface wave tomography of
the European crust and uppermost mantle from ambient seismic noise, Geophys.
J. Int., 214, 1136–1150, https://doi.org/10.1093/gji/ggy188, 2018.
Makris, J., Egloff, F., Nicolich, R., and Rihm, R.: Crustal structure from
the Ligurian Sea to the Northern Apennines – a wide angle seismic
transect, Tectonophysics, 301, 305–319,
https://doi.org/10.1016/S0040-1951(98)00225-X, 1999.
McNamara, D. E. and Buland, R. P.: Ambient Noise Levels in the Continental
United States, B. Seismol. Soc. Am., 94, 1517–1527,
https://doi.org/10.1785/012003001, 2004.
MedNet Project Partner Institutions: Mediterranean Very Broadband Seismographic Network (MedNet), Istituto Nazionale di Geofisica e Vulcanologia (INGV) [data set], https://doi.org/10.13127/SD/FBBBTDTD6Q, 1990.
Meier, T., Dietrich, K., Stöckhert, B., and Harjes, H. P.:
One-dimensional models of shear wave velocity for the eastern Mediterranean
obtained from the inversion of Rayleigh wave phase velocities and tectonic
implications, Geophys. J. Int., 156, 45–58,
https://doi.org/10.1111/j.1365-246X.2004.02121.x, 2004.
Millot, C. and Wald, L.: The effects of Mistral wind on the Ligurian current
near Provence, Oceanol. Acta, 3, 399–402, 1980.
Molinari, I., Argnani, A., Morelli, A., and Basini, P.: Development and
Testing of a 3D Seismic Velocity Model of the Po Plain Sedimentary Basin,
Italy, B. Seismol. Soc. Am., 105, 753–764,
https://doi.org/10.1785/0120140204, 2015a.
Molinari, I., Verbeke, J., Boschi, L., Kissling, E., and Morelli, A.:
Italian and Alpine three-dimensional crustal structure imaged by
ambient-noise surface-wave dispersion, Geochem. Geophy. Geosy., 16,
4405–4421, https://doi.org/10.1002/2015GC006176, 2015b.
Moulin, M., Klingelhoefer, F., Afilhado, A., Aslanian, D., Schnurle, P.,
Nouzé, H., Rabineau, M., Beslier, M.-O., and Feld, A.: Deep crustal
structure across a young passive margin from wide-angle and reflection
seismic data (The SARDINIA Experiment) – I. Gulf of Lion's margin, Bull.
Société Géologique Fr., 186, 309–330,
https://doi.org/10.2113/gssgfbull.186.4-5.309, 2015.
Pasi, F., Orlandi, A., Onorato, L. F., and Gallino, S.: A study of the 1 and
2 January 2010 sea-storm in the Ligurian Sea, Adv. Sci. Res., 109–115,
https://doi.org/10.5194/asr-6-109-2011, 2011.
Prieto, G. A., Lawrence, J. F., and Beroza, G. C.: Anelastic Earth structure
from the coherency of the ambient seismic field, J. Geophys. Res., 114,
B07303, https://doi.org/10.1029/2008JB006067, 2009.
Rawlinson, N. and Sambridge, M.: Wave front evolution in strongly
heterogeneous layered media using the fast marching method, Geophys. J.
Int., 156, 631–647, https://doi.org/10.1111/j.1365-246X.2004.02153.x, 2004.
Rawlinson, N. and Sambridge, M.: The fast marching method: an effective tool
for tomographic imaging and tracking multiple phases in complex layered
media, Explor. Geophys., 36, 341–350, https://doi.org/10.1071/EG05341,
2005.
RESIF: RESIF-RLBP French Broad-band network, RESIF-RAP strong motion network and other seismic stations in metropolitan France, RESIF – Réseau Sismologique et géodésique Français [data set], https://doi.org/10.15778/resif.fr, 1995.
Rollet, N., Déverchère, J., Beslier, M.-O., Guennoc, P.,
Réhault, J.-P., Sosson, M., and Truffert, C.: Back arc extension,
tectonic inheritance, and volcanism in the Ligurian Sea, Western
Mediterranean, Tectonics, 21, 6-1–6-23,
https://doi.org/10.1029/2001TC900027, 2002.
Rosenbaum, G., Lister, G. S., and Duboz, C.: Reconstruction of the tectonic
evolution of the western Mediterranean since the Oligocene, J. Virtual
Explor., 08, 107–126, https://doi.org/10.3809/jvirtex.2002.00053, 2002.
Ryan, W. B. F., Carbotte, S. M., Coplan, J. O., O'Hara, S., Melkonian, A.,
Arko, R., Weissel, R. A., Ferrini, V., Goodwillie, A., Nitsche, F.,
Bonczkowski, J., and Zemsky, R.: Global Multi-Resolution Topography
synthesis, Geochem. Geophy. Geosy., 10, Q03014,
https://doi.org/10.1029/2008GC002332, 2009.
Sandwell, D. T., Müller, R. D., Smith, W. H. F., Garcia, E., and
Francis, R.: New global marine gravity model from CryoSat-2 and Jason-1
reveals buried tectonic structure, Science, 346, 65–67,
https://doi.org/10.1126/science.1258213, 2014.
Schettino, A. and Turco, E.: Plate kinematics of the Western Mediterranean
region during the Oligocene and Early Miocene, Geophys. J. Int., 166,
1398–1423, https://doi.org/10.1111/j.1365-246X.2006.02997.x, 2006.
Schmid, S. M., Fügenschuh, B., Kissling, E., and Schuster, R.: Tectonic
map and overall architecture of the Alpine orogen, Eclogae Geol. Helv.,
97, 93–117, https://doi.org/10.1007/s00015-004-1113-x, 2004.
Schmidt-Ausch, M. C. and Haberland, C.: DEPAS (Deutscher Geräte-Pool
für amphibische Seismologie): German Instrument Pool for Amphibian
Seismology, J. Large-Scale Res. Facil. JLSRF, 3, A122,
https://doi.org/10.17815/jlsrf-3-165, 2017.
Sethian, J. A.: A fast marching level set method for monotonically advancing
fronts, P. Natl. Acad. Sci., 93, 1591–1595,
https://doi.org/10.1073/pnas.93.4.1591, 1996.
Sethian, J. A. and Popovici, A. M.: 3-D traveltime computation using the
fast marching method, Geophysics, 64, 516–523,
https://doi.org/10.1190/1.1444558, 1999.
Shapiro, N. M., Campillo, M., Stehly, L., and Ritzwoller, M. H.:
High-Resolution Surface-Wave Tomography from Ambient Seismic Noise, Science,
307, 1615–1618, https://doi.org/10.1126/science.1108339, 2005.
Shillington, D. J., Minshull, T. A., Peirce, C., and O'Sullivan, J. M.: P-
and S-wave velocities of consolidated sediments from a seafloor seismic
survey in the North Celtic Sea Basin, offshore Ireland, Geophys. Prospect.,
56, 197–211, https://doi.org/10.1111/j.1365-2478.2007.00669.x, 2007.
Speranza, F., Villa, I. M., Sagnotti, L., Florindo, F., Cosentino, D.,
Cipollari, P., and Mattei, M.: Age of the Corsica–Sardinia rotation and
Liguro–Provençal Basin spreading: new paleomagnetic and Ar/Ar evidence,
Tectonophysics, 347, 231–251,
https://doi.org/10.1016/S0040-1951(02)00031-8, 2002.
Stähler, S. C., Sigloch, K., Hosseini, K., Crawford, W. C., Barruol, G., Schmidt-Aursch, M. C., Tsekhmistrenko, M., Scholz, J.-R., Mazzullo, A., and Deen, M.: Performance report of the RHUM-RUM ocean bottom seismometer network around La Réunion, western Indian Ocean, Adv. Geosci., 41, 43–63, https://doi.org/10.5194/adgeo-41-43-2016, 2016.
Takeo, A., Forsyth, D. W., Weeraratne, D. S., and Nishida, K.: Estimation of
azimuthal anisotropy in the NW Pacific from seismic ambient noise in
seafloor records, Geophys. J. Int., 199, 11–22,
https://doi.org/10.1093/gji/ggu240, 2014.
Thorwart, M., Dannowski, A., Grevemeyer, I., Lange, D., Kopp, H., Petersen, F., Crawford, W., Paul, A., and the AlpArray Working Group: Basin inversion: Reactivated rift structures in the Ligurian Sea revealed by OBS, Solid Earth Discuss. [preprint], https://doi.org/10.5194/se-2021-9, in review, 2021.
Tonegawa, T., Yamashita, Y., Takahashi, T., Shinohara, M., Ishihara, Y.,
Kodaira, S., and Kaneda, Y.: Spatial relationship between shallow very low
frequency earthquakes and the subducted Kyushu-Palau Ridge in the Hyuga-nada
region of the Nankai subduction zone, Geophys. J. Int., 222, 1542–1554,
https://doi.org/10.1093/gji/ggaa264, 2020.
University of Genoa: Regional Seismic Network of North Western Italy, International Federation of Digital Seismograph Networks [data set], https://doi.org/10.7914/SN/GU, 1967.
Vigliotti, L. and Langenheim, V. E.: When did Sardinia stop rotating? New
palaeomagnetic results, Terra Nova, 7, 424–435,
https://doi.org/10.1111/j.1365-3121.1995.tb00538.x, 1995.
Wapenaar, K., Draganov, D., Snieder, R., Campman, X., and Verdel, A.:
Tutorial on seismic interferometry: Part 1 – Basic principles and
applications, Geophysics, 75, 75A195-75A209,
https://doi.org/10.1190/1.3457445, 2010a.
Wapenaar, K., Slob, E., Snieder, R., and Curtis, A.: Tutorial on seismic
interferometry: Part 2 – Underlying theory and new advances, Geophysics,
75, 75A211–75A227, https://doi.org/10.1190/1.3463440, 2010b.
Webb, S. C.: Broadband seismology and noise under the ocean, Rev. Geophys.,
36, 105–142, https://doi.org/10.1029/97RG02287, 1998.
Webb, S. C. and Crawford, W. C.: Long-period seafloor seismology and
deformation under ocean waves, B. Seismol. Soc. Am., 89, 1535–1542,
1999.
Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H.
F., and Tian, D.: The Generic Mapping Tools Version 6, Geochem. Geophy.
Geosy., 20, 5556–5564, https://doi.org/10.1029/2019GC008515, 2019.
Short summary
The Ligurian Sea opened ~30–15 Ma during SE migration of the Calabrian subduction zone. Using ambient seismic noise from stations on land and at the ocean bottom, we calculated a 3D shear-velocity model of the Ligurian Basin. In keeping with existing 2D studies, we find a shallow crust–mantle transition at the SW basin centre that deepens towards the northeast, Corsica, and the Liguro-Provençal coast. We observe a separation of SW and NE basins. We do not observe high crustal vP/vS ratios.
The Ligurian Sea opened ~30–15 Ma during SE migration of the Calabrian subduction zone. Using...