Articles | Volume 12, issue 4
https://doi.org/10.5194/se-12-885-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-12-885-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Kinematics and extent of the Piemont–Liguria Basin – implications for subduction processes in the Alps
Eline Le Breton
CORRESPONDING AUTHOR
Department of Earth Sciences, Freie Universität Berlin, Berlin, Germany
Sascha Brune
Geodynamic Modelling Section, German Research Centre for Geosciences, GFZ Potsdam, Potsdam, Germany
Institute of Geosciences, University of Potsdam, Potsdam, Germany
Kamil Ustaszewski
Institute for Geological Sciences, Friedrich-Schiller-Universität Jena, Jena, Germany
Sabin Zahirovic
EarthByte Group, School of Geosciences, The University of Sydney, Sydney, NSW 2006, Australia
Maria Seton
EarthByte Group, School of Geosciences, The University of Sydney, Sydney, NSW 2006, Australia
R. Dietmar Müller
EarthByte Group, School of Geosciences, The University of Sydney, Sydney, NSW 2006, Australia
Related authors
Vincent F. Verwater, Eline Le Breton, Mark R. Handy, Vincenzo Picotti, Azam Jozi Najafabadi, and Christian Haberland
Solid Earth, 12, 1309–1334, https://doi.org/10.5194/se-12-1309-2021, https://doi.org/10.5194/se-12-1309-2021, 2021
Short summary
Short summary
Balancing along geological cross sections reveals that the Giudicarie Belt comprises two kinematic domains. The SW domain accommodated at least ~ 18 km Late Oligocene to Early Miocene shortening. Since the Middle Miocene, the SW domain experienced at least ~ 12–22 km shortening, whereas the NE domain underwent at least ~ 25–35 km. Together, these domains contributed to ~ 40–47 km of sinistral offset of the Periadriatic Fault along the Northern Giudicarie Fault since the Late Oligocene.
Azam Jozi Najafabadi, Christian Haberland, Trond Ryberg, Vincent F. Verwater, Eline Le Breton, Mark R. Handy, Michael Weber, and the AlpArray and AlpArray SWATH-D working groups
Solid Earth, 12, 1087–1109, https://doi.org/10.5194/se-12-1087-2021, https://doi.org/10.5194/se-12-1087-2021, 2021
Short summary
Short summary
This study achieved high-precision hypocenters of 335 earthquakes (1–4.2 ML) and 1D velocity models of the Southern and Eastern Alps. The general pattern of seismicity reflects head-on convergence of the Adriatic Indenter with the Alpine orogenic crust. The relatively deeper seismicity in the eastern Southern Alps and Giudicarie Belt indicates southward propagation of the Southern Alpine deformation front. The derived hypocenters form excellent data for further seismological studies, e.g., LET.
Ángela María Gómez-García, Eline Le Breton, Magdalena Scheck-Wenderoth, Gaspar Monsalve, and Denis Anikiev
Solid Earth, 12, 275–298, https://doi.org/10.5194/se-12-275-2021, https://doi.org/10.5194/se-12-275-2021, 2021
Short summary
Short summary
The Earth’s crust beneath the Caribbean Sea formed at about 90 Ma due to large magmatic activity of a mantle plume, which brought molten material up from the deep Earth. By integrating diverse geophysical datasets, we image for the first time two fossil magmatic conduits beneath the Caribbean. The location of these conduits at 90 Ma does not correspond with the present-day Galápagos plume. Either this mantle plume migrated in time or these conduits were formed above another unknown plume.
Pauline Gayrin, Thilo Wrona, Sascha Brune, Derek Neuharth, Nicolas Molnar, Alessandro La Rosa, and John Naliboff
EGUsphere, https://doi.org/10.5194/egusphere-2025-3989, https://doi.org/10.5194/egusphere-2025-3989, 2025
This preprint is open for discussion and under review for Solid Earth (SE).
Short summary
Short summary
When in extension, the Earth's crust accommodates deformation by breaking. Through time, faults grow into an intricate network that can be detected by changes in topography, or through modelling (numerical or analogue). This study demonstrates how the Python library Fatbox, the fault analysis toolbox, can extract the network pattern automatically from said datasets and characterise the geometry and kinematics of the fault network.
Dylan A. Vasey, Peter M. Scully, John B. Naliboff, and Sascha Brune
EGUsphere, https://doi.org/10.5194/egusphere-2025-3578, https://doi.org/10.5194/egusphere-2025-3578, 2025
This preprint is open for discussion and under review for Geochronology (GChron).
Short summary
Short summary
We present an open-access Python package (GDTchron) designed to forward model apatite (U-Th)/He, apatite fission track, and zircon (U-Th)/He ages using temperatures output by geodynamic numerical models. The software can be used in a parallelized workflow to calculate large numbers of ages. We present two examples of potential applications of GDTchron: a simple model of an uplifting box with perfectly efficient erosion and a complex model of continental rifting followed by mountain building.
Alessandro La Rosa, Pauline Gayrin, Sascha Brune, Carolina Pagli, Ameha A. Muluneh, Gianmaria Tortelli, and Derek Keir
EGUsphere, https://doi.org/10.5194/egusphere-2025-1215, https://doi.org/10.5194/egusphere-2025-1215, 2025
Short summary
Short summary
We propose a new method to map faults automatically in DEMs and measure long-term crustal deformation in rift contexts. By combining our data with rock ages, we reconstruct rift evolution in Afar during the last 4.5 Myrs. We show that the rift axis is most active, with rifting propagating northwest over time. Here magma promotes crustal deformation and faulting caused by dike opening. In the southern sector Afar, two fault systems respond to different motions of diverging tectonic plates.
Frank Zwaan, Tiago M. Alves, Patricia Cadenas, Mohamed Gouiza, Jordan J. J. Phethean, Sascha Brune, and Anne C. Glerum
Solid Earth, 15, 989–1028, https://doi.org/10.5194/se-15-989-2024, https://doi.org/10.5194/se-15-989-2024, 2024
Short summary
Short summary
Rifting and the break-up of continents are key aspects of Earth’s plate tectonic system. A thorough understanding of the geological processes involved in rifting, and of the associated natural hazards and resources, is of great importance in the context of the energy transition. Here, we provide a coherent overview of rift processes and the links with hazards and resources, and we assess future challenges and opportunities for (collaboration between) researchers, government, and industry.
Anne C. Glerum, Sascha Brune, Joseph M. Magnall, Philipp Weis, and Sarah A. Gleeson
Solid Earth, 15, 921–944, https://doi.org/10.5194/se-15-921-2024, https://doi.org/10.5194/se-15-921-2024, 2024
Short summary
Short summary
High-value zinc–lead deposits formed in sedimentary basins created when tectonic plates rifted apart. We use computer simulations of rifting and the associated sediment erosion and deposition to understand why they formed in some basins but not in others. Basins that contain a metal source, faults that focus fluids, and rocks that can host deposits occurred in both narrow and wide rifts for ≤ 3 Myr. The largest and the most deposits form in narrow margins of narrow asymmetric rifts.
Thilo Wrona, Indranil Pan, Rebecca E. Bell, Christopher A.-L. Jackson, Robert L. Gawthorpe, Haakon Fossen, Edoseghe E. Osagiede, and Sascha Brune
Solid Earth, 14, 1181–1195, https://doi.org/10.5194/se-14-1181-2023, https://doi.org/10.5194/se-14-1181-2023, 2023
Short summary
Short summary
We need to understand where faults are to do the following: (1) assess their seismic hazard, (2) explore for natural resources and (3) store CO2 safely in the subsurface. Currently, we still map subsurface faults primarily by hand using seismic reflection data, i.e. acoustic images of the Earth. Mapping faults this way is difficult and time-consuming. Here, we show how to use deep learning to accelerate fault mapping and how to use networks or graphs to simplify fault analyses.
Timothy Chris Schmid, Sascha Brune, Anne Glerum, and Guido Schreurs
Solid Earth, 14, 389–407, https://doi.org/10.5194/se-14-389-2023, https://doi.org/10.5194/se-14-389-2023, 2023
Short summary
Short summary
Continental rifts form by linkage of individual rift segments and disturb the regional stress field. We use analog and numerical models of such rift segment interactions to investigate the linkage of deformation and stresses and subsequent stress deflections from the regional stress pattern. This local stress re-orientation eventually causes rift deflection when multiple rift segments compete for linkage with opposingly propagating segments and may explain rift deflection as observed in nature.
R. Dietmar Müller, Nicolas Flament, John Cannon, Michael G. Tetley, Simon E. Williams, Xianzhi Cao, Ömer F. Bodur, Sabin Zahirovic, and Andrew Merdith
Solid Earth, 13, 1127–1159, https://doi.org/10.5194/se-13-1127-2022, https://doi.org/10.5194/se-13-1127-2022, 2022
Short summary
Short summary
We have built a community model for the evolution of the Earth's plate–mantle system. Created with open-source software and an open-access plate model, it covers the last billion years, including the formation, breakup, and dispersal of two supercontinents, as well as the creation and destruction of numerous ocean basins. The model allows us to
seeinto the Earth in 4D and helps us unravel the connections between surface tectonics and the
beating heartof the Earth, its convecting mantle.
Peter Biermanns, Benjamin Schmitz, Silke Mechernich, Christopher Weismüller, Kujtim Onuzi, Kamil Ustaszewski, and Klaus Reicherter
Solid Earth, 13, 957–974, https://doi.org/10.5194/se-13-957-2022, https://doi.org/10.5194/se-13-957-2022, 2022
Short summary
Short summary
We introduce two up to 7 km long normal fault scarps near the city of Bar (Montenegro). The fact that these widely visible seismogenic structures have never been described before is even less surprising than the circumstance that they apparently do not fit the tectonic setting that they are located in. By quantifying the age and movement of the newly discovered fault scarps and by partly re-interpreting local tectonics, we introduce approaches to explain how this is still compatible.
Susanne J. H. Buiter, Sascha Brune, Derek Keir, and Gwenn Peron-Pinvidic
EGUsphere, https://doi.org/10.5194/egusphere-2022-139, https://doi.org/10.5194/egusphere-2022-139, 2022
Preprint archived
Short summary
Short summary
Continental rifts can form when and where continents are stretched. Rifts are characterised by faults, sedimentary basins, earthquakes and/or volcanism. If rifting can continue, a rift may break a continent into conjugate margins such as along the Atlantic and Indian Oceans. In some cases, however, rifting fails, such as in the West African Rift. We discuss continental rifting from inception to break-up, focussing on the processes at play, and illustrate these with several natural examples.
Christoph Grützner, Simone Aschenbrenner, Petra Jamšek
Rupnik, Klaus Reicherter, Nour Saifelislam, Blaž Vičič, Marko Vrabec, Julian Welte, and Kamil Ustaszewski
Solid Earth, 12, 2211–2234, https://doi.org/10.5194/se-12-2211-2021, https://doi.org/10.5194/se-12-2211-2021, 2021
Short summary
Short summary
Several large strike-slip faults in western Slovenia are known to be active, but most of them have not produced strong earthquakes in historical times. In this study we use geomorphology, near-surface geophysics, and fault excavations to show that two of these faults had surface-rupturing earthquakes during the Holocene. Instrumental and historical seismicity data do not capture the strongest events in this area.
Vincent F. Verwater, Eline Le Breton, Mark R. Handy, Vincenzo Picotti, Azam Jozi Najafabadi, and Christian Haberland
Solid Earth, 12, 1309–1334, https://doi.org/10.5194/se-12-1309-2021, https://doi.org/10.5194/se-12-1309-2021, 2021
Short summary
Short summary
Balancing along geological cross sections reveals that the Giudicarie Belt comprises two kinematic domains. The SW domain accommodated at least ~ 18 km Late Oligocene to Early Miocene shortening. Since the Middle Miocene, the SW domain experienced at least ~ 12–22 km shortening, whereas the NE domain underwent at least ~ 25–35 km. Together, these domains contributed to ~ 40–47 km of sinistral offset of the Periadriatic Fault along the Northern Giudicarie Fault since the Late Oligocene.
Azam Jozi Najafabadi, Christian Haberland, Trond Ryberg, Vincent F. Verwater, Eline Le Breton, Mark R. Handy, Michael Weber, and the AlpArray and AlpArray SWATH-D working groups
Solid Earth, 12, 1087–1109, https://doi.org/10.5194/se-12-1087-2021, https://doi.org/10.5194/se-12-1087-2021, 2021
Short summary
Short summary
This study achieved high-precision hypocenters of 335 earthquakes (1–4.2 ML) and 1D velocity models of the Southern and Eastern Alps. The general pattern of seismicity reflects head-on convergence of the Adriatic Indenter with the Alpine orogenic crust. The relatively deeper seismicity in the eastern Southern Alps and Giudicarie Belt indicates southward propagation of the Southern Alpine deformation front. The derived hypocenters form excellent data for further seismological studies, e.g., LET.
Ángela María Gómez-García, Eline Le Breton, Magdalena Scheck-Wenderoth, Gaspar Monsalve, and Denis Anikiev
Solid Earth, 12, 275–298, https://doi.org/10.5194/se-12-275-2021, https://doi.org/10.5194/se-12-275-2021, 2021
Short summary
Short summary
The Earth’s crust beneath the Caribbean Sea formed at about 90 Ma due to large magmatic activity of a mantle plume, which brought molten material up from the deep Earth. By integrating diverse geophysical datasets, we image for the first time two fossil magmatic conduits beneath the Caribbean. The location of these conduits at 90 Ma does not correspond with the present-day Galápagos plume. Either this mantle plume migrated in time or these conduits were formed above another unknown plume.
Cited articles
Advokaat, E. L., Van Hinsbergen, D. J. J., Maffione, M., Langereis, C. G., Vissers, R. L. M., Cherchi, A., Schroeder, R., Madani, H., and Columbu, S.: Eocene rotation of Sardinia, and the paleogeography of the western Mediterranean region, Earth Planet. Sci. Lett., 401, 183–195, https://doi.org/10.1016/j.epsl.2014.06.012, 2014.
Amante, C. and Eakins, B. W.: ETOPO1 1 Arc-Minute Global Relief Model, NOAA Technical Memorandum NESDIS NGDC, 24, 19, https://doi.org/10.7289/V5C8276M, 2009.
Andreani, L., Loget, N., Rangin, C., and Pichon, X. Le: New structural constraints on the southern Provence thrust belt (France): Evidences for an eocene shortening event linked to the corsica–sardinia subduction, B. Soc. Geol. Fr., 181, 547–563, https://doi.org/10.2113/gssgfbull.181.6.547, 2010.
Andrés-Martínez, M., Pérez-Gussinyé, M., Armitage, J., and Morgan, J. P.: Thermomechanical Implications of Sediment Transport for the Architecture and Evolution of Continental Rifts and Margins, Tectonics, 38, 641–665, https://doi.org/10.1029/2018TC005346, 2019.
Argnani, A.: Evolution of the southern Tyrrhenian slab tear and active tectonics along the western edge of the Tyrrhenian subducted slab, Geol. Soc. Sp., 311, 193–212, https://doi.org/10.1144/SP311.7, 2009.
Argnani, A.: Plate motion and the evolution of Alpine Corsica and Northern Apennines, Tectonophysics, 579, 207–219, https://doi.org/10.1016/j.tecto.2012.06.010, 2012.
Argnani, A. and Frugoni, F.: Foreland deformation in the Central Adriatic and its bearing on the evolution of the Northern Apennines, Ann. Geofis., XL, 771–780, 1997.
Argnani, A., Rovere, M., and Bonazzi, C.: Tectonics of the Mattinata fault, offshore south Gargano (southern Adriatic Sea, Italy): Implications for active deformation and seismotectonics in the foreland of the Southern Apennines, Bull. Geol. Soc. Am., 121, 1421–1440, https://doi.org/10.1130/B26326.1, 2009.
Babist, J., Handy, M. R., Konrad-Schmolke, M., and Hammerschmidt, K.: Precollisional, multistage exhumation of subducted continental crust: The Sesia Zone, western Alps, Tectonics, 25, 1–25, https://doi.org/10.1029/2005TC001927, 2006.
Ballèvre, M., Manzotti, P., and Dal Piaz, G. V.: Pre-Alpine (Variscan) Inheritance: A Key for the Location of the Future Valaisan Basin (Western Alps), Tectonics, 37, 786–817, https://doi.org/10.1002/2017TC004633, 2018.
Barnett-Moore, N., Hosseinpour, M., and Maus, S.: Assessing discrepancies between previous plate kinematic models of Mesozoic Iberia and their constraints, Tectonics, 35, 1843–1862, https://doi.org/10.1002/2015TC004019, 2016.
Barnett-Moore, N., Font, E., and Neres, M.: A Reply to the Comment on “Assessing Discrepancies Between Previous Plate Kinematic Models of Mesozoic Iberia and Their Constraints” by Barnett-Moore Et Al., Tectonics, 36, 3286–3297, https://doi.org/10.1002/2017TC004760, 2017.
Barnett-Moore, N., Müller, D. R., Williams, S., Skogseid, J., and Seton, M.: A reconstruction of the North Atlantic since the earliest Jurassic, Basin Res., 30, 160–185, https://doi.org/10.1111/bre.12214, 2018.
Barrett, T. J. and Spooner, E. T..: Ophiolitic breccias associated with allochtonous oceanic crustal rocks in the east Ligurian Apennines, Italy – A comparison with observations from rifted oceanic ridges, Earth Planet. Sci. Lett., 35, 79–91, 1977.
Beltrando, M., Rubatto, D., Compagnoni, R., and Lister, G.: Was the valaisan basin floored by oceanic crust? Evidence of permian magmatism in the Versoyen unit (Valaisan domain, NW ALPS), Ofioliti, 32, 85–99, https://doi.org/10.7892/boris.85691, 2007.
Beltrando, M., Rubatto, D., and Manatschal, G.: From passive margins to orogens: The link between ocean-continent transition zones and (ultra)high-pressure metamorphism, Geology, 38, 559–562, https://doi.org/10.1130/G30768.1, 2010.
Beltrando, M., Frasca, G., Compagnoni, R., and Vitale-Brovarone, A.: The Valaisan controversy revisited: Multi-stage folding of a Mesozoic hyper-extended margin in the Petit St. Bernard pass area (Western Alps), Tectonophysics, 579, 17–36, https://doi.org/10.1016/j.tecto.2012.02.010, 2012.
Beltrando, M., Manatschal, G., Mohn, G., Dal Piaz, G. V., Vitale Brovarone, A., and Masini, E.: Recognizing remnants of magma-poor rifted margins in high-pressure orogenic belts: The Alpine case study, Earth-Sci. Rev., 131, 88–115, https://doi.org/10.1016/j.earscirev.2014.01.001, 2014.
Berger, A. and Bousquet, R.: Subduction-related metamorphism in the Alps: Review of isotopic ages based on petrology and their geodynamic consequences, Geol. Soc. Sp., 298, 117–144, https://doi.org/10.1144/SP298.7, 2008.
Bernoulli, D. and Jenkyns, H. C.: Ancient oceans and continental margins of the Alpine–Mediterranean Tethys: Deciphering clues from Mesozoic pelagic sediments and ophiolites, Sedimentology, 56, 149–190, https://doi.org/10.1111/j.1365-3091.2008.01017.x, 2009.
Bestani, L., Espurt, N., Lamarche, J., Floquet, M., Philip, J., Bellier, O., and Hollender, F.: Structural style and evolution of the Pyrenean-Provence thrust belt, SE France, B. Soc. Geol. Fr., 186, 223–241, https://doi.org/10.2113/gssgfbull.186.4-5.223, 2015.
Bestani, L., Espurt, N., Lamarche, J., Bellier, O., and Hollender, F.: Reconstruction of the Provence Chain evolution, southeastern France, Tectonics, 35, 1506–1525, https://doi.org/10.1002/2016TC004115, 2016.
Bill, M., O'Dogherty, L., Guex, J., Baumgartner, P. O., and Masson, H.: Radiolarite ages in Alpine–Mediterranean ophiolites: Constraints on the oceanic spreading and the Tethys-Atlantic connection, Bull. Geol. Soc. Am., 113, 129–143, https://doi.org/10.1130/0016-7606(2001)113<0129:RAIAMO>2.0.CO;2, 2001.
Billi, A., Faccenna, C., Bellier, O., Minelli, L., Neri, G., Piromallo, C., Presti, D., Scrocca, D., and Serpelloni, E.: Recent tectonic reorganization of the Nubia-Eurasia convergent boundary heading for the closure of the western Mediterranean, B. Soc. Geol. Fr., 182, 279–303, https://doi.org/10.2113/gssgfbull.182.4.279, 2011.
Bortolotti, V. and Principi, G.: Tethyan ophiolites and Pangea break-up, Isl. Arc, 14, 442–470, https://doi.org/10.1111/j.1440-1738.2005.00478.x, 2005.
Bouillin, J. P., Durand-Delga, M., and Olivier, P.: Betic-rifian and tyrrhenian arcs: Distinctive features, genesis and development stages, Developments in Geotectonics, 21, 281–304, https://doi.org/10.1016/B978-0-444-42688-8.50017-5, 1986.
Bousquet, R., Oberhänsli, R., Goffé, B., Wiederkehr, M., Koller, F., Schmid, S. M., Schuster, R., Engi, M., Berger, A., and Martinotti, G.: Metamorphism of metasediments at the scale of an orogen: A key to the Tertiary geodynamic evolution of the Alps, Geol. Soc. Sp., 298, 393–411, https://doi.org/10.1144/SP298.18, 2008.
Bronner, A., Sauter, D., Manatschal, G., Péron-pinvidic, G., and Munschy, M.: Magmatic breakup as an explanation for magnetic anomalies at magma-poor rifted margins, Nat. Geosci., 4, 549–553, https://doi.org/10.1038/NGEO1201, 2011.
Brun, J. P. and Faccena, C.: Exhumation of high-pressure rocks driven by slab rollback, Earth Planet. Sc. Lett., 272, 1–7, https://doi.org/10.1016/j.epsl.2008.02.038, 2008.
Brune, S.: Evolution of stress and fault patterns in oblique rift systems: 3-D numerical lithospheric-scale experiments from rift to breakup, Geochem. Geoph. Geosy., 15, 3392–3415, https://doi.org/10.1002/2014GC005446, 2014.
Brune, S., Popov, A. A., and Sobolev, S. V.: Modeling suggests that oblique extension facilitates rifting and continental break-up, J. Geophys. Res., 117, B08402, https://doi.org/10.1029/2011JB008860, 2012.
Brune, S., Popov, A. A., and Sobolev, S. V.: Quantifying the thermo-mechanical impact of plume arrival on continental break-up, Tectonophysics, 604, 51–59, https://doi.org/10.1016/j.tecto.2013.02.009, 2013.
Brune, S., Heine, C., Pérez-Gussinyé, M., and Sobolev, S. V.: Rift migration explains continental margin asymmetry and crustal hyper-extension, Nat. Commun., 5, 1–9, https://doi.org/10.1038/ncomms5014, 2014.
Brune, S., Williams, S. E., Butterworth, N. P., and Müller, R. D.: Abrupt plate accelerations shape rifted continental margins, Nature, 536, 201–204, https://doi.org/10.1038/nature18319, 2016.
Brune, S., Corti, G., and Ranalli, G.: Controls of inherited lithospheric heterogeneity on rift linkage: Numerical and analog models of interaction between the Kenyan and Ethiopian rifts across the Turkana depression, Tectonics, 36, 1767–1786, https://doi.org/10.1002/2017TC004739, 2017a.
Brune, S., Heine, C., Clift, P. D., and Perez-Gussinyé, M.: Rifted margin architecture and crustal rheology: Reviewing Iberia–Newfoundland, Central South Atlantic, and South China Sea, Mar. Petrol. Geol., 79, 257–281, 2017b.
Brune, S., Williams, S. E., and Müller, R. D.: Oblique rifting: the rule, not the exception, Solid Earth, 9, 1187–1206, https://doi.org/10.5194/se-9-1187-2018, 2018.
Canérot, J.: The pull apart-type Tardets-Mauléon Basin, a key to understand the formation of the Pyrenees, B. Soc. Geol. Fr., 188, 35, https://doi.org/10.1051/bsgf/2017198, 2017.
Castellarin, A., Vai, G. B., and Cantelli, L.: The Alpine evolution of the Southern Alps around the Giudicarie faults: A Late Cretaceous to Early Eocene transfer zone, Tectonophysics, 414, 203–223, https://doi.org/10.1016/j.tecto.2005.10.019, 2006.
Catalano, R., Di Stefano, P., and Kozur, H.: Permian circumpacific deep-water faunas from the western Tethys (Sicily, Italy) – new evidences for the position of the Permian Tethys, Palaeogeogr. Palaeocl., 87, 75–108, https://doi.org/10.1016/0031-0182(91)90131-A, 1991.
Channell, J. E. T. and Kozur, H. W.: How many oceans? Meliata, Vardar, Pindos oceans in Mesozoic Alpine paleogeography, Geology, 25, 183–186, https://doi.org/10.1130/0091-7613(1997)025<0183:HMOMVA>2.3.CO;2, 1997.
Channell, J. E. T., D'Argenio, B., and Horváth, F.: Adria, the African promontory, in mesozoic Mediterranean palaeogeography, Earth-Sci. Rev., 15, 213–292, https://doi.org/10.1016/0012-8252(79)90083-7, 1979.
Choukroune, P.: Tectonic evolution of the Pyrenees, Annu. Rev. Earth Planet. Sci., 20, 143–58, 1992.
Cipriani, A. and Bottini, C.: Early Cretaceous tectonic rejuvenation of an Early Jurassic margin in the Central Apennines: The “Mt. Cosce Breccia”, Sediment. Geol., 387, 57–74, https://doi.org/10.1016/j.sedgeo.2019.03.002, 2019a.
Cipriani, A. and Bottini, C.: Unconformities, neptunian dykes and mass-transport deposits as an evidence for Early Cretceous syn-sedimentary tectonics: new insights from the Central Apennines, Ital. J. Geosci., 138, 333–354, 2019b.
Civile, D., Lodolo, E., Accettella, D., Geletti, R., Ben-Avraham, Z., Deponte, M., Facchin, L., Ramella, R., and Romeo, R.: The Pantelleria graben (Sicily Channel, Central Mediterranean): An example of intraplate “passive” rift, Tectonophysics, 490, 173–183, https://doi.org/10.1016/j.tecto.2010.05.008, 2010.
Clerc, C. and Lagabrielle, Y.: Thermal control on the modes of crustal thinning leading to mantle exhumation: Insights from the cretaceous pyrenean hot paleomargins, Tectonics, 33, 1340–1359, https://doi.org/10.1002/2013TC003471, 2014.
Conti, P., Manatschal, G., and Pfister, M.: Synrift sedimentation, Jurassic and Alpine tectonics in the central Ortler Nappe, (Eastern Alps, Italy), Eclogae Geol. Helv., 87, 63–90, https://doi.org/10.5169/seals-167443, 1994.
Corti, G.: Continental rift evolution: From rift initiation to incipient break-up in the Main Ethiopian Rift, East Africa, Earth-Sci. Rev., 96, 1–53, https://doi.org/10.1016/j.earscirev.2009.06.005, 2009.
Costa, S., and Caby, R.: Evolution of the Ligurian Tethys in the western Alps: and geochronology and rare-earth element geochemistry of the montgenèvre ophiolite (France), Chem. Geol., 175, 449–466, https://doi.org/10.1016/S0009-2541(00)00334-X, 2001.
D'Agostino, N., Avallone, A., Cheloni, D., D'Anastasio, E., Mantenuto, S., and Selvaggi, G.: Active tectonics of the Adriatic region from GPS and earthquake slip vectors, J. Geophys. Res.-Sol. Ea., 113, 1–19, https://doi.org/10.1029/2008JB005860, 2008.
Dal Zilio, L., Kissling, E., Gerya, T., and van Dinther, Y.: Slab Rollback Orogeny Model: A Test of Concept, Geophys. Res. Lett., 47, e2020GL089917, https://doi.org/10.1029/2020GL089917, 2020.
Dannowski, A., Kopp, H., Klingelhoefer, F., Klaeschen, D., Gutscher, M.-A., Krabbenhoeft, A., Dellong, D., Rovere, M., Graindorge, D., Papenberg, C., and Klaucke, I.: Ionian Abyssal Plain: a window into the Tethys oceanic lithosphere, Solid Earth, 10, 447–462, https://doi.org/10.5194/se-10-447-2019, 2019.
Dannowski, A., Kopp, H., Grevemeyer, I., Lange, D., Thorwart, M., Bialas, J., and Wollatz-Vogt, M.: Seismic evidence for failed rifting in the Ligurian Basin, Western Alpine domain, Solid Earth, 11, 873–887, https://doi.org/10.5194/se-11-873-2020, 2020.
Debroas, E.-J.: Le Flysch noir albo-cénomanien témoin de la structuration albienne à sénonienne de la Zone nord-pyrénéenne en Bigorre (Hautes-Pyrénées, France), B. Soc. Geol. Fr., VI, 273–285, https://doi.org/10.2113/gssgfbull.VI.2.273, 1990.
Decarlis, A., Manatschal, G., Haupert, I., and Masini, E.: The tectono-stratigraphic evolution of distal, hyper-extended magma-poor conjugate rifted margins: Examples from the Alpine Tethys and Newfoundland-Iberia, Mar. Petrol. Geol., 68, 54–72, https://doi.org/10.1016/j.marpetgeo.2015.08.005, 2015.
Decrausaz, T., Müntener, O., Manzotti, P., Lafay R., and Spandler C.: Fossil oceanic core complexes in the Alps. New field, geochemical and isotopic constraints from the Tethyan Aiguilles Rouges Ophiolite (Val d'Hérens, Western Alps, Switzerland), Swiss J. Geosci., 114, 3, https://doi.org/10.1186/s00015-020-00380-4, 2021.
Dewey, J. F., Helman, M. L., Knott, S. D., Turco, E., and Hutton, D. H. W.: Kinematics of the western Mediterranean, Geol. Soc. Sp., 45, 265–283, https://doi.org/10.1144/GSL.SP.1989.045.01.15, 1989.
Dick, H. J. B., Lin, J., and Schouten, H.: An ultraslow-spreading class of ocean ridge, Nature, 426, 405–412, https://doi.org/10.1038/nature02128, 2003.
Duretz, T., Gerya, T. V., and May, D. A.: Numerical modelling of spontaneous slab breakoff and subsequent topographic response, Tectonophysics, 502, 244–256, https://doi.org/10.1016/j.tecto.2010.05.024, 2011.
Ebinger, C. J., Jackson, J. A., Foster, A. N., and Hayward, N. J.: Extensional basin geometry and the elastic lithosphere, Philos. T. R. Soc. A, 357, 741–765, https://doi.org/10.1098/rsta.1999.0351, 1999.
Epin, M. E., Manatschal, G., Amman, M., Ribes, C., Clausse, A., Guffon, T., and Lescanne, M.: Polyphase tectono-magmatic evolution during mantle exhumation in an ultra-distal, magma-poor rift domain: example of the fossil Platta ophiolite, SE Switzerland, Int. J. Earth Sci., 108, 2443–2467, https://doi.org/10.1007/s00531-019-01772-0, 2019.
Espurt, N., Hippolyte, J. C., Saillard, M., and Bellier, O.: Geometry and kinematic evolution of a long-living foreland structure inferred from field data and cross section balancing, the Sainte-Victoire System, Provence, France, Tectonics, 31, 1–27, https://doi.org/10.1029/2011TC002988, 2012.
Faccenna, C., Becker, T. W., Lucente, F. P., Jolivet, L., and Rossetti, F.: History of subduction and back-arc extension in the central Mediterranean, Geophys. J. Int., 145, 809–820, https://doi.org/10.1046/j.0956-540X.2001.01435.x, 2001.
Fassmer, K., Obermüller, G., Nagel, T. J., Kirst, F., Froitzheim, N., Sandmann, S., Miladinova, I., Fonseca, R. O. C., and Münker, C.: High-pressure metamorphic age and significance of eclogite-facies continental fragments associated with oceanic lithosphere in the Western Alps (Etirol-Levaz Slice, Valtournenche, Italy), Lithos, 252–253, 145–159, https://doi.org/10.1016/j.lithos.2016.02.019, 2016.
Faupl, P. and Tollmann, A.: Die Roßfeldschichten: Ein Beispiel für Sedimentation im Bereich einer tektonisch aktiven Tiefseerinne aus der kalkalpinen Unterkreide, Geol. Rundsch., 68, 93-120, 1979.
Faupl, P. and Wagreich, M.: Late Jurassic to Eocene Palaeogeography and Geodynamic Evolution of the Eastern Alps, Mitteilungen der Österreichischen Geologischen Gesellschaft, 92, 79–94, 1999.
Ferrando, S., Bernoulli, D., and Compagnoni, R.: The Canavese zone (internal Western Alps): A distal margin of Adria, Schweiz. Miner. Petrog., 84, 237–256, 2004.
Florineth, D. and Froitzheim, N.: Transition from continental to oceanic basement in the Tasna nappe (Engadine window, Graubunden, Switzerland): evidence for early Cretaceous opening of the Valais Ocean, Schweiz. Miner. Petrog., 74, 437–448, 1994.
Ford, M., Duchêne, S., Gasquet, D., and Vanderhaeghe, O.: Two-phase orogenic convergence in the external and internal SW Alps, J. Geol. Soc., 163, 815–826, https://doi.org/10.1144/0016-76492005-034, 2006.
Frank, W. and Schlager, W.: Jurassic strike slip versus subduction in the Eastern Alps, Int. J. Earth Sci., 95, 431–450, https://doi.org/10.1007/s00531-005-0045-7, 2006.
Frisch, W.: Tectonic progradation and plate tectonic evolution of the Alps, Tectonophysics, 60, 121–139, https://doi.org/10.1016/0040-1951(79)90155-0, 1979.
Frizon de Lamotte, D., Raulin, C., Mouchot, N., Wrobel-Daveau, J.-C., Blanpied, C., and Ringenbach, J.-C.: The southernmost margin of the Tethys realm during the Mesozoic and Cenozoic: Initial geometry and timing of the inversion processes, Tectonics, 30, TC3002, https://doi.org/10.1029/2010tc002691, 2011.
Froitzheim, N.: Synsedimentary and synorogenic normal faults within a thrust sheet of the Eastern Alps (Ortler zone, Graubünden, Switzerland), Eclogae Geol. Helv., 81, 593–610, 1988.
Froitzheim, N. and Eberli, G. P.: Extensional detachment faulting in the evolution of a Tethys passive continental margin, Eastern Alps, Switzerland, Geol. Soc. Am. Bull., 102, 1297–1308, https://doi.org/10.1130/0016-7606(1990)102<1297, 1990.
Froitzheim, N. and Manatschal, G.: Kinematics of Jurassic rifting, mantle exhumation, and passive-margin formation in the Austroalpine and Penninic nappes (eastern Switzerland), Bull. Geol. Soc. Am., 108, 1120–1133, https://doi.org/10.1130/0016-7606(1996)108<1120:KOJRME>2.3.CO;2, 1996.
Froitzheim, N., Schmid, S. M., and Frey, M.: Mesozoic paleogeography and the timing of eclogite facies metamorphism in the Alps: A working hypothesis, Eclogae Geol. Helv., 89, 81–110, 1996.
Gaina, C., Roest, W. R., and Müller, R. D.: Late Cretaceous–Cenozoic deformation of Northeast Asia, Earth Planet. Sci. Lett., 197, 273–286, https://doi.org/10.1016/S0012-821X(02)00499-5, 2002.
Gattacceca, J., Deino, A., Rizzo, R., Jones, D. S., Henry, B., Beaudoin, B., and Vadeboin, F.: Miocene rotation of Sardinia: New paleomagnetic and geochronological constraints and geodynamic implications, Earth Planet. Sci. Lett., 258, 359–377, https://doi.org/10.1016/j.epsl.2007.02.003, 2007.
Gawlick, H. J. and Missoni, S.: Middle–Late Jurassic sedimentary mélange formation related to ophiolite obduction in the Alpine–Carpathian–Dinaridic Mountain Range, Gondwana Res., 74, 144–172, https://doi.org/10.1016/j.gr.2019.03.003, 2019.
Gerya, T. V., Stöckhert, B., and Perchuk, A. L.: Exhumation of high-pressure metamorphic rocks in a subduction channel: A numerical simulation, Tectonics, 21, 1056, https://doi.org/10.1029/2002tc001406, 2002.
Guerrera, F., Martin-Algarra, A., and Perrone, V.: Late Oligocene-Miocene syn-/-late-orogenic successions in Western and Central Mediterranean Chains from the Betic Cordillera to the Southern Apennines, Terra Nova, 5, 525–544, https://doi.org/10.1111/j.1365-3121.1993.tb00302.x, 1993.
Guerrera, F., Martín-Martín, M., and Tramontana, M.: Evolutionary geological models of the central-western peri-Mediterranean chains: a review, Int. Geol. Rev., 63, 65–86, https://doi.org/10.1080/00206814.2019.1706056, 2019.
Guillot, S. and Ménot, R. P.: Paleozoic evolution of the External Crystalline Massifs of the Western Alps, C. R. Geosci., 341, 253–265, https://doi.org/10.1016/j.crte.2008.11.010, 2009.
Guillot, S., Di Paola, S., Ménot, R. P., Ledru, P., Spalla, M. I., Gosso, G., and Schwartz, S.: Suture zones and importance of strike-slip faulting for Variscan geodynamic reconstructions of the External Crystalline Massifs of the western Alps, B. Soc. Geol. Fr., 180, 483–500, https://doi.org/10.2113/gssgfbull.180.6.483, 2009.
Gurnis, M., Turner, M., Zahirovic, S., DiCaprio, L., Spasojevic, S., Müller, R. D., Boyden, J., Seton, M., Manea, V. C., and Bower, D. J.: Plate tectonic reconstructions with continuously closing plates, Comput. Geosci., 38, 35–42, https://doi.org/10.1016/j.cageo.2011.04.014, 2012.
Gurnis, M., Yang, T., Cannon, J., Turner, M., Williams, S., Flament, N., and Müller, R. D.: Global tectonic reconstructions with continuously deforming and evolving rigid plates, Comput. Geosci., 116, 32–41, https://doi.org/10.1016/j.cageo.2018.04.007, 2018.
Hamai, L., Petit, C., Le Pourhiet, L., Yelles-Chaouche, A., Déverchère, J., Beslier, M. O., and Abtout, A.: Towards subduction inception along the inverted North African margin of Algeria? Insights from thermo-mechanical models, Earth Planet. Sci. Lett., 501, 13–23, https://doi.org/10.1016/j.epsl.2018.08.028, 2018.
Handy, M. R., Schmid, S. M., Bousquet, R., Kissling, E., and Bernoulli, D.: Reconciling plate-tectonic reconstructions of Alpine Tethys with the geological-geophysical record of spreading and subduction in the Alps, Earth-Sci. Rev., 102, 121–158, https://doi.org/10.1016/j.earscirev.2010.06.002, 2010.
Handy, M. R., Ustaszewski, K., and Kissling, E.: Reconstructing the Alps–Carpathians–Dinarides as a key to understanding switches in subduction polarity, slab gaps and surface motion, Int. J. Earth Sci., 104, 1–26, https://doi.org/10.1007/s00531-014-1060-3, 2015.
Hart, N. R., Stockli, D. F., Lavier, L. L., and Hayman, N. W.: Thermal evolution of a hyperextended rift basin, Mauléon Basin, western Pyrenees, Tectonics, 36, 1103–1128, https://doi.org/10.1002/2016TC004365, 2017.
Heine, C., Zoethout, J., and Müller, R. D.: Kinematics of the South Atlantic rift, Solid Earth, 4, 215–253, https://doi.org/10.5194/se-4-215-2013, 2013.
Henry, P., Azambre, B., Montigny, R., Rossy, M., and Stevenson, R. K.: Late mantle evolution of the Pyrenean sub-continental lithospheric mantle in the light of new 40Ar-39Ar and Sm–Nd ages on pyroxenites and periodotites (Pyrenees, France), Tectonophysics, 296, 103–123, https://doi.org/10.1016/S0040-1951(98)00139-5, 1998.
Hermann, J. and Müntener, O.: Extension-related structures in the Malenco-Margna-system: Implications for paleogeography and consequences for rifting and Alpine tectonics, Schweiz. Miner. Petrog., 76, 501–519, https://doi.org/10.5169/seals-57712, 1996.
Horváth, F., Bada, G., Szafián, P., Tari, G., Ádám, A., and Cloetingh, S.: Formation and deformation of the Pannonian Basin: Constraints from observational data, Geo. Soc. Mem., 32, 191–206, https://doi.org/10.1144/GSL.MEM.2006.032.01.11, 2006.
Hosseinpour, M., Williams, S., Seton, M., Barnett-Moore, N., and Müller, R. D.: Tectonic evolution of Western Tethys from Jurassic to present day: coupling geological and geophysical data with seismic tomography models, Int. Geol. Rev., 58, 1616–1645, https://doi.org/10.1080/00206814.2016.1183146, 2016.
Huismans, R. S. and Beaumont, C.: Symmetric and asymmetric lithospheric extension: Relative effects of frictional-plastic and viscous strain softening, J. Geophys. Res., 108, 2496, https://doi.org/10.1029/2002JB002026, 2003.
Jammes, S. and Lavier, L. L.: Effect of contrasting strength from inherited crustal fabrics on the development of rifting margins, Geosphere, 15, 407–422, https://doi.org/10.1130/GES01686.1, 2019.
Jammes, S., Manatschal, G., Lavier, L., and Masini, E.: Tectonosedimentary evolution related to extreme crustal thinning ahead of a propagating ocean: Example of the western Pyrenees, Tectonics, 28, 1–24, https://doi.org/10.1029/2008TC002406, 2009.
Johansen, S. E., Panzner, M., Mittet, R., Amundsen, H. E. F., Lim, A., Vik, E., Landrø, M., and Arntsen, B.: Deep electrical imaging of the ultraslow-spreading Mohns Ridge, Nature, 567, 379–383, https://doi.org/10.1038/s41586-019-1010-0, 2019.
Jolivet, L., Faccenna, C., Goffé, B., Mattei, M., Rossetti, F., Brunet, C., Storti, F., Funiciello, R., Cadet, J. P., d'Agostino, N., and Parra, T.: Midcrustal shear zones in postorogenic extension: Example from the northern Tyrrhenian Sea, J. Geophys. Res.-Sol. Ea., 103, 12123–12160, https://doi.org/10.1029/97jb03616, 1998.
Jolivet, L., Gorini, C., Smit, J., and Leroy, S.: back-arc basins: the Gulf of Lion margin, Tectonics, 34, 662–679, https://doi.org/10.1002/2014TC003570, 2015.
Joseph, P., Cabrol, C., and Friès, G.: Titled blocks and submarine passes in the Banon graben (France, SE) during Apto-Albian times: a paleotopography directly induced by strike-slip synsedimentary tectonics, C. R. Acad. Sci. II A, 304, 447–452, 1987.
Kaczmarek, M. A., Müntener, O., and Rubatto, D.: Trace element chemistry and U–Pb dating of zircons from oceanic gabbros and their relationship with whole rock composition (Lanzo, Italian Alps), Contrib. Mineral. Petr., 155, 295–312, https://doi.org/10.1007/s00410-007-0243-3, 2008.
Kästle, E. D., Rosenberg, C., Boschi, L., Bellahsen, N., Meier, T., and El-Sharkawy, A.: Slab break-offs in the Alpine subduction zone, Int. J. Earth Sci., 109, 587–603, https://doi.org/10.1007/s00531-020-01821-z, 2020.
Kiss, D., Candioti, L. G., Duretz, T., and Schmalholz, S. M.: Thermal softening induced subduction initiation at a passive margin, Geophys. J. Int., 220, 2068–2073, https://doi.org/10.1093/gji/ggz572, 2020.
Kneller, E. A., Johnson, C. A., Karner, G. D., Einhorn, J., and Queffelec, T. A.: Inverse methods for modeling non-rigid plate kinematics: Application to mesozoic plate reconstructions of the Central Atlantic, Comput. Geosci., 49, 217–230, https://doi.org/10.1016/j.cageo.2012.06.019, 2012.
Kurz, W., Neubauer, F., and Unzog, W.: Evolution of Alpine eclogites in the Eastern Alps: Implications for Alpine Geodynamics, Phys. Chem. Earth Pt. A, 24, 667–674, https://doi.org/10.1016/S1464-1895(99)00097-6, 1999.
Labails, C., Olivet, J.-L., Aslanian, D., and Roest, W. R.: An alternative early opening scenario for the Central Atlantic Ocean, Earth Planet. Sci. Lett., 297, 355–368, https://doi.org/10.1016/j.epsl.2010.06.024, 2010.
Lacombe, O. and Jolivet, L.: Structural and kinematic relationships between Corsica and the Pyrenees–Provence domain at the time of the Pyrenean orogeny, Tectonics, 24, 1–20, https://doi.org/10.1029/2004TC001673, 2005.
Lagabrielle, Y. and Cannat, M.: Alpine Jurassic ophiolites resemble the modern central Atlantic basement, Geology, 18, 319–322, 1990.
Lagabrielle, Y. and Lemoine, M.: Alpine, Corsican and Apennine ophiolites: the slow-spreading ridge model, C. R. Acad. Sci. II A, 325, 909–920, 1997.
Lahondère, D. and Guerrot, C.: Datation Sm–Nd du métamorphisme éclogitique en Corse alpine: un argument pour l'existence au Crétacé supérieur d'une zone de subduction active localisée sous le bloc corso-sarde, Géologie de la France, 3, 3–11, 1997.
Lavier, L. L. and Manatschal, G.: A mechanism to thin the continental lithosphere at magma-poor margins, Nature, 440, 324–328, https://doi.org/10.1038/nature04608, 2006.
Le Breton, E., Handy, M. R., Molli, G., and Ustaszewski, K.: Post-20 Ma Motion of the Adriatic Plate: New Constraints From Surrounding Orogens and Implications for Crust-Mantle Decoupling, Tectonics, 36, 3135–3154, https://doi.org/10.1002/2016TC004443, 2017.
Le Pichon, X., Bergerat, F., and Roulet, M.-J.: Plate kinematics and tectonics leading to the Alpine belt formation; A new analysis, Geol. S. Am. S., 111–131, 1988.
Lemoine, M., Bas, T., Arnaud-Vanneau, A., Arnaud, H., Dumont, T., Gidon, M., Bourbon, M., de Graciansky, P.-C., Rudkiewicz, J.-L., Megard-Galli, J., and Tricart, P..: The continental margin of the Mesozoic Tethys in the Western Alps, Mar. Petrol. Geol., 3, 179–199, https://doi.org/10.1016/0264-8172(86)90044-9, 1986.
Li, X. H., Faure, M., Lin, W., and Manatschal, G.: New isotopic constraints on age and magma genesis of an embryonic oceanic crust: The Chenaillet Ophiolite in the Western Alps, Lithos, 160–161, 283–291, https://doi.org/10.1016/j.lithos.2012.12.016, 2013.
Liati, A. and Froitzheim, N.: Assessing the Valais ocean, Western Alps: U–Pb SHRIMP zircon geochronology of eclogite in the Balma unit, on top of the Monte Rosa nappe, Eur. J. Mineral., 18, 299–308, https://doi.org/10.1127/0935-1221/2006/0018-0299, 2006.
Liati, A., Froitzheim, N., and Fanning, C. M.: Jurassic ophiolites within the Valais domain of the Western and Central Alps: Geochronological evidence for re-rifting of oceanic crust, Contrib. Mineral. Petr., 149, 446–461, https://doi.org/10.1007/s00410-005-0658-7, 2005.
Loprieno, A., Bousquet, R., Bucher, S., Ceriani, S., Dalla Torre, F. H., Fügenschuh, B., and Schmid, S. M.: The Valais units in Savoy (France): A key area for understanding the palaeogeography and the tectonic evolution of the Western Alps, Int. J. Earth Sci., 100, 963–992, https://doi.org/10.1007/s00531-010-0595-1, 2011.
Macchiavelli, C., Vergés, J., Schettino, A., Fernàndez, M., Turco, E., Casciello, E., Torne, M., Pierantoni, P. P., and Tunini, L.: A New Southern North Atlantic Isochron Map: Insights Into the Drift of the Iberian Plate Since the Late Cretaceous, J. Geophys. Res.-Sol. Ea., 122, 9603–9626, https://doi.org/10.1002/2017JB014769, 2017.
Maffione, M. and van Hinsbergen, D. J. J.: Reconstructing Plate Boundaries in the Jurassic Neo-Tethys From the East and West Vardar Ophiolites (Greece and Serbia), Tectonics, 37, 858–887, https://doi.org/10.1002/2017TC004790, 2018.
Manatschal, G.: New models for evolution of magma-poor rifted margins based on a review of data and concepts from West Iberia and the Alps, Int. J. Earth Sci., 93, 432–466, https://doi.org/10.1007/s00531-004-0394-7, 2004.
Manatschal, G. and Bernoulli, D.: Architecture and tectonic evolution of nonvolcanic margins: Present-day Galicia and ancient Adria, Tectonics, 18, 1099–1119, https://doi.org/10.1029/1999TC900041, 1999.
Manatschal, G. and Müntener, O.: A type sequence across an ancient magma-poor ocean-continent transition: the example of the western Alpine Tethys ophiolites, Tectonophysics, 473, 4–19, https://doi.org/10.1016/j.tecto.2008.07.021, 2009.
Manatschal, G., Engström, A., Desmurs, L., Schaltegger, U., Cosca, M., Müntener, O., and Bernoulli, D.: What is the tectono-metamorphic evolution of continental break-up: The example of the Tasna Ocean-Continent Transition, J. Struct. Geol., 28, 1849–1869, https://doi.org/10.1016/j.jsg.2006.07.014, 2006.
Manzotti, P., Ballèvre, M., Zucali, M., Robyr, M., and Engi, M.: The tectonometamorphic evolution of the Sesia–Dent Blanche nappes (internal Western Alps): review and synthesis, Swiss J. Geosci., 107, 309–336, https://doi.org/10.1007/s00015-014-0172-x, 2014.
Manzotti, P., Bosse, V., Pitra, P., Robyr, M., Schiavi, F., and Ballèvre, M.: Exhumation rates in the Gran Paradiso Massif (Western Alps) constrained by in situ U–Th–Pb dating of accessory phases (monazite, allanite and xenotime), Contrib. Mineral. Petr., 173, 1–28, https://doi.org/10.1007/s00410-018-1452-7, 2018.
Marroni, M., Monechi, S., Perilli, N., Principi, G., and Treves, B.: Late Cretaceous flysch deposits of the Northern Apennines, Italy: age of inception of orogenesis-controlled sedimentation, Cretaceous Res., 13, 487–504, https://doi.org/10.1016/0195-6671(92)90013-G, 1992.
Marroni, M., Molli, G., Montanini, A., and Tribuzio, R.: The association of continental crust rocks with ophiolites in the northern Apennines (Italy): implications for the continent–ocean transition in the Western Tethys, Tectonophysics, 292, 43–66, https://doi.org/10.1016/S0040-1951(98)00060-2, 1998.
Martin, L. A. J., Rubatto, D., Vitale Brovarone, A., and Hermann, J.: Late Eocene lawsonite-eclogite facies metasomatism of a granulite sliver associated to ophiolites in Alpine Corsica, Lithos, 125, 620–640, https://doi.org/10.1016/j.lithos.2011.03.015, 2011.
Masetti, D., Fantoni, R., Romano, R., Sartorio, D., and Trevisani, E.: Tectonostratigraphic evolution of the Jurassic extensional basins of the eastern southern Alps and Adriatic foreland based on an integrated study of surface and subsurface data, AAPG Bull., 96, 2065–2089, https://doi.org/10.1306/03091211087, 2012.
Masini, E., Manatschal, G., and Mohn, G.: The Alpine Tethys rifted margins: Reconciling old and new ideas to understand the stratigraphic architecture of magma-poor rifted margins, Sedimentology, 60, 174–196, https://doi.org/10.1111/sed.12017, 2013.
Masini, E., Manatschal, G., Tugend, J., Mohn, G., and Flament, J. M.: The tectono-sedimentary evolution of a hyper-extended rift basin: The example of the Arzacq-Mauléon rift system (Western Pyrenees, SW France), Int. J. Earth Sci., 103, 1569–1596, https://doi.org/10.1007/s00531-014-1023-8, 2014.
Masson, H., Bussy, F., Eichenberger, M., Giroudd, N., Meilhac, C., and Presniakov, S.: Early Carboniferous age of the Versoyen ophiolites and consequences: Non-existence of a “Valais ocean” (Lower Penninic, western Alps), B. Soc. Geol. Fr., 179, 337–355, https://doi.org/10.2113/gssgfbull.179.4.337, 2008.
Matte, P.: The Variscan collage and orogeny (480–290 Ma) and the tectonic definition of the Armorica microplate: A review, Terra Nova, 13, 122–128, https://doi.org/10.1046/j.1365-3121.2001.00327.x, 2001.
Matter, A., Homewood, P., Caron, C., Rigassi, D., Van Stuijvenberg, J., Weidmann, M., and Winkler, W.: Flysch and Molasse of Western and Central Switzerland: Geology of Switzerland, a Guide Book, edited by: Schweizerische Geologische Kommission, Wepf & Co. Publishers, Basel, New York, 261–293, 1980.
McCarthy, A., Chelle-Michou, C., Müntener, O., Arculus, R., and Blundy, J.: Subduction initiation without magmatism: The case of the missing Alpine magmatic arc, Geology, 46, 1059–1062, https://doi.org/10.1130/G45366.1, 2018.
McCarthy, A., Tugend, J., Mohn, G., Candioti, L., Chelle-Michou, C., Arculus, R., Schmalholz, S. M., and Müntener, O.: A case of Ampferer-type subduction and consequences for the Alps and the Pyrenees, Am. J. Sci., 320, 313–372, https://doi.org/10.2475/04.2020.01, 2020.
McClay, K., Munoz, J. A., and García-Senz, J.: Extensional salt tectonics in a contractional orogen: A newly identified tectonic event in the Spanish Pyrenees, Geology, 32, 737–740, https://doi.org/10.1130/G20565.1, 2004.
McKenzie, D.: Some remarks on the development of sedimentary basins, Earth Planet. Sci. Lett., 40, 25–32, https://doi.org/10.1016/0012-821X(78)90071-7, 1978.
Michard, A., Chalouan, A., Feinberg, H., Goffé, B., and Montigny, R.: How does the Alpine belt end between Spain and Morocco?, B. Soc. Geol. Fr., 173, 3–15, https://doi.org/10.2113/173.1.3, 2002.
Michard, A., Negro, F., Saddiqi, O., Bouybaouene, M. L., Chalouan, A., Montigny, R., and Goffé, B.: Pressure-temperature-time constraints on the Maghrebide mountain building: Evidence from the Rif-Betic transect (Morocco, Spain), Algerian correlations, and geodynamic implications, C. R. Geosci., 338, 92–114, https://doi.org/10.1016/j.crte.2005.11.011, 2006.
Michard, A., Mokhtari, A., Chalouan, A., Saddiqi, O., Rossi, P., and Rjimati, E. C.: New ophiolite slivers in the External Rif belt, and tentative restoration of a dual Tethyan suture in the western Maghrebides, B. Soc. Geol. Fr., 185, 313–328, https://doi.org/10.2113/gssgfbull.185.5.313, 2014.
Mohn, G., Manatschal, G., Müntener, O., Beltrando, M., and Masini, E.: Unravelling the interaction between tectonic and sedimentary processes during lithospheric thinning in the Alpine Tethys margins, Int. J. Earth Sci., 99, 75–101, https://doi.org/10.1007/s00531-010-0566-6, 2010.
Mohn, G., Manatschal, G., Beltrando, M., Masini, E., and Kusznir, N.: Necking of continental crust in magma-poor rifted margins: Evidence from the fossil Alpine Tethys margins, Tectonics, 31, 1–28, https://doi.org/10.1029/2011TC002961, 2012.
Molli, G.: Northern Apennine–Corsica orogenic system: An updated overview, Geol. Soc. Sp., 298, 413–442, https://doi.org/10.1144/SP298.19, 2008.
Molli, G. and Malavieille, J.: Orogenic processes and the Corsica/Apennines geodynamic evolution: insights from Taiwan, Int. J. Earth Sci., 100, 1207–1224, https://doi.org/10.1007/s00531-010-0598-y, 2011.
Molli, G., Brogi, A., Caggianelli, A., Capezzuoli, E., Liotta, D., Spina, A., and Zibra, I.: Late Palaeozoic tectonics in Central Mediterranean: a reappraisal, Swiss J. Geosci., 113, 1–32, https://doi.org/10.1186/s00015-020-00375-1, 2020.
Montenat, C., Janin, M. C., and Barrier, P.: L'accident du Toulourenc: Une limite tectonique entre la plate-forme provençale et le Bassin vocontien à l'Aptien-Albien (SE France), C. R. Geosci., 336, 1301–1310, https://doi.org/10.1016/j.crte.2004.05.002, 2004.
Moulas, E., Schmalholz, S. M., Podladchikov, Y., Tajčmanová, L., Kostopoulos, D., and Baumgartner, L.: Relation between mean stress, thermodynamic, and lithostatic pressure, J. Metamorph. Geol., 37, 1–14, https://doi.org/10.1111/jmg.12446, 2019.
Mouthereau, F., Filleaudeau, P. Y., Vacherat, A., Pik, R., Lacombe, O., Fellin, M. G., Castelltort, S., Christophoul, F., and Masini, E.: Placing limits to shortening evolution in the Pyrenees: Role of margin architecture and implications for the Iberia/Europe convergence, Tectonics, 33, 2283–2314, https://doi.org/10.1002/2014TC003663, 2014.
Müller, R. D., Roest, W. R., Royer, J.-Y., Gahagan, L. M., and Sclater, J. G.: Digital isochrons of the world's ocean floor, J. Geophys. Res.-Sol. Ea., 102, 3211–3214, https://doi.org/10.1029/96jb01781, 1997.
Müller, R. D., Royer, J. Y., Cande, S. C., Roest, W. R., and Maschenkov, S.: New constraints on the late cretaceous/tertiary plate tectonic evolution of the caribbean, Sedimentary Basins of the World, 4, 33–59, https://doi.org/10.1016/S1874-5997(99)80036-7, 1999.
Müller, R. D., Cannon, J., Qin, X., Watson, R. J., Gurnis, M., Williams, S., Pfaffelmoser, T., Seton, M., Russell, S. H. J., and Zahirovic, S.: GPlates: Building a Virtual Earth Through Deep Time, Geochem., Geophy., Geosy., 19, 2243–2261, https://doi.org/10.1029/2018GC007584, 2018.
Müller, R. D., Zahirovic, S., Williams, S. E., Cannon, J., Seton, M., Bower, D. J., Tetley, M. G., Heine, C., Le Breton, E., Liu, S., Russel, S. H. J., Yang, T., Leonard, J., and Gurnis, M.: A Global Plate Model Including Lithospheric Deformation Along Major Rifts and Orogens Since the Triassic, Tectonics, 38, 1884–1907, https://doi.org/10.1029/2018TC005462, 2019.
Müntener, O. and Hermann, J.: The role of lower crust and continental upper mantle during formation of non-volcanic passive margins: Evidence from the Alps, Geol. Soc. Sp., 187, 267–288, https://doi.org/10.1144/GSL.SP.2001.187.01.13, 2001.
Nagel, T. J., Herwartz, D., Rexroth, S., Münker, C., Froitzheim, N., and Kurz, W.: Lu-Hf dating, petrography, and tectonic implications of the youngest Alpine eclogites (Tauern Window, Austria), Lithos, 170–171, 179–190, https://doi.org/10.1016/j.lithos.2013.02.008, 2013.
Neres, M., Font, E., Miranda, J. M., Camps, P., Terrinha, P., and Mirão, J.: Reconciling Cretaceous paleomagnetic and marine magnetic data for Iberia: New Iberian paleomagnetic poles, J. Geophys. Res.-Sol. Ea., 117, 1–21, https://doi.org/10.1029/2011JB009067, 2012.
Neres, M., Miranda, J. M., and Font, E.: Testing Iberian kinematics at Jurassic-Cretaceous times, Tectonics, 32, 1312–1319, https://doi.org/10.1002/tect.20074, 2013.
Neubauer, F., Dallmeyer, R. D., Dunkl, I., and Schirnik, D.: Late Cretaceous exhumation of the metamorphic Gleinalm dome, Eastern Alps: kinematics, cooling history and sedimenetary response in a sinistral wrench corridor, Tectonophysics, 242, 79-98, https://doi.org/10.1016/0040-1951(94)00154-2, 1995.
Nirrengarten, M., Manatschal, G., Tugend, J., Kusznir, N. J., and Sauter, D.: Nature and origin of the J-magnetic anomaly offshore Iberia–Newfoundland: implications for plate reconstructions, Terra Nova, 29, 20–28, https://doi.org/10.1111/ter.12240, 2017.
Oliva-Urcia, B., Casas, A. M., Soto, R., Villalaín, J. J., and Kodama, K.: A transtensional basin model for the Organyà basin (central southern Pyrenees) based on magnetic fabric and brittle structures, Geophys. J. Int., 184, 111–130, https://doi.org/10.1111/j.1365-246X.2010.04865.x, 2011.
Olivet, J.: La cinématique de la plaque ibérique, B. Cent. Rech. Expl., 20, 131–195, 1996.
Pérez-Gussinyé, M., Morgan, J. P., Reston, T. J., and Ranero, C. R.: The rift to drift transition at non-volcanic margins: Insights from numerical modelling, Earth Planet. Sci. Lett., 244, 458–473, https://doi.org/10.1016/j.epsl.2006.01.059, 2006.
Peybernés, B. and Souquet, P.: Basement blocks and tecto-sedimentary evolution in the Pyrenees during Mesozoic times, Geol. Mag., 121, 397–405, https://doi.org/10.1017/S0016756800029927, 1984.
Picazo, S., Müntener, O., Manatschal, G., Bauville, A., Karner, G., and Johnson, C.: Mapping the nature of mantle domains in Western and Central Europe based on clinopyroxene and spinel chemistry: Evidence for mantle modification during an extensional cycle, Lithos, 266–267, 233–263, https://doi.org/10.1016/j.lithos.2016.08.029, 2016.
Piccardo, G. B. and Guarnieri, L.: Alpine peridotites from the Ligurian Tethys: An updated critical review, Int. Geol. Rev., 52, 1138–1159, https://doi.org/10.1080/00206810903557829, 2010.
Pleuger, J. and Podladchikov, Y. Y.: A purely structural restoration of the NFP20-East cross section and potential tectonic overpressure in the Adula nappe (central Alps), Tectonics, 33, 656–685, https://doi.org/10.1002/2013TC003409, 2014.
Popov, A. A. and Sobolev, S. V.: SLIM3D: A tool for three-dimensional thermomechanical modeling of lithospheric deformation with elasto-visco-plastic rheology, Phys. Earth Planet. In., 171, 55–75, https://doi.org/10.1016/j.pepi.2008.03.007, 2008.
Ratschbacher, L., Merle, O., Davy, P., and Cobbold, P.: Lateral extrusion in the Eastern Alps, Part 1: boundary conditions and experiments scaled for gravity, Tectonics, 10, 245–256, 1991.
Reuber, G., Kaus, B. J. P., Schmalholz, S. M., and White, R. W.: Nonlithostatic pressure during subduction and collision and the formation of (ultra)high-pressure rocks, Geology, 44, 343–346, https://doi.org/10.1130/G37595.1, 2016.
Ribes, C., Manatschal, G., Ghienne, J. F., Karner, G. D., Johnson, C. A., Figueredo, P. H., Incerpi, N., and Epin, M. E.: The syn-rift stratigraphic record across a fossil hyper-extended rifted margin: the example of the northwestern Adriatic margin exposed in the Central Alps, Int. J. Earth Sci., 108, 2071–2095, https://doi.org/10.1007/s00531-019-01750-6, 2019.
Ribes, C., Petri, B., Ghienne, J. F., Manatschal, G., Galster, F., Karner, G. D., Figueredo, P. H., Johnson, C. A., and Karpoff, A. M.: Tectono-sedimentary evolution of a fossil ocean-continent transition: Tasna nappe, central Alps (SE Switzerland), Bull. Geol. Soc. Am., 132, 1427–1446, https://doi.org/10.1130/B35310.1, 2020.
Rosenbaum, G., Lister, G. S., and Duboz, C.: Rewlative mortiosn of Frica, Iberia and europe during Alpine orogeny, Tectonophysics, 359, 117–129, 2002.
Rosenbaum, G. and Lister, G. S.: Neogene and Quaternary rollback evolution of the Tyrrhenian Sea, the Apennines, and the Sicilian Maghrebides, Tectonics, 23, TC1013, https://doi.org/10.1029/2003TC001518, 2004.
Rosenberg, C. L.: Shear zones and magma ascent: A model based on a review of the Tertiary magmatism in the Alps, Tectonics, 23, TC3002, https://doi.org/10.1029/2003TC001526, 2004.
Royden, L. and Burchfiel, B. C.: Are systematic variations in thrust belt style related to plate boundary processes? (The western Alps versus the Carpathians), Tectonics, 8, 51–61, https://doi.org/10.1029/TC008i001p00051, 1989.
Rubatto, D., Gebauer, D., and Fanning, M.: Jurassic formation and Eocene subduction of the Zermatt-Saas-Fee ophiolites: Implications for the geodynamic evolution of the Central and Western Alps, Contrib. Mineral. Petr., 132, 269–287, https://doi.org/10.1007/s004100050421, 1998.
Ruh, J. B., Le Pourhiet, L., Agard, P., Burov, E., and Gerya, T.: Tectonic slicing of subducting oceanic crust along plate interfaces: Numerical modeling, Geochem., Geophy., Geosy., 16, 3505–3531, https://doi.org/10.1002/2015GC005998, 2015.
Sandmann, S., Nagel, T. J., Herwartz, D., Fonseca, R. O. C., Kurzawski, R. M., Münker, C., and Froitzheim, N.: Lu–Hf garnet systematics of a polymetamorphic basement unit: new evidence for coherent exhumation of the Adula Nappe (Central Alps) from eclogite-facies conditions, Contrib. Mineral. Petr., 168, 1–21, https://doi.org/10.1007/s00410-014-1075-6, 2014.
Scharf, A., Handy, M. R., Favaro, S., Schmid, S. M., and Bertrand, A.: Modes of orogen-parallel stretching and extensional exhumation in response to microplate indentation and roll-back subduction (Tauern Window, Eastern Alps), Int. J. Earth Sci., 102, 1627–1654, https://doi.org/10.1007/s00531-013-0894-4, 2013a.
Scharf, A., Handy, M. R., Ziemann, M. A., and Schmid, S. M.: Peak-temperature patterns of polyphase metamorphism resulting from accretion, subduction and collision (eastern tauern window, european alps) – a study with raman microspectroscopy on carbonaceous material (RSCM), J. Metamorph. Geol., 31, 863–880, https://doi.org/10.1111/jmg.12048, 2013b.
Schettino, A. and Scotese, C. R.: Apparent polar wander paths for the major continents (200 Ma to the present day): A palaeomagnetic reference frame for global plate tectonic reconstructions, Geophys. J. Int., 163, 727–759, https://doi.org/10.1111/j.1365-246X.2005.02638.x, 2005.
Schettino, A. and Turco, E.: Tectonic history of the Western Tethys since the Late Triassic, Bull. Geol. Soc. Am., 123, 89–105, https://doi.org/10.1130/B30064.1, 2011.
Schmalholz, S. M. and Podladchikov, Y. Y.: Tectonic overpressure in weak crustal–scale shear zones and implications for the exhumation of high-pressure rocks, Geophys. Res. Lett., 40, 1984–1988, https://doi.org/10.1002/grl.50417, 2013.
Schmid, S. M., Pfiffner, O. A., Froitzheim, N., Schönborn, G., and Kissling, E.: Geophysical-geological transect and tectonic evolution of the Swiss-Italian Alps, Tectonics, 15, 1036–1064, https://doi.org/10.1029/96TC00433, 1996.
Schmid, S. M., Bernoulli, D., Fügenschuh, B., Matenco, L., Schefer, S., Schuster, R., Tischler, M., and Ustaszewski, K.: The Alpine-Carpathian-Dinaridic orogenic system: Correlation and evolution of tectonic units, Swiss J. Geosci., 101, 139–183, https://doi.org/10.1007/s00015-008-1247-3, 2008.
Schmid, S. M., Fügenschuh, B., Kounov, A., Matenco, L., Nievergelt, P., Oberhänsli, R., Pleuger, J., Schefer, S., Schuster, R., Tomljenovic, B., Ustaszewski, K., and van Hinsbergen, D. J. J.: Tectonic units of the Alpine collision zone between Eastern Alps and western Turkey, Gondwana Res., 78, 308–374, https://doi.org/10.1016/j.gr.2019.07.005, 2020.
Schuster, R. and Frank, W.: Metamorphic evolution of the Austroalpine units east of the Tauern Window, Mitt. Geol. Bergbau Stud. Österr., 42, 37–58, 1999.
Scisciani, V. and Calamita, F.: Active intraplate deformation within Adria: Examples from the Adriatic region, Tectonophysics, 476, 57–72, https://doi.org/10.1016/j.tecto.2008.10.030, 2009.
Séranne, M.: The Gulf of Lion continental margin (NW Mediterranean) revisited by IBS: an overview, Geol. Soc. Sp., 156, 15–36, https://doi.org/10.1144/GSL.SP.1999.156.01.03, 1999.
Sibuet, J.-C., Srivastav, S. P., and Spakman, W.: Pyrenean orogeny and plate kinematics, J. Geophys. Res., 109, 1–18, https://doi.org/10.1029/2003JB002514, 2004.
Sieberer, A.-K. and Ortner, H.: Influence of Penninic rifting on the tectonic evolution of the northern Austroalpine margin, GeoUtrecht 2020, 24–26 August 2020, Utrecht, the Netherlands, https://www.conftool.pro/geoutrecht2020/index.php?page=browseSessions&form_session=159, 296, 2020.
Sinclair, H. D.: Tectonostratigraphic model for underfilled peripheral foreland basins: An Alpine perspective, Bull. Geol. Soc. Am., 109, 324–346, https://doi.org/10.1130/0016-7606(1997)109<0324:TMFUPF>2.3.CO;2, 1997.
Spakman, W., Chertova, M. V., Van Den Berg, A., and Van Hinsbergen, D. J. J.: Puzzling features of western Mediterranean tectonics explained by slab dragging, Nat. Geosci., 11, 211–216, https://doi.org/10.1038/s41561-018-0066-z, 2018.
Speranza, F., Villa, I. M., Sagnotti, L., Florindo, F., Cosentino, D., Cipollari, P., and Mattei, M.: Age of the Corsica-Sardinia rotation and Liguro-Provençal Basin spreading: New paleomagnetic and evidence, Tectonophysics, 347, 231–251, https://doi.org/10.1016/S0040-1951(02)00031-8, 2002.
Speranza, F., Minelli, L., Pignatelli, A., and Chiappini, M.: The Ionian Sea: The oldest in situ ocean fragment of the world?, J. Geophys. Res.-Sol. Ea., 117, 1–13, https://doi.org/10.1029/2012JB009475, 2012.
Srivastava, S. P., Roest, W. R., Kovacs, L. C., Oakey, G., Lévesque, S., Verhoef, J., and Macnab, R.: Motion of Iberia since the Late Jurassic: Results from detailed aeromagnetic measurements in the Newfoundland Basin, Tectonophysics, 184, 229–260, https://doi.org/10.1016/0040-1951(90)90442-B, 1990.
Stampfli, G. M.: Le Briançonnais, terrain exotique dans les Alpes?, Eclogae Geol. Helv., 86, 1–45, 1993.
Stampfli, G. M. and Borel, G. D.: A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons, Earth Planet. Sci. Lett., 196, 17–33, https://doi.org/10.1016/S0012-821X(01)00588-X, 2002.
Stampfli, G. M., Mosar, J., Marquer, D., Marchant, R., Baudin, T., and Borel, G.: Subduction and obduction processes in the Swiss Alps, Tectonophysics, 296, 159–204, https://doi.org/10.1016/S0040-1951(98)00142-5, 1998.
Stern, R. J. and Gerya, T.: Subduction initiation in nature and models: A review, Tectonophysics, 746, 173–198, https://doi.org/10.1016/j.tecto.2017.10.014, 2018.
Stüwe, K. and Schuster, R.: Initiation of subduction in the Alps: Continent or ocean?, Geology, 38, 175–178, https://doi.org/10.1130/G30528.1, 2010.
Tetreault, J. L. and Buiter, S. J. H.: The influence of extension rate and crustal rheology on the evolution of passive margins from rifting to break-up, Tectonophysics, 746, 155–172, https://doi.org/10.1016/j.tecto.2017.08.029, 2018.
Thöni, M.: Dating eclogite-facies metamorphism in the Eastern Alps – Approaches, results, interpretations: A review, Miner. Petrol., 88, 123–148, https://doi.org/10.1007/s00710-006-0153-5, 2006.
Thorwart, M., Dannowski, A., Grevemeyer, I., Lange, D., Kopp, H., Petersen, F., Crawford, W., Paul, A., and the AlpArray Working Group: Basin inversion: Reactivated rift structures in the Ligurian Sea revealed by OBS, Solid Earth Discuss. [preprint], https://doi.org/10.5194/se-2021-9, in review, 2021.
Trümpy, R.: Sur les racines helvétiques et les “Schistes lustr”es” entre le Rhone et la Vallée de Bagnes (Région de la Pierre Avoi), Eclogae Geol. Helv., 44, 338–347, 1951.
Trümpy, R.: La zone de Sion-Courmayeur dans le haut Val Ferret valaisan, Eclogae Geol. Helv., 47, 315–359, 1954.
Tucholke, B. E. and Sibuet, J. C.: Problematic plate reconstruction, Nat. Geosci., 5, 676–677, https://doi.org/10.1038/ngeo1596, 2012.
Tugend, J., Manatschal, G., Kusznir, N. J., Masini, E., Mohn, G., and Thinon, I.: Formation and deformation of hyperextended rift systems: Insights from rift domain mapping in the Bay of Biscay–Pyrenees, Tectonics, 33, 1239–1276, https://doi.org/10.1002/2014TC003529, 2014.
Tugend, J., Chamot-Rooke, N., Arsenikos, S., Blanpied, C., and Frizon de Lamotte, D.: Geology of the Ionian Basin and Margins: A Key to the East Mediterranean Geodynamics, Tectonics, 38, 2668–2702, https://doi.org/10.1029/2018TC005472, 2019.
Ustaszewski, K., Schmid, S. M., Fügenschuh, B., Tischler, M., Kissling, E., and Spakman, W.: A map-view restoration of the alpine–carpathian–dinaridic system for the early miocene, Swiss J. Geosci., 101, 273–294, https://doi.org/10.1007/s00015-008-1288-7, 2008.
Van Hinsbergen, D. J. J., Vissers, R. L. M., and Spakman, W.: Origin and consequences of western Mediterranean subduction, rollback, and slab segmentation, Tectonics, 33, 393–419, https://doi.org/10.1002/2013TC003349, 2014.
Van Hinsbergen, D. J. J., Spakman, W., Vissers, R. L. M., and van der Meer, D. G.: Comment on “Assessing Discrepancies Between Previous Plate Kinematic Models of Mesozoic Iberia and Their Constraints” by Barnett-Moore Et Al., Tectonics, 36, 3277–3285, https://doi.org/10.1002/2016TC004418, 2017.
Van Hinsbergen, D. J. J., Torsvik, T. H., Schmid, S. M., Maţenco, L. C., Maffione, M., Vissers, R. L. M., Gürer, D., and Spakman, W.: Orogenic architecture of the Mediterranean region and kinematic reconstruction of its tectonic evolution since the Triassic, Gondwana Res., 81, 79–229, https://doi.org/10.1016/j.gr.2019.07.009, 2020.
Vissers, R. L. M. and Meijer, P. T.: Mesozoic rotation of Iberia: Subduction in the Pyrenees?, Earth-Sci. Rev., 110, 93–110, https://doi.org/10.1016/j.earscirev.2011.11.001, 2012.
Vissers, R. L. M., Van Hinsbergen, D. J. J., Meijer, P. T., and Piccardo, G. B.: Kinematics of Jurassic ultra-slow spreading in the piemonte Ligurian ocean, Earth Planet. Sci. Lett., 380, 138–150, https://doi.org/10.1016/j.epsl.2013.08.033, 2013.
Vissers, R. L. M., Van Hinsbergen, D. J. J., van der Meer, D. G., and Spakman, W.: Cretaceous slab break-off in the Pyrenees: Iberian plate kinematics in paleomagnetic and mantle reference frames, Gondwana Res., 34, 49–59, https://doi.org/10.1016/j.gr.2016.03.006, 2016a.
Vissers, R. L. M., Van Hinsbergen, D. J. J., Wilkinson, C. M., and Ganerød, M.: Middle jurassic shear zones at Cap de Creus (eastern Pyrenees, Spain): A record of pre-drift extension of the Piemonte–Ligurian Ocean?, J. Geol. Soc., 174, 289–300, https://doi.org/10.1144/jgs2016-014, 2016b.
Von Blanckenburg, F. and Davies, J. H.: Slab breakoff: A model for syncollisional magmatism and tectonic in the Alps, Tectonics, 14, 120–131, 1995.
Wortel, M. J. R. and Spakman, W.: Subduction and slab detachment in the Mediterranean-Carpathian region, Science, 290, 1910–1917, https://doi.org/10.1126/science.290.5498.1910, 2000.
Wortmann, U. G., Weissert, H., Funk, H., and Hauck, J.: Alpine plate kinematics revisited: The adria problem, Tectonics, 20, 134–147, https://doi.org/10.1029/2000TC900029, 2001.
Yamato, P., Agard, P., Burov, E., Le Pourhiet, L., Jolivet, L., and Tiberi, C.: Burial and exhumation in a subduction wedge: Mutual constraints from thermomechanical modeling and natural P-T-t data (Schistes Lustrés, western Alps), J. Geophys. Res.-Sol. Ea., 112, https://doi.org/10.1029/2006JB004441, 2007.
Yamato, P. and Brun, J. P.: Metamorphic record of catastrophic pressure drops in subduction zones, Nat. Geosci., 10, 46–50, https://doi.org/10.1038/ngeo2852, 2017.
Zhou, X., Li, Z. H., Gerya, T. V., and Stern, R. J.: Lateral propagation-induced subduction initiation at passive continental margins controlled by preexisting lithospheric weakness, Sci. Adv., 6, 1–10, https://doi.org/10.1126/sciadv.aaz1048, 2020.
Short summary
The former Piemont–Liguria Ocean, which separated Europe from Africa–Adria in the Jurassic, opened as an arm of the central Atlantic. Using plate reconstructions and geodynamic modeling, we show that the ocean reached only 250 km width between Europe and Adria. Moreover, at least 65 % of the lithosphere subducted into the mantle and/or incorporated into the Alps during convergence in Cretaceous and Cenozoic times comprised highly thinned continental crust, while only 35 % was truly oceanic.
The former Piemont–Liguria Ocean, which separated Europe from Africa–Adria in the Jurassic,...