Articles | Volume 13, issue 1
https://doi.org/10.5194/se-13-65-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-13-65-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A functional tool to explore the reliability of micro-earthquake focal mechanism solutions for seismotectonic purposes
Guido Maria Adinolfi
CORRESPONDING AUTHOR
Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, via De Sanctis, 82100 Benevento, Italy
CRUST Centro inteRUniversitario per l'analisi SismoTettonica tridimensionale, 32, 66100 Chieti, Italy
Raffaella De Matteis
Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, via De Sanctis, 82100 Benevento, Italy
Rita de Nardis
Dipartimento di Scienze Psicologiche, della Salute e del Territorio, Università di Chieti-Pescara “G. d'Annunzio”, via dei Vestini, 32, 66100 Chieti, Italy
CRUST Centro inteRUniversitario per l'analisi SismoTettonica tridimensionale, 32, 66100 Chieti, Italy
Aldo Zollo
Dipartimento di Fisica, Università di Napoli “Federico II”, Complesso Universitario di Monte S.Angelo, via Cinthia, 80124 Napoli, Italy
Related authors
Cesare Comina, Guido Maria Adinolfi, Carlo Bertok, Andrea Bertea, Vittorio Giraud, and Pierluigi Pieruccini
Earth Syst. Sci. Data, 17, 2175–2191, https://doi.org/10.5194/essd-17-2175-2025, https://doi.org/10.5194/essd-17-2175-2025, 2025
Short summary
Short summary
Estimates of earthquake ground motion rely on evaluating soil and rock profiles, with shear-wave velocity (Vs) as a key factor. Uncertainty in Vs impacts seismic hazard predictions. Stochastic procedures model this uncertainty but must be calibrated using detailed geological data and Vs databases. This paper provides a new Vs profile database for Piedmont (northwest Italy), integrating geological modelling and geophysical data and supporting similar studies in other regions.
Simona Colombelli, Aldo Zollo, Francesco Carotenuto, Alessandro Caruso, Luca Elia, Gaetano Festa, Sergio Gammaldi, Antonio Giovanni Iaccarino, Giovanni Iannaccone, Alberto Mauro, Matteo Picozzi, Giulia Polimanti, Rosario Riccio, Stefania Tarantino, Francesco Cirillo, Andrea Vecchi, and Franco Iacobini
EGUsphere, https://doi.org/10.5194/egusphere-2025-2668, https://doi.org/10.5194/egusphere-2025-2668, 2025
Short summary
Short summary
The first Italian Earthquake Early Warning system protects the Naples-Rome high-speed railway by detecting earthquakes in real time and sending alerts within seconds. Using seismic sensors and smart algorithms, it slows or stops trains only where needed, avoiding full-line shutdowns. Directly linked to train control, it boosts safety and minimizes disruption during potentially damaging earthquakes.
Cesare Comina, Guido Maria Adinolfi, Carlo Bertok, Andrea Bertea, Vittorio Giraud, and Pierluigi Pieruccini
Earth Syst. Sci. Data, 17, 2175–2191, https://doi.org/10.5194/essd-17-2175-2025, https://doi.org/10.5194/essd-17-2175-2025, 2025
Short summary
Short summary
Estimates of earthquake ground motion rely on evaluating soil and rock profiles, with shear-wave velocity (Vs) as a key factor. Uncertainty in Vs impacts seismic hazard predictions. Stochastic procedures model this uncertainty but must be calibrated using detailed geological data and Vs databases. This paper provides a new Vs profile database for Piedmont (northwest Italy), integrating geological modelling and geophysical data and supporting similar studies in other regions.
Daniele Cirillo, Cristina Totaro, Giusy Lavecchia, Barbara Orecchio, Rita de Nardis, Debora Presti, Federica Ferrarini, Simone Bello, and Francesco Brozzetti
Solid Earth, 13, 205–228, https://doi.org/10.5194/se-13-205-2022, https://doi.org/10.5194/se-13-205-2022, 2022
Short summary
Short summary
The Pollino region is a highly seismic area of Italy. Increasing the geological knowledge on areas like this contributes to reducing risk and saving lives. We reconstruct the 3D model of the faults which generated the 2010–2014 seismicity integrating geological and seismological data. Appropriate relationships based on the dimensions of the activated faults suggest that they did not fully discharge their seismic potential and could release further significant earthquakes in the near future.
Cited articles
Adinolfi, G. M., Cesca, S., Picozzi, M., Heimann, S., and Zollo, A.: Detection of weak seismic sequences based on arrival time coherence and empiric network detectability: an application at a near fault observatory, Geophys. J. Int., 218, 2054–2065, https://doi.org/10.1093/gji/ggz248, 2019.
Adinolfi, G. M., Picozzi, M., Cesca, S., Heimann, S., and Zollo, A.: An application of coherence-based method for earthquake detection and microseismic monitoring (Irpinia fault system, Southern Italy), J. Seismol., 24, 979–989, https://doi.org/10.1007/s10950-020-09914-7, 2020.
Amoroso, O., Ascione, A., Mazzoli, S., Virieux, J., and Zollo, A.: Seismic imaging of a fluid storage in the actively extending Apennine mountain belt, southern Italy, Geophys. Res. Lett., 41, 3802–3809, https://doi.org/10.1002/2014gl060070, 2014.
Amoruso, A., Crescentini, L., and Scarpa, R.: Faulting geometry for the complex 1980 Campania Lucania earthquake from levelling data, Geophys. J. Int., 162, 156–168, https://doi.org/10.1111/j.1365-246x.2005.02652.x, 2005.
Bartal, Y., Somer, Z., Leonard, G., Steinberg, D. M., and Horin, Y. B.: Optimal seismic networks in Israel in the context of the Comprehensive Test Ban Treaty, B. Seismol. Soc. Am., 90, 151–165, https://doi.org/10.1785/0119980164, 2000.
Bello, S., De Nardis, R., Scarpa, R., Brozzetti, F.,
Cirillo, D., Ferrarini, F., di Lieto, B., Arrowsmith, R. J., and
Lavecchia, G.: Fault Pattern and Seismotectonic Style of the
Campania–Lucania 1980 Earthquake (Mw 6.9, Southern Italy): New
Multidisciplinary Constraints, Front. Earth Sci., 8, 608063,
https://doi.org/10.3389/feart.2020.608063, 2021.
Bentz, S., Martínez-Garzón, P., Kwiatek, G., Bohnhoff, M., and Renner J.: Sensitivity of Full Moment Tensors to Data Preprocessing and Inversion Parameters: A Case Study from the Salton Sea Geothermal Field, Bull. Seismol. Soc. Am., 108, 588603, https://doi.org/10.1785/0120170203, 2018.
Bernard, P. and Zollo, A.: The Irpinia (Italy) 1980
earthquake: detailed analysis of a complex normal faulting,
J. Geophys. Res.-Sol. Ea., 94, 1631–1647,
https://doi.org/10.1029/jb094ib02p01631, 1989.
Boatwright, J.: A spectral theory for circular seismic sources; simple estimates of source dimension, dynamic stress drop, and radiated seismic energy, B. Seismol. Soc. Am., 70, 1–27,
https://pubs.geoscienceworld.org/ssa/bssa/article-abstract/70/1/1/101951/A-spectral-theory-for-circular-seismic-sources?redirectedFrom=fulltext, 1980.
Brillinger, D. R., Udías, A., and Bolt, B. A.: A
probability model for regional focal mechanism solutions,
B. Seismol. Soc. Am. 70, 149–170, https://doi.org/10.1785/bssa0700010149, 1980.
Cesca, S., Heimann, S., Stammler, K., and Dahm, T.: Automated procedure for point and kinematic source inversion at regional distances, J. Geophys. Res.-Sol. Ea., 115, https://doi.org/10.1029/2009JB006450, 2010.
Cocco, M., Chiarabba, C., Di Bona, M., Selvaggi, G., Margheriti, L., Frepoli, A., Lucente, F. P., Basili, A., Jongmans, D., and Campillo, M.: The April 1996 Irpinia seismic sequence: evidence for fault interaction, J. Seismol., 3, 105–117, https://doi.org/10.1023/A:1009771817737, 1999.
Delouis, B.: FMNEAR: Determination of focal mechanism and first estimate of rupture directivity using near-source records and a linear distribution of point sources, B. Seismol. Soc. Am., 104, 1479–1500, 2014.
De Matteis, R., Matrullo, E., Rivera, L., Stabile, T. A., Pasquale, G., and Zollo, A.: Fault delineation and regional stress direction from the analysis of background microseismicity in the southern Apennines, Italy, B. Seismol. Soc. Am., 102, 1899–1907, https://doi.org/10.1785/0120110225, 2012.
De Matteis, R., Convertito, V., and Zollo, A.: BISTROP: Bayesian inversion of spectral-level ratios and P-wave polarities for focal mechanism determination, Seismol. Res. Lett., 87, 944–954, https://doi.org/10.1785/0220150259, 2016.
Dietz, L.: Notes on Configuring BINDER_EW: Earthworm's Phase Associator, available at: http://www.earthwormcentral.org/ (last access: 1 June 2021), 2002.
Dreger, D. S., Lee, W. H. K., Kanamori, H., Jennings,
P. C., and Kisslinger, C.: Time-domain moment tensor INVerse code
(TDMT-INVC) release 1.1, in: International Handbook of Earthquake and Engineering Seismology, Vol. B, edited by: Lee, W. H. K., Kanamori, H., Jennings, P. C., and Kisslinger, C., 1627, 2003.
Festa, G., Adinolfi, G. M., Caruso, A., Colombelli, S.,
De Landro, G., Elia, L., Emolo, A., Picozzi, M., Scala, A.,
Carotenuto, F., Gammaldi, S., Iaccarino, A. G., Nazeri, S., Riccio, R.,
Russo, G., Tarantino, S., and Zollo, A.: Insights into Mechanical
Properties of the 1980 Irpinia Fault System from the Analysis of a
Seismic Sequence, Geosciences, 11, 28,
https://doi.org/10.3390/geosciences11010028, 2021.
Hardebeck, J. and Shearer M.: Using S P Amplitude Ratios to Constrain the Focal Mechanisms of Small Earthquakes, B. Seismol. Soc. Am., 93, 2434–2444, https://doi.org/10.1785/0120020236, 2003.
Hardt, M. and Scherbaum, F.: The design of optimum networks for aftershock recordings, Geophys. J. Int., 117, 716–726, https://doi.org/10.1111/j.1365-246X.1994.tb02464.x, 1994.
Havskov, J., Ottemöller, L., Trnkoczy, A., and Bormann,
P.: Seismic Networks, in: New Manual of Seismological Observatory
Practice 2 (NMSOP-2), edited by: Bormann, P., Deutsches
GeoForschungsZentrum GFZ, Potsdam, 1–65, 2012.
Julian, B. R. and Foulger, G. R.: Earthquake mechanisms
from linear-programming inversion of seismic-wave amplitude ratios,
B. Seismol. Soc. Am., 86, 972–980, https://doi.org/10.1785/BSSA0860040972, 1996.
Kagan, Y. Y.: 3-D rotation of double-couple earthquake
sources, Geophys. J. Int., 106, 709–716,
https://doi.org/10.1111/j.1365-246X.1991.tb06343.x, 1991.
Kisslinger, C., Bowman, J. R., and Koch K.: Procedures for computing focal mechanisms from local (SV/P) data, B. Seismol. Soc. Am., 71, 1719–1729, https://doi.org/10.1785/BSSA0710061719, 1981.
Kwiatek, G. and Ben-Zion Y: Theoretical limits on detection and analysis of small earthquakes, J. Geophys. Res.-Sol. Ea., 121, 5898–5916, https://doi.org/10.1002/2016JB012908, 2016.
Kwiatek, G. and Ben-Zion Y.: Detection Limits and Near-Field Ground Motions of Fast and Slow Earthquakes, J. Geophys. Res.-Sol. Ea., 125, e2019JB018935, https://doi.org/10.1029/2019JB018935, 2020.
Kwiatek, G., Martínez-Garzón P., and Bohnhoff M.: HybridMT: A MATLAB Software Package for Seismic Moment Tensor Inversion and Refinement, Seismol. Res. Lett., 87, 964-976, https://doi.org/10.1785/0220150251, 2016.
Matrullo, E., De Matteis, R., Satriano, C., Amoroso, O., and Zollo, A.: An improved 1D seismic velocity model for seismological studies in the Campania-Lucania region (Southern Italy), Geophys. J. Int., 195, 460–473, https://doi.org/10.1093/gji/ggt224, 2013.
Michele, M., Custódio, S., and Emolo, A.: Moment tensor
resolution: case study of the Irpinia Seismic Network, Southern
Italy, B. Seismol. Soc. Am., 104, 1348–1357,
https://doi.org/10.1785/0120130177, 2014.
Pantosti, D. and Valensise, G.: Faulting mechanism and
complexity of the November 23, 1980, Campania-Lucania earthquake,
inferred from surface observations, J. Geophys. Res.-Sol. Ea.,
95, 15319–15341, https://doi.org/10.1029/JB095iB10p15319,
1990.
Pasquale, G., De Matteis, R., Romeo, A., and Maresca, R.: Earthquake focal mechanisms and stress inversion in the Irpinia Region (southern Italy), J. Seismol., 13, 107–124, https://doi.org/10.1007/s10950-008-9119-x, 2009.
Rau, R. J., Wu, F. T., and Shin, T. C.: Regional network focal mechanism determination using 3D velocity model and SH/P amplitude ratio, Bull. Seismol. Soc. Am., 86, 1270–1283, 1996.
Reasenberg, P. and Oppenheimer, D.: FPFIT, FPPLOT, and
FPPAGE: Fortran computer programs for calculating and displaying
earthquake fault-plane solutions, US Geol. Surv., Menlo Park, CA, USA, Open-File Rep., 85, 739, 1985.
Satriano, C., Elia, L., Martino, C., Lancieri, M., Zollo, A., and Iannaccone, G.: PRESTo, the earthquake early warning system for southern Italy: Concepts, capabilities and future perspectives, Soil Dyn. Earthq. Eng., 31, 137–153, https://doi.org/10.1016/j.soildyn.2010.06.008, 2011.
Snoke, J. A., Lee, W. H. K., Kanamori, H., Jennings,
P. C., and Kisslinger, C.: FOCMEC: Focal mechanism determinations,
in: International handbook of earthquake and engineering seismology, Academic Press, San Diego, CA, USA,
85, 1629–1630, 2003.
Stabile, T. A., Satriano, C., Orefice, A., Festa, G., and Zollo, A.: Anatomy of a microearthquake sequence on an active normal fault, Sci. Rep., 2, 1–7, https://doi.org/10.1038/srep00410, 2012.
Steinberg, D. M., Rabinowitz, N., Shimshoni, Y., and Mizrachi, D.: Configuring a seismographic network for optimal monitoring of fault lines and multiple sources, B. Seismol. Soc. Am., 85, 1847–1857, 1995.
Sokos, E. and Zahradník, J.: Evaluating centroid-moment-tensor uncertainty in the new version of ISOLA software, Seismol. Res. Lett., 84, 656–665, https://doi.org/10.1785/0220130002, 2013.
Tape, W. and Tape, C.: A geometric setting for moment tensors, Geophys. J. Int., 190, 476–498, https://doi.org/10.1111/j.1365-246X.2012.05491.x, 2012.
Tarantino, S., Colombelli, S., Emolo, A., and Zollo, A.: Quick determination of the earthquake focal mechanism from the azimuthal variation of the initial P-wave amplitude, Seismol. Res. Lett., 90, 1642–1649, https://doi.org/10.1785/0220180290, 2019.
Trnkoczy, A., Bormann, P., Hanka, W., Holcomb, L. G., and Nigbor, R. L.: Site selection, preparation and installation of seismic stations, in: New Manual of Seismological Observatory Practice (NMSOP), Deutsches GeoForschungsZentrum GFZ, 1–108, 2009.
Vavrycuk, V., Adamova, P., Doubravová, J., and Jakoubková, H.: Moment Tensor Inversion Based on the Principal Component Analysis of Waveforms: Method and Application to Microearthquakes in West Bohemia, Czech Republic, Seismol. Res. Lett., 88, 13031315, https://doi.org/10.1785/0220170027, 2017.
Weber, E., Iannaccone, G., Zollo, A., Bobbio, A., Cantore, L., Corciulo, M., Convertito, V., Di Crosta, M., Elia, L., Emolo, A., Martino, C., Romeo, A., and Satriano, C.: Development and testing of an advanced monitoring infrastructure (ISNet) for seismic early warning applications in the Campania region of southern Italy, in: Earthquake early warning systems, Springer, Berlin, Heidelberg, 325–341, available at: http://isnet-bulletin.fisica.unina.it/cgi-bin/isnet-events/isnet.cgi (last access: 1 June 2021), 2007.
Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F.,
Smith, W. H. F., and Tian, D.: The Generic Mapping Tools version 6,
Geochem. Geophy. Geosy., 20, 5556–5564,
https://doi.org/10.1029/2019GC008515, 2019.
Westaway, R. and Jackson, J.: The earthquake of 1980 November 23 in Campania-Basilicata (southern Italy), Geophys. J. Int., 90, 375–443, https://doi.org/10.1111/j.1365-246X.1987.tb00733.x, 1987.
Zollo, A. and Bernard, P.: Fault mechanisms from near-source data: joint inversion of S polarizations and P polarities, Geophys. J. Int., 104, 441–451, https://doi.org/10.1111/j.1365-246X.1991.tb05692.x, 1991.
Short summary
We propose a methodology useful to evaluate (1) the reliability of a focal mechanism solution inferred by the inversion of seismological data and (2) the performance of a seismic network, operated to monitor natural or induced seismicity, to assess focal mechanism solutions. As a test case, we studied the focal mechanism reliability by using synthetic data computed for ISNet, a local seismic network monitoring the Irpinia fault system (southern Italy).
We propose a methodology useful to evaluate (1) the reliability of a focal mechanism solution...