Articles | Volume 14, issue 8
https://doi.org/10.5194/se-14-871-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-14-871-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Advanced seismic characterization of a geothermal carbonate reservoir – insight into the structure and diagenesis of a reservoir in the German Molasse Basin
Sonja H. Wadas
CORRESPONDING AUTHOR
Leibniz Institute for Applied Geophysics (LIAG), Stilleweg 2, 30655 Hanover, Germany
Johanna F. Krumbholz
Leibniz Institute for Applied Geophysics (LIAG), Stilleweg 2, 30655 Hanover, Germany
Vladimir Shipilin
formerly at: Leibniz Institute for Applied Geophysics (LIAG), Stilleweg 2, 30655 Hanover, Germany
now at: Geological Survey of North Rhine-Westphalia, De-Greiff-Straße 195, 47803 Krefeld, Germany
Michael Krumbholz
independent researcher
David C. Tanner
Leibniz Institute for Applied Geophysics (LIAG), Stilleweg 2, 30655 Hanover, Germany
Hermann Buness
Leibniz Institute for Applied Geophysics (LIAG), Stilleweg 2, 30655 Hanover, Germany
Related authors
Stephen P. Hesselbo, Aisha Al-Suwaidi, Sarah J. Baker, Giorgia Ballabio, Claire M. Belcher, Andrew Bond, Ian Boomer, Remco Bos, Christian J. Bjerrum, Kara Bogus, Richard Boyle, James V. Browning, Alan R. Butcher, Daniel J. Condon, Philip Copestake, Stuart Daines, Christopher Dalby, Magret Damaschke, Susana E. Damborenea, Jean-Francois Deconinck, Alexander J. Dickson, Isabel M. Fendley, Calum P. Fox, Angela Fraguas, Joost Frieling, Thomas A. Gibson, Tianchen He, Kat Hickey, Linda A. Hinnov, Teuntje P. Hollaar, Chunju Huang, Alexander J. L. Hudson, Hugh C. Jenkyns, Erdem Idiz, Mengjie Jiang, Wout Krijgsman, Christoph Korte, Melanie J. Leng, Timothy M. Lenton, Katharina Leu, Crispin T. S. Little, Conall MacNiocaill, Miguel O. Manceñido, Tamsin A. Mather, Emanuela Mattioli, Kenneth G. Miller, Robert J. Newton, Kevin N. Page, József Pálfy, Gregory Pieńkowski, Richard J. Porter, Simon W. Poulton, Alberto C. Riccardi, James B. Riding, Ailsa Roper, Micha Ruhl, Ricardo L. Silva, Marisa S. Storm, Guillaume Suan, Dominika Szűcs, Nicolas Thibault, Alfred Uchman, James N. Stanley, Clemens V. Ullmann, Bas van de Schootbrugge, Madeleine L. Vickers, Sonja Wadas, Jessica H. Whiteside, Paul B. Wignall, Thomas Wonik, Weimu Xu, Christian Zeeden, and Ke Zhao
Sci. Dril., 32, 1–25, https://doi.org/10.5194/sd-32-1-2023, https://doi.org/10.5194/sd-32-1-2023, 2023
Short summary
Short summary
We present initial results from a 650 m long core of Late Triasssic to Early Jurassic (190–202 Myr) sedimentary strata from the Cheshire Basin, UK, which is shown to be an exceptional record of Earth evolution for the time of break-up of the supercontinent Pangaea. Further work will determine periodic changes in depositional environments caused by solar system dynamics and used to reconstruct orbital history.
Sonja H. Wadas, Hermann Buness, Raphael Rochlitz, Peter Skiba, Thomas Günther, Michael Grinat, David C. Tanner, Ulrich Polom, Gerald Gabriel, and Charlotte M. Krawczyk
Solid Earth, 13, 1673–1696, https://doi.org/10.5194/se-13-1673-2022, https://doi.org/10.5194/se-13-1673-2022, 2022
Short summary
Short summary
The dissolution of rocks poses a severe hazard because it can cause subsidence and sinkhole formation. Based on results from our study area in Thuringia, Germany, using P- and SH-wave reflection seismics, electrical resistivity and electromagnetic methods, and gravimetry, we develop a geophysical investigation workflow. This workflow enables identifying the initial triggers of subsurface dissolution and its control factors, such as structural constraints, fluid pathways, and mass movement.
Sarah Beraus, Thomas Burschil, Hermann Buness, Daniel Köhn, Thomas Bohlen, and Gerald Gabriel
Sci. Dril., 33, 237–248, https://doi.org/10.5194/sd-33-237-2024, https://doi.org/10.5194/sd-33-237-2024, 2024
Short summary
Short summary
We conducted seismic crosshole experiments with a sparker source in order to obtain a high-resolution subsurface velocity model in the glacially overdeepened Tannwald Basin (ICDP site 5068_1). The data show complex wave fields that contain a lot of information but also present challenges. Nevertheless, isotropic first-arrival travel-time tomography provides the first high-resolution subsurface models that correlate well with the sonic logs and the core recovered from one of the three boreholes.
Bennet Schuster, Lukas Gegg, Sebastian Schaller, Marius W. Buechi, David C. Tanner, Ulrike Wielandt-Schuster, Flavio S. Anselmetti, and Frank Preusser
Sci. Dril., 33, 191–206, https://doi.org/10.5194/sd-33-191-2024, https://doi.org/10.5194/sd-33-191-2024, 2024
Short summary
Short summary
The Tannwald Basin, explored by drilling and formed by repeated advances of the Rhine Glacier, reveals key geological insights. Ice-contact sediments and evidence of deformation highlight gravitational and glaciotectonic processes. ICDP DOVE 5068_1_C core data define lithofacies associations, reflecting basin infill cycles, marking at least three distinct glacial advances. Integrating these findings aids understanding the broader glacial evolution of the Lake Constance amphitheater.
Stephen P. Hesselbo, Aisha Al-Suwaidi, Sarah J. Baker, Giorgia Ballabio, Claire M. Belcher, Andrew Bond, Ian Boomer, Remco Bos, Christian J. Bjerrum, Kara Bogus, Richard Boyle, James V. Browning, Alan R. Butcher, Daniel J. Condon, Philip Copestake, Stuart Daines, Christopher Dalby, Magret Damaschke, Susana E. Damborenea, Jean-Francois Deconinck, Alexander J. Dickson, Isabel M. Fendley, Calum P. Fox, Angela Fraguas, Joost Frieling, Thomas A. Gibson, Tianchen He, Kat Hickey, Linda A. Hinnov, Teuntje P. Hollaar, Chunju Huang, Alexander J. L. Hudson, Hugh C. Jenkyns, Erdem Idiz, Mengjie Jiang, Wout Krijgsman, Christoph Korte, Melanie J. Leng, Timothy M. Lenton, Katharina Leu, Crispin T. S. Little, Conall MacNiocaill, Miguel O. Manceñido, Tamsin A. Mather, Emanuela Mattioli, Kenneth G. Miller, Robert J. Newton, Kevin N. Page, József Pálfy, Gregory Pieńkowski, Richard J. Porter, Simon W. Poulton, Alberto C. Riccardi, James B. Riding, Ailsa Roper, Micha Ruhl, Ricardo L. Silva, Marisa S. Storm, Guillaume Suan, Dominika Szűcs, Nicolas Thibault, Alfred Uchman, James N. Stanley, Clemens V. Ullmann, Bas van de Schootbrugge, Madeleine L. Vickers, Sonja Wadas, Jessica H. Whiteside, Paul B. Wignall, Thomas Wonik, Weimu Xu, Christian Zeeden, and Ke Zhao
Sci. Dril., 32, 1–25, https://doi.org/10.5194/sd-32-1-2023, https://doi.org/10.5194/sd-32-1-2023, 2023
Short summary
Short summary
We present initial results from a 650 m long core of Late Triasssic to Early Jurassic (190–202 Myr) sedimentary strata from the Cheshire Basin, UK, which is shown to be an exceptional record of Earth evolution for the time of break-up of the supercontinent Pangaea. Further work will determine periodic changes in depositional environments caused by solar system dynamics and used to reconstruct orbital history.
Sonja H. Wadas, Hermann Buness, Raphael Rochlitz, Peter Skiba, Thomas Günther, Michael Grinat, David C. Tanner, Ulrich Polom, Gerald Gabriel, and Charlotte M. Krawczyk
Solid Earth, 13, 1673–1696, https://doi.org/10.5194/se-13-1673-2022, https://doi.org/10.5194/se-13-1673-2022, 2022
Short summary
Short summary
The dissolution of rocks poses a severe hazard because it can cause subsidence and sinkhole formation. Based on results from our study area in Thuringia, Germany, using P- and SH-wave reflection seismics, electrical resistivity and electromagnetic methods, and gravimetry, we develop a geophysical investigation workflow. This workflow enables identifying the initial triggers of subsurface dissolution and its control factors, such as structural constraints, fluid pathways, and mass movement.
Cited articles
Abdel-Fattah, M. I., Pigott, J. D., and El-Sadek, M. S.:
Integrated seismic attributes and stochastic inversion for reservoir characterization: Insights from Wadi field (NE Abu-Gharadig Basin, Egypt),
J. Afr. Earth Sci., 161, 1–14, https://doi.org/10.1016/j.jafrearsci.2019.103661, 2020. a, b
Agemar, T., Weber, J., and Schulz, R.:
Deep Geothermal Energy Production in Germany,
Energies, 7, 4397–4416, https://doi.org/10.3390/en7074397, 2014. a, b
Al-Halbouni, D., Holohan, E. P., Taheri, A., Schöpfer, M. P. J., Emam, S., and Dahm, T.: Geomechanical modelling of sinkhole development using distinct elements: model verification for a single void space and application to the Dead Sea area, Solid Earth, 9, 1341–1373, https://doi.org/10.5194/se-9-1341-2018, 2018. a, b, c
Al-Maghlouth, M., Szafian, P., and Bell, R.:
Characterizing carbonate facies using high-definition frequency decomposition: Case study from North West Australia,
Interpretation, 5, SJ49–SJ59, https://doi.org/10.1190/INT-2016-0173.1, 2017. a, b, c
ALT: Advanced Logic Technology,
WellCAD – The Universal Borehole Data Toolbox, https://www.alt.lu/wp-content/uploads/WellCAD.pdf (last access: 17 January 2023), 2021. a
Ashraf, U., Zhu, P., Yasin, Q., Anees, A., Imraz, M., Mangi, H. N., and Shakeel, S.:
Classification of reservoir facies using well log and 3D seismic attributes for prospect evaluation and field development: a case study of Sawan gas field, Pakistan,
J. Petrol. Sci. Eng., 175, 338–351, https://doi.org/10.1016/j.petrol.2018.12.060, 2019. a
Ashton, M., Dee, S. J., and Wennberg, O. P.:
Subseismic-Scale Reservoir Deformation,
Geol. Soc. Spec. Publ., https://doi.org/10.1144/SP459, 2018. a
Ba, N. T., Quang, T. P. H., Bao, M. L., and Thang, L. P.:
Applying multi-point statistical methods to build the facies model for Oligocene formation, X oil field, Cuu Long basin,
J. Pet. Explor. Prod. Technol., 9, 1633–1650, https://doi.org/10.1007/s13202-018-0604-7, 2019. a
Baaske, U. P., Mutti, M., Baioni, F., Bertozzi, G., and Naini, M. A.:
Using multi-attribute neural networks classification for seismic carbonate facies mapping: A workflow example from mid-Cretaceous Persian Gulf deposits,
Geol. Soc. Spec. Publ., 277, 105–120, https://doi.org/10.1144/GSL.SP.2007.277.01.06, 2007. a
Bachmann, G. H., Müller, M., and Weggen, K.:
Evolution of the Molasse Basin (Germany, Switzerland),
Tectonophysics, 137, 77–92, https://doi.org/10.1016/0040-1951(87)90315-5, 1987. a, b, c, d
Backers, T., Kahnt, R., and Stockinger, G.:
Structural dominated geothermal reservoir reaction during proppant emplacement in Geretsried, Bavaria,
Geomechanics and Tunneling, 15, 58–64, https://doi.org/10.1002/geot.202100091, 2022. a
Bagheri, M. and Riahi, M. A.:
Seismic facies analysis from well logs based on supervised classification scheme with different machine learning techniques,
Arab. J. Geosci., 8, 7153–7161, https://doi.org/10.1007/s12517-014-1691-5, 2015. a
Bahorich, M. and Farmer, S.:
3-D seismic discontinuity for faults and stratigraphic features: The coherence cube,
Lead. Edge, 14, 1053–1058, https://doi.org/10.1190/1.1437077, 1995. a, b
Banerjee, A. and Ahmed Salim, A. M.:
Seismic attribute analysis of deep-water Dangerous Grounds in the South China Sea, NW Sabah Platform region, Malaysia,
J. Nat. Gas Sci. Eng., 83, 1–15, https://doi.org/10.1016/j.jngse.2020.103534, 2020. a
Barclay, F., Bruun, A., Rasmussen, K. B., Alfaro, J. C., Cooke, A., Cooke, D., Salter, D., Godfrey, R., Lowden, D., McHugo, S., Özdemir, H., Pickering, S., Pineda, F. G., Herwanger, J., Volterrani, S., Murineddu, A., Rasmussen, A., and Roberts, R.:
Seismic Inversion: Reading Between the Lines,
Oilfield Rev., 20, 42–63, 2008. a, b, c
Barnes, A. E.:
Too many seismic attributes?,
CSEG Recorder, 31, 1–11, 2006. a
Bauer, J. F., Krumbholz, M., Meier, S., and Tanner, D. C.:
Predictability of properties of a fractured geothermal reservoir: the opportunities and limitations of an outcrop analogue study,
Geotherm. Energy, 5, 24, https://doi.org/10.1186/s40517-017-0081-0, 2017. a
Bauer, J. F., Krumbholz, M., Luijendijk, E., and Tanner, D. C.: A numerical sensitivity study of how permeability, porosity, geological structure, and hydraulic gradient control the lifetime of a geothermal reservoir, Solid Earth, 10, 2115–2135, https://doi.org/10.5194/se-10-2115-2019, 2019. a, b, c
Beichel, K., Koch, R., and Wolfgramm, M.:
Die Analyse von Spülproben zur Lokalisierung von Zuflusszonen in Geothermiebohrungen. Beispiel der Bohrungen Gt Unterhaching 1/1a und 2 (Söddeutschland, Molassebecken, Malm),
Geolog. Blätter NO-Bayern, 64, 43–65, 2014. a
Beilecke, T., Krawczyk, C. M., Tanner, D. C., and Ziesch, J.:
Near-surface fault detection using high-resolution shear wave reflection seismics at the CO2CRC Otway Project site, Australia,
J. Geophys. Res.-Sol. Ea., 121, 1–23, https://doi.org/10.1002/2015JB012668, 2016. a
Benjakul, R., Hollis, C., Robertson, H. A., Sonnenthal, E. L., and Whitaker, F. F.: Understanding controls on hydrothermal dolomitisation: insights from 3D reactive transport modelling of geothermal convection, Solid Earth, 11, 2439–2461, https://doi.org/10.5194/se-11-2439-2020, 2020. a
Boersma, Q., Athmer, W., Haege, M., Etchebes, M., Haukås, J., and Bertotti, G.:
Natural fault and fracture network characterization for the southern Ekofisk field: A case study integrating seismic attribute analysis with image log interpretation,
J. Struct. Geol., 141, 1–14, https://doi.org/10.1016/j.jsg.2020.104197, 2020. a, b, c, d, e, f, g, h
Bohnsack, D., Potten, M., Pfrang, D., Wolpert, P., and Zosseder, K.:
Porosity–permeability relationship derived from Upper Jurassic carbonate rock cores to assess the regional hydraulic matrix properties of the Malm reservoir in the South German Molasse Basin,
Geotherm. Energy, 8, 1–47, https://doi.org/10.1186/s40517-020-00166-9, 2020. a, b, c, d, e
Brcković, A., Kovac̆ević, M., Cvetković, M., Kolenković Moc̆ilac, I., Rukavina, D., and Saftić, B.:
Application of artificial neural networks for lithofacies determination based on limited well data,
Cent. Eur. Geol., 60, 299–315, https://doi.org/10.1556/24.60.2017.012, 2017. a, b
Bredesen, K., Dalgaard, E., Mathiesen, A., Rasmussen, R., and Balling, N.:
Seismic characterization of geothermal sedimentary reservoirs: A field example from the Copenhagen area, Denmark,
Interpretation, 8, T275–T291, https://doi.org/10.1190/int-2019-0184.1, 2020. a, b
Cacace, M., Blöcher, G., Watanabe, N., Moeck, I., Börsing, N., Scheck-Wenderoth, M., Kolditz, O., and Huenges, E.:
Modelling of fractured carbonate reservoirs: outline of a novel technique via a case study from the Molasse Basin, southern Bavaria, Germany,
Environ. Earth Sci., 70, 3585–3602, https://doi.org/10.1007/s12665-013-2402-3, 2013. a, b
Chen, Q. and Sidney, S.:
Seismic attribute technology for reservoir forecasting and monitoring,
Lead. Edge, 16, 445–456, https://doi.org/10.1190/1.1437657, 1997. a
Closson, D. and Abou Karaki, N.:
Salt karst and tectonics: sinkholes development along tension cracks between parallel strike-slip faults, Dead Sea, Jordan,
Earth Surf. Proc. Land., 34, 1408–1421, https://doi.org/10.1002/esp.1829, 2009. a
Da Silva, I. N., Spatti, D. N., Flauzino, R. A., Bartocci Liboni, L. H., and Dos Reis Alves, S. F.:
Artificial Neural Networks: A Practical Course,
Springer International Publishing, Switzerland, https://doi.org/10.1007/978-3-319-43162-8, 2017. a, b
Del Prete, S., Iovine, G., Parise, M., and Santo, A.:
Origin and distribution of different types of sinkholes in the plain areas of Southern Italy,
Geodin. Acta, 23, 113–127, https://doi.org/10.3166/ga.23.113-127, 2010. a
Dewett, D. T., Pigott, J. D., and Marfurt, K. J.:
A review of seismic attribute taxonomies, discussion of their historical use, and presentation of a seismic attribute communication framework using data analysis concepts,
Interpretation, 9, B39–B64, https://doi.org/10.1190/INT-2020-0222.1, 2021. a
Doyen, P. M.:
Seismic Reservoir Characterization – An Earth Modelling Perspective,
EAGE Publications, ISBN 9073781779, 2007. a
Dunham, R. J.:
Classification of carbonate rocks according to depositional textures,
in: Classification of Carbonate Rocks – A Symposium, edited by: Ham, W. E., AAPG, Tulsa, USA, ISBN 9781629812366, 1962. a
Dussel, M., Lüschen, E., Thomas, R., Agemar, T., Fritzer, T., Sieblitz, S., Huber, B., Birner, J., and Schulz, R.:
Forecast for thermal water use from Upper Jurassic carbonates in theMunich region (South German Molasse Basin),
Geothermics, 60, 13–30, https://doi.org/10.1016/j.geothermics.2015.10.010, 2016. a
Ehrenberg, S. N.:
Porosity destruction in carbonate platforms,
J. Petrol. Geol., 29, 41–52, https://doi.org/10.1111/j.1747-5457.2006.00041.x, 2006. a
Ehrenberg, S. N. and Nadeau, P. H.:
Sandstone vs. carbonate petroleum reservoirs: a global perspective on porosity-depth and porosity permeability relationships,
AAPG Bull., 89, 435–445, https://doi.org/10.1306/11230404071, 2005. a, b
Eisbacher, G. H.:
Molasse – Alpine and Columbian,
Geosci. Can., 1, 47–50, 1974. a
Fadel, M., Reinecker, J., Bruss, D., and Moeck, I.:
Causes of a premature thermal breakthrough of a hydrothermal project in Germany,
Geothermics, 105, 1–18, https://doi.org/10.1016/j.geothermics.2022.102523, 2022. a, b, c
Fang, J., Zhou, F., and Tang, Z.:
Discrete Fracture Network Modelling in a Naturally Fractured Carbonate Reservoir in the Jingbei Oilfield, China,
Energies, 10, 1–19, https://doi.org/10.3390/en10020183, 2017. a, b, c
Filippova, K., Kozhenkov, A., and Alabushin, A.:
Seismic inversion techniques: choice and benefits,
First Break, 29, 103–114, 2011. a
Flügel, E.:
Microfacies of Carbonate Rocks – Analysis, Interpretation and Application,
Springer, Heidelberg, Germany, https://doi.org/10.1007/978-3-642-03796-2, 2010. a, b, c, d
Frisch, W.:
Tectonic progradation and plate tectonic evolution of the Alps,
Tectonophysics, 60, 121–139, https://doi.org/10.1016/0040-1951(79)90155-0, 1979. a, b
Glassley, W. E.:
Geothermal Energy: Renewable Energy and the Environment – 2nd edn.,
CRC Press, Boca Raton, USA, https://doi.org/10.1201/b17521, 2014. a
Gogoi, T. and Chatterjee, R.:
Estimation of petrophysical parameters using seismic inversion and neural network modeling in Upper Assam basin, India,
Geosci. Front., 10, 1113–1124, https://doi.org/10.1016/j.gsf.2018.07.002, 2019. a, b
Haq, B. U.:
Jurassic Sea-Level Variations: A Reappraisal,
GSA Today, 28, 4–10, https://doi.org/10.1130/GSATG359A.1, 2017. a, b
Henderson, J., Purves, S. J., Fisher, G., and Leppard, C.:
Delineation of geological elements from RGB color blending of seismic attribute volumes,
Lead. Edge, 27, 342–350, https://doi.org/10.1190/1.2896625, 2008. a
Hill, S. J.:
Inversion-based thickness determination,
Lead. Edge, 25, 477–480, https://doi.org/10.1190/1.1926799, 2005. a, b
Homuth, S.:
Aufschlussanalogstudie zur Charakterisierung oberjurassischer geothermischer Karbonatreservoire im Molassebecken, PhD thesis,
Technical University Darmstadt, Germany, https://tuprints.ulb.tu-darmstadt.de/4209/ (last access: 7 December 2022), 2014. a
Huenges, E.:
Geothermal Energy Systems: Exploration, Development, and Utilization,
Wiley, Weinheim, Germany, ISBN 978-3-527-64461-2, 2010. a
Jaglan, H., Quayyum, F., and Huck, H.:
Unconventional seismic attributes for fracture characterization,
First Break, 33, 101–109, https://doi.org/10.3997/1365-2397.33.3.79520, 2015. a, b
Janson, X. and Madriz, D. D.:
Geomodelling of carbonate mounds using two-point and multipoint statistics,
Geol. Soc. of London, Spec. Publ., 370, 229–246, https://doi.org/10.1144/SP370.5, 2012. a
Jolley, S. J., Barr, D., Walsh, J. J., and Knipe, R. J.:
Structurally complex reservoirs: an introduction.
Geol. Soc. Spec. Publ., 292, 1–24, https://doi.org/10.1144/SP292.1, 2007. a
Kendall, C. and Schlager, W.:
Caronates and relative changes in sea level,
Mar. Geol., 44, 181–212, https://doi.org/10.1016/0025-3227(81)90118-3, 1981. a, b, c
Konrad, F., Savvatis, A., Wellmann, F., and Zosseder, K.:
Hydraulic behavior of fault zones in pump tests of geothermal wells: a parametric analysis using numerical simulations for the Upper Jurassic aquifer of the North Alpine Foreland Basin,
Geotherm. Energy, 7, 1–28, https://doi.org/10.1186/s40517-019-0137-4, 2019. a, b
Korneva, I., Bastesen, E., Corlett, H., Eker, A., Hirani, J., Hollis, C., Gawthorpe, R. L., Roteveatn, A., and Taylor, R.:
The effects of dolomitization on petrophysical properties and fracture distribution within rift-related carbonates (Hammam Faraun Fault Block, Suez Rift, Egypt),
J. Struct. Geol., 108, 108–120, https://doi.org/10.1016/j.jsg.2017.06.005, 2018. a
Lai, J., Wang, G., Wang, S., Cao, J., Li, M., Pang, X., Han, C., Fan, X., Yang, L., He, Z., and Qin, Z.:
A review on the applications of image logs in structural analysis and sedimentary characterization,
Mar. Petrol. Geol., 95, 139–166, https://doi.org/10.1016/j.marpetgeo.2018.04.020, 2018. a
Lake, L. W. and Srinivasan, S.:
Statistical scale-up of reservoir properties: concepts and applications,
J. Petrol. Sci. Eng., 44, 27–39, https://doi.org/10.1016/j.petrol.2004.02.003, 2004. a
Li, S., Wang, D., and Zhang, M.:
Influence of upscaling on identification of reservoir fluid properties using seismic-scale elastic constants,
Sci. Rep., 9, 1–11, https://doi.org/10.1038/s41598-019-49559-2, 2019. a
Liu, G., Zeng, L., Han, C., Ostadhassan, M., Lyu, W., Wang, Q., Zhu, J., and Hou, F.:
Natural Fractures in Carbonate Basement Reservoirs of the Jizhong Sub-Basin, Bohai Bay Basin, China: Key Aspects Favoring Oil Production,
Energies, 13, 1–23, https://doi.org/10.3390/en13184635, 2020. a
Lohr, T.:
Seismic and sub-seismic deformation on different scales in the NW German Basin, PhD Thesis,
Technical University Berlin, Berlin, Germany, https://doi.org/10.17169/refubium-16413, 2008. a
Loza Espejel, R., Alves, T. M., and Blenkinsop T. G.:
Multi-scale fracture network characterisation on carbonate platforms,
J. Struct. Geol., 140, 1–23, https://doi.org/10.1016/j.jsg.2020.104160, 2020. a, b, c
Lüschen, E., Wolfgramm, M., Fritzer, T., Dussel, M., Thomas, R., and Schulz, R.:
3D seismic survey explores geothermal targets for reservoir characterization at Unterhaching, Munich, Germany,
Geothermics, 50, 167–179, https://doi.org/10.1016/j.geothermics.2013.09.007, 2014. a
Marfurt, K. J. and Kirlin, R. L.:
Narrow‐band spectral analysis and thin‐bed tuning,
Geophysics, 66, 1274–1283, https://doi.org/10.1190/1.1487075, 2001. a, b
Marfurt, K. J. and Alves, T. M.:
Pitfalls and limitations in seismic attribute interpretation of tectonic features,
Interpretation, 3, SB5–SB15, https://doi.org/10.1190/INT-2014-0122.1, 2015. a, b, c
Marfurt, K. J., Kirlin, R. J., Farmer, S. L., and Bahorich, M. S.:
3-D seismic attributes using a semblance‐based coherency algorithm,
Geophysics, 63, 1150–1165, https://doi.org/10.1190/1.1444415, 1998. a, b, c
Méndez, J. N., Jin, Q., González, M., Zhang, X., Lobo, C., Boateng C. D., and Zambrano, M.:
Fracture characterization and modeling of karsted carbonate reservoirs: A case study in Tahe oilfield, Tarim Basin (western China),
Mar. Petrol. Geol., 112, 1–17, https://doi.org/10.1016/j.marpetgeo.2019.104104, 2020. a, b
Moeck, I. S.:
Catalog of geothermal play types based on geologic controls,
Renew. Sust. Energ. Rev., 37, 867–882, https://doi.org/10.1016/j.rser.2014.05.032, 2014. a
Moeck, I., Dussel, M., Weber, J., Schintgen, T., and Wolfgramm, M.:
Geothermal play typing in Germany, case study Molasse Basin: a modern concept to categorise geothermal resources related to crustal permeability,
Neth. J. Geosci., 98, 1–10, https://doi.org/10.1017/njg.2019.12, 2020. a, b, c
Mountjoy, E. W. and Marquez, X. M.:
Predicting Reservoir Properties in Dolomites: Upper Devonian Leduc Buildups, Deep Alberta Basin, in: Reservoir quality prediction in sandstones and carbonates, edited by: Kupecz, J. A., Gluyas, J., and Bloch, S.,
AAPG Memoir, 69, 267–306, 1997. a
Mraz, E.:
Reservoir characterization to improve exploration concepts of the Upper Jurassic in the Southern Bavarian Molasse Basin, PhD thesis,
Technische Universität München, http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20190430-1464081-1-6 (last access: 15 November 2022), 2019. a, b, c, d, e, f, g, h, i
Mraz, E., Moeck, I., Bissmann, S., and Hild, S.:
Multiphase fossil normal faults as geothermal exploration targets in the Western Bavarian Molasse Basin: Case study Mauerstetten,
Z. Deut. Ges. Geowiss., 169, 389–411, 2018. a
Parise, M. and Lollino P.:
A preliminary analysis of failure mechanisms in karst and man-made underground caves in Southern Italy,
Geomorphology, 134, 132–143, https://doi.org/10.1016/j.geomorph.2011.06.008, 2011. a
Pendrel, J. and Van Riel, P.:
Methodology for Seismic Inversion, A Western Canadian Reef Example,
CSEG Recorder, 22, 1–16, 1997. a
Pieńkowski, G., Schudack, M. E., Bosák, P., Enay, R., Feldman-Olszewska, A., Golonka, J., Gutowski, J., Herngreen, G. F. W., Jordan, P., Krobicki, M., Lathuiliere, B., Leinfelder, R. R., Michalik, J., Mönnig, E., Noe-Nygaard, N., Pálfy, J., Pint, A., Rasser, M. W., Reisdorf, A. G., Schmid, D. U., Schweigert, G., Surlyk, F., Wetzel, A., and Wong, T. E.:
Jurassic, in: The Geology of Central Europe Volume 2: Mesozoic and Cenozoic, edited by: McCann, T., The Geological Society, London, 823–922, https://doi.org/10.1144/CEV2P, 2008. a, b, c
Playton, T. E., Janson, X., and Kerans, C.:
Carbonate slopes,
in: Facies Models 4, edited by: James, N. P. and Dalrymple, R. W., Geological Association of Canada, ISBN 9781897095508, 2010. a
Pomar, L. and Ward, W. C.:
Sea-Level Changes, Carbonate Production and Platform Architecture: The Llucmajor Platform, Mallorca, Spain,
in: Sequence Stratigraphy and Depositional Response to Eustatic, Tectonic and Climatic Forcing. Coastal Systems and Continental Margins, edited by: Haq, B. U., Vol. 1, Springer, Dordrecht, Netherlands, https://doi.org/10.1007/978-94-015-8583-5, 1995. a
Pussak, M., Bauer, K., Stiller, M., and Bujakowski, W.:
Improved 3D seismic attribute mapping by CRS stacking instead of NMO stacking: Application to a geothermal reservoir in the Polish Basin,
J. Appl. Geophys., 103, 186–198, https://doi.org/10.1016/j.jappgeo.2014.01.020, 2014. a
Radovich, B. J. and Oliveros, R. B.:
3-D sequence interpretation of seismic instantaneous attributes from the Gorgon Field,
Lead. Edge, 17, 1286–1293, https://doi.org/10.1190/1.1438125, 1998. a, b
Raines, M. A. and Dewers, T. A.:
Dedolomitization as a driving mechanism for karst generation in Permian Blaine Formation, southwestern Oklahoma, USA,
Carbonate. Evaporite., 12, 24–31, https://doi.org/10.1007/BF03175799, 1997. a
Rawal, K., Wang, Z.-M., and Hu, L.:
Exploring the Geomechanics of Sinkholes: A Numerical Simulation Approach,
Geo-Chicago 14–16 August, Chicago, Illinois, USA, 1–11, https://doi.org/10.1061/9780784480120.039, 2016. a
Roden, R., Smith, T., and Sacrey, D.:
Geologic pattern recognition from seismic attributes: Principal component analysis and self-organizing maps,
Interpretation, 3, SAE59–SAE83, https://doi.org/10.1190/INT-2015-0037.1, 2015. a, b
Saggaf, M. M., Toksöz, N. M., and Marhoon, M. I.:
Seismic facies classification and identification by competitive neural networks,
Geophysics, 68, 1984–1999, https://doi.org/10.1190/1.1635052, 2003. a
Sajed, O. K. M. and Glover, P. W. J.:
Dolomitisation, cementation and reservoir quality in three Jurassic and Cretaceous carbonate reservoirs in north-western Iraq,
Mar. Petrol. Geol., 115, 1–20, https://doi.org/10.1016/j.marpetgeo.2020.104256, 2020. a
Salmi, E. F., Nazem, M., and Giacomini, A.:
A Numerical Investigation of Sinkhole Subsidence Development over Shallow Excavations in Tectonised Weak Rocks: The Dolaei Tunnel's Excavation Case,
Geotech. Geol. Eng., 35, 1685–1716, https://doi.org/10.1007/s10706-017-0202-3, 2017. a
Sammut, C. and Webb, G. I.:
Encyclopedia of Machine Learning and Data Mining,
Springer, New York, USA, https://doi.org/10.1007/978-1-4899-7687-1, 2017. a
Schmoker, J. W. and Halley, R. B.:
Carbonate porosity versus depth: a predictable relation for south Florida,
Am. Assoc. Petr. Geol. B., 66, 2561–2570, 1982. a
Schneider-Löbens, C., Wuttke, M., Backers, T., and Krawczyk, C. M.:
Numerical modeling approach of sinkhole propagation using the eXtended FEM code roxol,
EGU General Assembly 2015, Vienna, http://meetingorganizer.copernicus.org/EGU2015/EGU2015-12230-2.pdf (last access: 13 September 2017), 2015. a
Sell, A., Buness, H., Tanner, D., Ziesch, J., and Weller, A.:
FD modelling of deeply-buried paleo-dolines underneath the city of Munich,
EAGE Near Surface Geoscience Conference and Exhibition, 1st Conference on Geophysics for Geothermal and Renewable Energy Storage, The Hague, Netherlands, 8–12 September 2019, 2019. a
Shiau, J. and Hassan, M. M.:
Numerical modelling of three-dimensional sinkhole stability using finite different method,
Innov. Infr. Solutions, 6, 1–9, https://doi.org/10.1007/s41062-021-00559-0, 2021. a
Shipilin, V., Tanner, D. C., von Hartmann, H., and Moeck, I.: Multiphase, decoupled faulting in the southern German Molasse Basin – evidence from 3-D seismic data, Solid Earth, 11, 2097–2117, https://doi.org/10.5194/se-11-2097-2020, 2020. a
Skirius, C., Nissen, S., Haskell, N., Marfurt, K., Hadley, S., Ternes, D., Michel, K., Reglar, I., D'Amico, D., Deliencourt, F., Romero, T., D'Angelo, R., and Brown, B.:
3-D seismic attributes applied to carbonates,
Lead. Edge, 18, 384–393, https://doi.org/10.1190/1.1438303, 1999. a
Steidtmann, E.:
The Evolution of Limestone and Dolomite,
J. Geol., 19, 323–345, https://www.jstor.org/stable/pdf/30060008.pdf (last access: 14 January 2023), 1911. a
Stier, P. and Prestel, R.:
Der Malmkarst im süddeutschen Molassebecken – Ein hydrogeologischer Überblick
in: Hydrogeothermische Energiebilanz und Grundwasserhaushalt des Malmkarstes im süddeutschen Molassebecken, Bayerisches Landesamt für Wasserwirtschaft (Bay. LFW), München, Geologisches Landesamt Baden-Württemberg (LGRB), Freiburg, Schlussbericht zum BMFT-FE-Vorhaben, 1991. a
Toublanc, A., Renaud, S., Sylte, J. E., Clausen, C .K., Eiben, T., and Nådland, G.:
Ekofisk Field: fracture permeability evaluation and implementation in the flow model,
Petrol. Geosci., 11, 321–330, https://doi.org/10.1144/1354-079304-622, 2005. a, b
Tucker, M. E. and Wright, V. P.:
Carbonate Sedimentology,
Blackwell Publishing, Oxford, UK, https://doi.org/10.1002/9781444314175, 1990. a
Van Tuyl, J., Alves, T. M., and Cherns, L.:
Geometric and depositional responses of carbonate buildups to Miocene sea level and regional tectonics offshore northwest Australia,
Mar. Petrol. Geol., 94, 144–165, https://doi.org/10.1016/j.marpetgeo.2018.02.034, 2018. a, b
von Hartmann, H., Buness, H., Krawczyk, C. M., and Schulz, R.:
3-D seismic analysis of a carbonate platform in the Molasse Basin – reef distribution and internal separation with seismic attributes,
Tectonophysics, 572–573, 16–25, https://doi.org/10.1016/j.tecto.2012.06.033, 2012. a
Wadas, S. H., Tanner, D. C., Polom, U., and Krawczyk, C. M.: Structural analysis of S-wave seismics around an urban sinkhole: evidence of enhanced dissolution in a strike-slip fault zone, Nat. Hazards Earth Syst. Sci., 17, 2335–2350, https://doi.org/10.5194/nhess-17-2335-2017, 2017. a
Wadas, S. H., Tschache, S., Polom, U., and Krawczyk. C. M.:
Sinkhole imaging and identification of fractures with SH-wave reflection seismic,
Proceedings of the 15th Multidisciplinary Conference on Sinkholes and the Engineering and Environmental Impacts of Karst, Shepherdstown, West Virginia, USA, 2–6 April 2018, 307–314, https://doi.org/10.5038/9780991000982.1003, 2018. a
Waltham, T., Bell, F. G., and Culshaw, M.:
Sinkholes and Subsidence – Karst and Cavernous Rocks in Engineering and Construction,
Springer-Verlag, Berlin, Germany, ISBN 3642058515, 2005. a
Wang, Y., Eichkitz, C. G., Schrelechner, M. G., Heinemann, G., Davis, J. C., and Gharsalla, M.:
Seismic attributes for description of reef growth and channel system evolution – Case study of Intisar E, Libya,
Interpretation, 4, SB1–SB11, https://doi.org/10.1190/INT-2015-0017.1, 2016. a, b, c, d, e, f, g
Williams, R. M., Pascual-Cebrian, E., Gutmanis, J. C., and Paton, G. S.:
Closing the seismic resolution gap of fractures through seismic and image-log analysis, a North Sea case study,
Interpretation, 5, SJ21–SJ30, https://doi.org/10.1190/INT-2016-0163.1, 2017. a
Wolfgramm, M., Dussel, M., Koch, R., Lüschen, E., Schulz, R., and Thomas, R.:
Identifikation und Charakterisierung der Zuflusszonen im Malm des Molassebeckens nach petrographisch-faziellen und geophysikalischen Daten,
Proceedings – Der Geothermiekongress, Bochum, Germany, 15–17 November 2011, 1–14, 2011. a, b
Xu, X., Chen, Q., Chu, C., Li, G., Liu, C., and Shi, Z.:
Tectonic evolution and paleokarstification of carbonate rocks in the Paleozoic Tarim Basin,
Carbonate. Evaporite., 32, 487–496, https://doi.org/10.1007/s13146-016-0307-4, 2017. a
Zahmatkesh, I., Kadkhodaie, A., Soleimani, B., and Azarpour, M.:
Integration of well log-derived facies and 3D seismic attributes for seismic facies mapping: A case study from mansuri oil field, SW Iran,
J. Petrol. Sci. Eng., 202, 1–20, https://doi.org/10.1016/j.petrol.2021.108563, 2021. a, b
Zhao, T., Jayaram, V., Roy, A., and Marfurt, K. J.:
A comparison of classification techniques for seismic facies recognition,
Interpretation, 3, SAE29–SAE58, https://doi.org/10.1190/INT-2015-0044.1, 2015. a, b
Ziegler, P. A.:
Late Cretaceous and Cenozoic intraplate compressional deformations in the Alpine foreland – a geodynamic model,
Tectonophysics, 137, 399–420, https://doi.org/10.1016/0040-1951(87)90330-1, 1987. a
Ziesch, J.:
Prediction of seismic and sub-seismic deformation to ensure carbon traps in the Otway Basin, PhD Thesis, Australia,
Technical University Berlin, Berlin, Germany, https://doi.org/10.14279/depositonce-5386, 2016. a
Ziesch, J.:
3D-Strukturanalyse und Retrodeformation, in: Endbericht GeoParaMol – Bestimmung von relevanten Parametern zur faziellen Interpretation des Malm und Modellierung des thermisch-hydraulischen Langzeitverhaltens,
Project report for the German Ministry of Economic Affairs, Chap. 4.3, 51–63, https://doi.org/10.2314/KXP:1678714100, 2019. a, b, c, d, e, f, g
Short summary
The geothermal carbonate reservoir below Munich, Germany, is extremely heterogeneous because it is controlled by many factors like lithology, diagenesis, karstification, and tectonic deformation. We used a 3D seismic single- and multi-attribute analysis combined with well data and a neural-net-based lithology classification to obtain an improved reservoir concept outlining its structural and diagenetic evolution and to identify high-quality reservoir zones in the Munich area.
The geothermal carbonate reservoir below Munich, Germany, is extremely heterogeneous because it...