Articles | Volume 9, issue 1
https://doi.org/10.5194/se-9-223-2018
https://doi.org/10.5194/se-9-223-2018
Research article
 | 
27 Feb 2018
Research article |  | 27 Feb 2018

Structural disorder of graphite and implications for graphite thermometry

Martina Kirilova, Virginia Toy, Jeremy S. Rooney, Carolina Giorgetti, Keith C. Gordon, Cristiano Collettini, and Toru Takeshita

Related authors

Micro- and nano-porosity of the active Alpine Fault zone, New Zealand
Martina Kirilova, Virginia Toy, Katrina Sauer, François Renard, Klaus Gessner, Richard Wirth, Xianghui Xiao, and Risa Matsumura
Solid Earth, 11, 2425–2438, https://doi.org/10.5194/se-11-2425-2020,https://doi.org/10.5194/se-11-2425-2020, 2020
Short summary

Related subject area

Tectonics
Stress state at faults: the influence of rock stiffness contrast, stress orientation, and ratio
Moritz O. Ziegler, Robin Seithel, Thomas Niederhuber, Oliver Heidbach, Thomas Kohl, Birgit Müller, Mojtaba Rajabi, Karsten Reiter, and Luisa Röckel
Solid Earth, 15, 1047–1063, https://doi.org/10.5194/se-15-1047-2024,https://doi.org/10.5194/se-15-1047-2024, 2024
Short summary
(D)rifting in the 21st century: key processes, natural hazards, and geo-resources
Frank Zwaan, Tiago M. Alves, Patricia Cadenas, Mohamed Gouiza, Jordan J. J. Phethean, Sascha Brune, and Anne C. Glerum
Solid Earth, 15, 989–1028, https://doi.org/10.5194/se-15-989-2024,https://doi.org/10.5194/se-15-989-2024, 2024
Short summary
Interseismic and long-term deformation of southeastern Sicily driven by the Ionian slab roll-back
Amélie Viger, Stéphane Dominguez, Stéphane Mazzotti, Michel Peyret, Maxime Henriquet, Giovanni Barreca, Carmelo Monaco, and Adrien Damon
Solid Earth, 15, 965–988, https://doi.org/10.5194/se-15-965-2024,https://doi.org/10.5194/se-15-965-2024, 2024
Short summary
Rift and plume: a discussion on active and passive rifting mechanisms in the Afro-Arabian rift based on synthesis of geophysical data
Ran Issachar, Peter Haas, Nico Augustin, and Jörg Ebbing
Solid Earth, 15, 807–826, https://doi.org/10.5194/se-15-807-2024,https://doi.org/10.5194/se-15-807-2024, 2024
Short summary
Propagating rifts: the roles of crustal damage and ascending mantle fluids
Folarin Kolawole and Rasheed Ajala
Solid Earth, 15, 747–762, https://doi.org/10.5194/se-15-747-2024,https://doi.org/10.5194/se-15-747-2024, 2024
Short summary

Cited articles

Barzoi, S. C.: Shear stress in the graphitization of carbonaceous matter during the low-grade metamorphism from the northern Parang Mountains (South Carpathians) – Implications to graphite geothermometry, Int. J. Coal Geol., 146, 179–187, 2015.
Beeler, N. M.: Laboratory-observed faulting in intrinsically and apparently weak materials: Strength, seismic coupling, dilatancy, and pore-fluid pressure, The Seismogenic Zone of Subduction Thrust Faults, 370–449, 2007.
Beyssac, O., Goffé, B., Chopin, C., and Rouzaud, J. N.: Raman spectra of carbonaceous material in metasediments: a new geothermometer, J. Metamorph. Geol., 20, 859–871, 2002a.
Beyssac, O., Rouzaud, J. N., Goffé, B., Brunet, F., and Chopin, C.: Graphitization in a high-pressure, low-temperature metamorphic gradient: a Raman microspectroscopy and HRTEM study, Contrib. Mineral. Petr., 143, 19–31, 2002b.
Beyssac, O., Brunet, F., Petitet, J. P., Goffé, B., and Rouzand, J. N.: Experimental study of the microtextural and structural transformations of carbonaceous materials under pressure and temperature, Eur. J. Mineral., 15, 937–951, 2003.
Download
Short summary
Graphite crystallinity “irreversibly” increases with temperature and it has been calibrated as a thermometer recording peak temperatures experienced by a rock. To examine the possibility of mechanical modifications of graphite structure and the impacts on graphite thermometry we performed deformation experiments. Raman spectroscopy demonstrates a reduction in crystallinity due to mechanical reworking in the brittle field. This finding clearly compromises the validity of the graphite thermometry.