Articles | Volume 10, issue 6
https://doi.org/10.5194/se-10-1989-2019
https://doi.org/10.5194/se-10-1989-2019
Research article
 | 
15 Nov 2019
Research article |  | 15 Nov 2019

Prediction of seismic P-wave velocity using machine learning

Ines Dumke and Christian Berndt

Related authors

Formation and geophysical character of transitional crust at the passive continental margin around Walvis Ridge, Namibia
Gesa Franz, Marion Jegen, Max Moorkamp, Christian Berndt, and Wolfgang Rabbel
Solid Earth, 14, 237–259, https://doi.org/10.5194/se-14-237-2023,https://doi.org/10.5194/se-14-237-2023, 2023
Short summary
Ideas and perspectives: Land–ocean connectivity through groundwater
Damian L. Arévalo-Martínez, Amir Haroon, Hermann W. Bange, Ercan Erkul, Marion Jegen, Nils Moosdorf, Jens Schneider von Deimling, Christian Berndt, Michael Ernst Böttcher, Jasper Hoffmann, Volker Liebetrau, Ulf Mallast, Gudrun Massmann, Aaron Micallef, Holly A. Michael, Hendrik Paasche, Wolfgang Rabbel, Isaac Santos, Jan Scholten, Katrin Schwalenberg, Beata Szymczycha, Ariel T. Thomas, Joonas J. Virtasalo, Hannelore Waska, and Bradley A. Weymer
Biogeosciences, 20, 647–662, https://doi.org/10.5194/bg-20-647-2023,https://doi.org/10.5194/bg-20-647-2023, 2023
Short summary
Correlation of core and downhole seismic velocities in high-pressure metamorphic rocks: a case study for the COSC-1 borehole, Sweden
Felix Kästner, Simona Pierdominici, Judith Elger, Alba Zappone, Jochem Kück, and Christian Berndt
Solid Earth, 11, 607–626, https://doi.org/10.5194/se-11-607-2020,https://doi.org/10.5194/se-11-607-2020, 2020
Short summary
Northeast Atlantic breakup volcanism and consequences for Paleogene climate change – MagellanPlus Workshop report
Christian Berndt, Sverre Planke, Damon Teagle, Ritske Huismans, Trond Torsvik, Joost Frieling, Morgan T. Jones, Dougal A. Jerram, Christian Tegner, Jan Inge Faleide, Helen Coxall, and Wei-Li Hong
Sci. Dril., 26, 69–85, https://doi.org/10.5194/sd-26-69-2019,https://doi.org/10.5194/sd-26-69-2019, 2019
Short summary
On the formation of hydrothermal vents and cold seeps in the Guaymas Basin, Gulf of California
Sonja Geilert, Christian Hensen, Mark Schmidt, Volker Liebetrau, Florian Scholz, Mechthild Doll, Longhui Deng, Annika Fiskal, Mark A. Lever, Chih-Chieh Su, Stefan Schloemer, Sudipta Sarkar, Volker Thiel, and Christian Berndt
Biogeosciences, 15, 5715–5731, https://doi.org/10.5194/bg-15-5715-2018,https://doi.org/10.5194/bg-15-5715-2018, 2018
Short summary

Related subject area

Subject area: Crustal structure and composition | Editorial team: Seismics, seismology, paleoseismology, geoelectrics, and electromagnetics | Discipline: Geophysics
Formation and geophysical character of transitional crust at the passive continental margin around Walvis Ridge, Namibia
Gesa Franz, Marion Jegen, Max Moorkamp, Christian Berndt, and Wolfgang Rabbel
Solid Earth, 14, 237–259, https://doi.org/10.5194/se-14-237-2023,https://doi.org/10.5194/se-14-237-2023, 2023
Short summary
Utilisation of probabilistic magnetotelluric modelling to constrain magnetic data inversion: proof-of-concept and field application
Jérémie Giraud, Hoël Seillé, Mark D. Lindsay, Gerhard Visser, Vitaliy Ogarko, and Mark W. Jessell
Solid Earth, 14, 43–68, https://doi.org/10.5194/se-14-43-2023,https://doi.org/10.5194/se-14-43-2023, 2023
Short summary
Comparison of straight-ray and curved-ray surface wave tomography approaches in near-surface studies
Mohammadkarim Karimpour, Evert Slob, and Laura Valentina Socco
Solid Earth, 13, 1569–1583, https://doi.org/10.5194/se-13-1569-2022,https://doi.org/10.5194/se-13-1569-2022, 2022
Short summary
3D deep geothermal reservoir imaging with wireline distributed acoustic sensing in two boreholes
Evgeniia Martuganova, Manfred Stiller, Ben Norden, Jan Henninges, and Charlotte M. Krawczyk
Solid Earth, 13, 1291–1307, https://doi.org/10.5194/se-13-1291-2022,https://doi.org/10.5194/se-13-1291-2022, 2022
Short summary
3D high-resolution seismic imaging of the iron oxide deposits in Ludvika (Sweden) using full-waveform inversion and reverse time migration
Brij Singh, Michał Malinowski, Andrzej Górszczyk, Alireza Malehmir, Stefan Buske, Łukasz Sito, and Paul Marsden
Solid Earth, 13, 1065–1085, https://doi.org/10.5194/se-13-1065-2022,https://doi.org/10.5194/se-13-1065-2022, 2022
Short summary

Cited articles

Belgiu, M., Drăguţ, L.: Random forest in remote sensing: A review of applications and future directions, ISPRS J. Photogramm., 114, 24–31, https://doi.org/10.1016/j.isprsjprs.2016.01.011, 2016. 
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. 
Brune, S., Babeyko, A. Y., Gaedicke, C., and Ladage, S.: Hazard assessment of underwater landslide-generated tsunamis: a case study in the Padang region, Indonesia, Nat. Hazards, 53, 205–218, https://doi.org/10.1007/s11069-009-9424-x, 2010. 
Bünz, S., Mienert, J., Vanneste, M., and Andreassen, K.: Gas hydrates at the Storegga Slide: constraints from an analysis of multicomponent, wide-angle seismic data, Geophysics, 70, B19–B34, https://doi.org/10.1190/1.2073887, 2005. 
Coffin, M. F., Gahagan, L. M., and Lawver, L. A.: Present-day plate boundary digital data compilation, UTIG Technical Report No. 174, University of Texas Institute for Geophysics, Austin, TX, 1998. 
Download
Short summary
Knowing the velocity with which seismic waves travel through the top of the crust is important both for identifying anomalies, e.g. the presence of resources, and for geophysical data evaluation. Traditionally this has been done by using empirical functions. Here, we use machine learning to derive better seismic velocity estimates for the crust below the oceans. In most cases this methods performs better than empirical averages.