Articles | Volume 11, issue 5
https://doi.org/10.5194/se-11-1891-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/se-11-1891-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Coherent diffraction imaging for enhanced fault and fracture network characterization
GFZ German Research Centre for Geosciences, Albert-Einstein-Str. 42–46, 14473 Potsdam, Germany
Charlotte M. Krawczyk
GFZ German Research Centre for Geosciences, Albert-Einstein-Str. 42–46, 14473 Potsdam, Germany
Technical University Berlin, Ernst-Reuter-Platz 1, 10589 Berlin, Germany
Related authors
No articles found.
Mikhail Tsypin, Viet Dung Nguyen, Mauro Cacace, Guido Blöcher, Magdalena Scheck-Wenderoth, Elco Luijendijk, and Charlotte Krawczyk
EGUsphere, https://doi.org/10.5194/egusphere-2025-4335, https://doi.org/10.5194/egusphere-2025-4335, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Shallow groundwater temperatures are increasing as a consequence of global warming. At the same time, climate models project substantial changes in future groundwater recharge, with impacts on groundwater levels. We investigated the combined effects of these two processes. Our modeling results suggest that decreased annual recharge or increased cold recharge in winter can locally slow groundwater warming, but not sufficiently to stop or reverse the overall warming trend.
Rahmantara Trichandi, Klaus Bauer, Trond Ryberg, Benjamin Heit, Jaime Araya Vargas, Friedhelm von Blanckenburg, and Charlotte M. Krawczyk
Earth Surf. Dynam., 12, 747–763, https://doi.org/10.5194/esurf-12-747-2024, https://doi.org/10.5194/esurf-12-747-2024, 2024
Short summary
Short summary
This study investigates subsurface weathering zones, revealing their structure through shear wave velocity variations. The research focuses on the arid climate of Pan de Azúcar National Park, Chile, using seismic ambient noise recordings to construct pseudo-3D models. The resulting models show the subsurface structure, including granite gradients and mafic dike intrusions. Comparison with other sites emphasizes the intricate relationship between climate, geology, and weathering depth.
Sonja H. Wadas, Hermann Buness, Raphael Rochlitz, Peter Skiba, Thomas Günther, Michael Grinat, David C. Tanner, Ulrich Polom, Gerald Gabriel, and Charlotte M. Krawczyk
Solid Earth, 13, 1673–1696, https://doi.org/10.5194/se-13-1673-2022, https://doi.org/10.5194/se-13-1673-2022, 2022
Short summary
Short summary
The dissolution of rocks poses a severe hazard because it can cause subsidence and sinkhole formation. Based on results from our study area in Thuringia, Germany, using P- and SH-wave reflection seismics, electrical resistivity and electromagnetic methods, and gravimetry, we develop a geophysical investigation workflow. This workflow enables identifying the initial triggers of subsurface dissolution and its control factors, such as structural constraints, fluid pathways, and mass movement.
Evgeniia Martuganova, Manfred Stiller, Ben Norden, Jan Henninges, and Charlotte M. Krawczyk
Solid Earth, 13, 1291–1307, https://doi.org/10.5194/se-13-1291-2022, https://doi.org/10.5194/se-13-1291-2022, 2022
Short summary
Short summary
We demonstrate the applicability of vertical seismic profiling (VSP) acquired using wireline distributed acoustic sensing (DAS) technology for deep geothermal reservoir imaging and characterization. Borehole DAS data provide critical input for seismic interpretation and help assess small-scale geological structures. This case study can be used as a basis for detailed structural exploration of geothermal reservoirs and provide insightful information for geothermal exploration projects.
Martin Peter Lipus, Felix Schölderle, Thomas Reinsch, Christopher Wollin, Charlotte Krawczyk, Daniela Pfrang, and Kai Zosseder
Solid Earth, 13, 161–176, https://doi.org/10.5194/se-13-161-2022, https://doi.org/10.5194/se-13-161-2022, 2022
Short summary
Short summary
A fiber-optic cable was installed along a freely suspended rod in a deep geothermal well in Munich, Germany. A cold-water injection test was monitored with fiber-optic distributed acoustic and temperature sensing. During injection, we observe vibrational events in the lower part of the well. On the basis of a mechanical model, we conclude that the vibrational events are caused by thermal contraction of the rod. The results illustrate potential artifacts when analyzing downhole acoustic data.
Djamil Al-Halbouni, Robert A. Watson, Eoghan P. Holohan, Rena Meyer, Ulrich Polom, Fernando M. Dos Santos, Xavier Comas, Hussam Alrshdan, Charlotte M. Krawczyk, and Torsten Dahm
Hydrol. Earth Syst. Sci., 25, 3351–3395, https://doi.org/10.5194/hess-25-3351-2021, https://doi.org/10.5194/hess-25-3351-2021, 2021
Short summary
Short summary
The rapid decline of the Dead Sea level since the 1960s has provoked a dynamic reaction from the coastal groundwater system, with physical and chemical erosion creating subsurface voids and conduits. By combining remote sensing, geophysical methods, and numerical modelling at the Dead Sea’s eastern shore, we link groundwater flow patterns to the formation of surface stream channels, sinkholes and uvalas. Better understanding of this karst system will improve regional hazard assessment.
Gilda Currenti, Philippe Jousset, Rosalba Napoli, Charlotte Krawczyk, and Michael Weber
Solid Earth, 12, 993–1003, https://doi.org/10.5194/se-12-993-2021, https://doi.org/10.5194/se-12-993-2021, 2021
Short summary
Short summary
We investigate the capability of distributed acoustic sensing (DAS) to record dynamic strain changes related to Etna volcano activity in 2019. To validate the DAS measurements, we compute strain estimates from seismic signals recorded by a dense broadband array. A general good agreement is found between array-derived strain and DAS measurements along the fibre optic cable. Localised short wavelength discrepancies highlight small-scale structural heterogeneities in the investigated area.
Jan Henninges, Evgeniia Martuganova, Manfred Stiller, Ben Norden, and Charlotte M. Krawczyk
Solid Earth, 12, 521–537, https://doi.org/10.5194/se-12-521-2021, https://doi.org/10.5194/se-12-521-2021, 2021
Short summary
Short summary
We performed a seismic survey in two 4.3 km deep geothermal research wells using the novel method of distributed acoustic sensing and wireline cables. The characteristics of the acquired data, methods for data processing and quality improvement, and interpretations on the geometry and structure of the sedimentary and volcanic reservoir rocks are presented. The method enables measurements at high temperatures and reduced cost compared to conventional sensors.
Cited articles
Bakhtiari Rad, P., Schwarz, B., Gajewski, D., and Vanelle, C.:
Common-reflection-surface-based prestack diffraction separation and
imaging, Geophysics, 83, S47–S55, https://doi.org/10.1190/geo2016-0445.1, 2018. a
Bansal, R. and Imhof, M. G.: Diffraction enhancement in prestack seismic
data, Geophysics, 70, V73–V79, https://doi.org/10.1190/1.1926577, 2005. a
Barnes, A. E.: Handbook of poststack seismic attributes, Society of
Exploration Geophysicists, Tulsa, Oklahoma, 2016. a
Bauer, A., Schwarz, B., and Gajewski, D.: Enhancement of prestack diffraction
data and attributes using a traveltime decomposition approach, Stud. Geophys. Geod., 60, 471–486, https://doi.org/10.1007/s11200-015-1278-y,
2016. a
Bauer, A., Schwarz, B., and Gajewski, D.: Utilizing diffractions in wavefront
tomography, Geophysics, 82, R65–R73, https://doi.org/10.1190/geo2016-0396.1, 2017. a, b
Bauer, A., Schwarz, B., Werner, T., and Gajewski, D.: Unsupervised event
identification and tagging for diffraction focusing, Geophys. J. Int., 217, 2165–2176, https://doi.org/10.1093/gji/ggz106, 2019. a
Baykulov, M. and Gajewski, D.: Prestack seismic data enhancement with partial
common-reflection-surface (CRS) stack, Geophysics, 74, V49–V58,
https://doi.org/10.1190/1.3106182, 2009. a
Baysal, E., Kosloff, D. D., and Sherwood, J. W.: Reverse time migration,
Geophysics, 48, 1514–1524, https://doi.org/10.1190/1.1441434, 1983. a
Beilecke, T., Krawczyk, C. M., Ziesch, J., and Tanner, D. C.: Near-surface
fault detection using high-resolution shear wave reflection seismics at the
CO2CRC Otway Project site, Australia, J. Geophys. Res.-Sol. Ea., 121, 6510–6532, https://doi.org/10.1002/2015JB012668, 2016. a
Bergler, S., Duveneck, E., Höcht, G., Zhang, Y., and Hubral, P.:
Common-reflection-surface stack for converted waves, Stud. Geophys. Geod., 46, 165–175, https://doi.org/10.1023/A:1019845818278, 2002. a
Berkovitch, A., Belfer, I., Hassin, Y., and Landa, E.: Diffraction imaging by
multifocusing, Geophysics, 74, WCA75–WCA81, https://doi.org/10.1190/1.3198210, 2009. a
Berryhill, J. R.: Diffraction response for nonzero separation of source and
receiver, Geophysics, 42, 1158–1176, https://doi.org/10.1190/1.1440781, 1977. a
Billette, F. and Lambaré, G.: Velocity macro-model estimation from seismic
reflection data by stereotomography, Geophys. J. Int., 135,
671–690, https://doi.org/10.1046/j.1365-246X.1998.00632.x, 1998. a
Bonomi, E., Tomas, C., Marchetti, P., and Caddeo, G.: Velocity-independent and
data-driven prestack time imaging: It is possible, The Leading Edge, 33,
1008–1014, https://doi.org/10.1190/tle33091008.1, 2014. a
Burnett, W. A., Klokov, A., Fomel, S., Bansal, R., Liu, E., and Jenkinson, T.:
Seismic diffraction interpretation at Piceance Creek, Interpretation, 3,
SF1–SF14, https://doi.org/10.1190/INT-2014-0091.1, 2015. a
Chopra, S. and Marfurt, K. J.: Seismic attributes — A historical
perspective, Geophysics, 70, 3SO–28SO, https://doi.org/10.1190/1.2098670, 2005. a
de Bazelaire, E.: Normal moveout revisited: Inhomogeneous media and curved
interfaces, Geophysics, 53, 143–157, https://doi.org/10.1190/1.1442449, 1988. a
Decker, L., Merzlikin, D., and Fomel, S.: Diffraction imaging and
time-migration velocity analysis using oriented velocity continuation,
Geophysics, 82, U25–U35, https://doi.org/10.1190/geo2016-0141.1, 2017. a
Dell, S. and Gajewski, D.: Common-reflection-surface-based workflow for
diffraction imaging, Geophysics, 76, S187–S195,
https://doi.org/10.1190/geo2010-0229.1, 2011. a
Dell, S., Hoelker, A., and Gajewski, D.: Using seismic diffractions for
assessment of tectonic overprint and fault interpretation, Geophysics, 84,
IM1–IM9, https://doi.org/10.1190/geo2018-0113.1, 2019. a
Diekmann, L., Schwarz, B., Bauer, A., and Gajewski, D.: Source localization
and joint velocity model building using wavefront attributes, Geophys. J. Int., 219, 995–1007, https://doi.org/10.1093/gji/ggz342, 2019. a, b
Duveneck, E.: Velocity model estimation with data-derived wavefront
attributes, Geophysics, 69, 265–274, https://doi.org/10.1190/1.1649394, 2004. a, b
Endres, H., Lohr, T., Trappe, H., Samiee, R., Thierer, P. O., Krawczyk, C. M.,
Tanner, D. C., Oncken, O., and Kukla, P. A.: Quantitative fracture
prediction from seismic data, Petrol. Geosci., 14, 369–377,
https://doi.org/10.1144/1354-079308-751, 2008. a
Etgen, J., Gray, S. H., and Zhang, Y.: An overview of depth imaging in
exploration geophysics, Geophysics, 74, WCA5–WCA17,
https://doi.org/10.1190/1.3223188, 2009. a, b
Fomel, S.: Velocity-independent time-domain seismic imaging using local event
slopes, Geophysics, 72, S139–S147, https://doi.org/10.1190/1.2714047, 2007. a
Fomel, S., Landa, E., and Taner, M. T.: Poststack velocity analysis by
separation and imaging of seismic diffractions, Geophysics, 72, U89–U94,
https://doi.org/10.1190/1.2781533, 2007. a, b, c
Gelchinsky, B., Berkovitch, A., and Keydar, S.: Multifocusing homeomorphic
imaging: Part 1. Basic concepts and formulas, J. Appl. Geophys.,
42, 229–242, https://doi.org/10.1016/S0926-9851(99)00038-5, 1999a. a
Gelchinsky, B., Berkovitch, A., and Keydar, S.: Multifocusing homeomorphic
imaging: Part 2. Multifold data set and multifocusing, J. Appl. Geophys., 42, 243–260, https://doi.org/10.1016/S0926-9851(99)00039-7,
1999b. a
Gradmann, S., Hübscher, C., Ben-Avraham, Z., Gajewski, D., and Netzeband,
G.: Salt tectonics off northern Israel, Mar. Petrol. Geol., 22,
597–611, https://doi.org/10.1016/j.marpetgeo.2005.02.001, 2005. a, b
Hardage, B. A., Levey, R. A., Pendleton, V., Simmons, J., and Edson, R.: A 3-D
seismic case history evaluating fluvial deposited thin-bed reservoirs in a
gas-producing property, Geophysics, 59, 1650–1665, https://doi.org/10.1190/1.1443554,
1994. a, b
Heincke, B., Green, A. G., van der Kruk, J., and Willenberg, H.:
Semblance-based topographic migration (SBTM): a method for identifying
fracture zones in 3D georadar data, Near Surf. Geophys., 4, 79–88,
https://doi.org/10.3997/1873-0604.2005034, 2006. a
Höcht, G., de Bazelaire, E., Majer, P., and Hubral, P.: Seismics and optics:
hyperbolae and curvatures, J. Appl. Geophys., 42, 261–281,
https://doi.org/10.1016/S0926-9851(99)00040-3, 1999. a
Höcht, G., Ricarte, P., Bergler, S., and Landa, E.: Operator-oriented CRS
interpolation, Geophys. Prospect., 57, 957–979,
https://doi.org/10.1111/j.1365-2478.2009.00789.x, 2009. a
Hübscher, C., Ruhnau, M., and Nomikou, P.: Volcano-tectonic evolution of
the polygenetic Kolumbo submarine volcano/Santorini (Aegean Sea), J. Volcanol. Geoth. Res., 291, 101–111,
https://doi.org/10.1016/j.jvolgeores.2014.12.020, 2015. a, b
Jäger, R., Mann, J., Höcht, G., and Hubral, P.:
Common-reflection-surface stack: Image and attributes, Geophysics, 66,
97–109, https://doi.org/10.1190/1.1444927, 2001. a
Jousset, P., Reinsch, T., Ryberg, T., Blanck, H., Clarke, A., Aghayev, R.,
Hersir, G. P., Henninges, J., Weber, M., and Krawczyk, C. M.: Dynamic strain
determination using fibre-optic cables allows imaging of seismological and
structural features, Nat. Commun., 9, 1–11,
https://doi.org/10.1038/s41467-018-04860-y, 2018. a
Kanasevich, E. R. and Phadke, S. M.: Imaging discontinuities on seismic
sections, Geophysics, 53, 334–345, https://doi.org/10.1190/1.1892075, 1988. a
Khaidukov, V., Landa, E., and Moser, T. J.: Diffraction imaging by
focusing-defocusing: An outlook on seismic superresolution, Geophysics, 69,
1478–1490, https://doi.org/10.1190/1.1836821, 2004. a, b, c
Klokov, A. and Fomel, S.: Separation and imaging of seismic diffractions using
migrated dip-angle gathers, Geophysics, 77, S131–S143,
https://doi.org/10.1190/geo2012-0017.1, 2012. a
Krawczyk, C. M., Polom, U., Trabs, S., and Dahm, T.: Sinkholes in the city of
Hamburg—New urban shear-wave reflection seismic system enables
high-resolution imaging of subrosion structures, J. Appl. Geophys., 78, 133–143, https://doi.org/10.1016/j.jappgeo.2011.02.003, 2012. a
Krawczyk, C. M., Tanner, D. C., Henk, A., Trappe, H., Ziesch, J., Beilecke, T.,
Aruffo, C. M., Weber, B., Lippmann, A., Görke, U., Bilke, L., and
Kolditz, O.: Seismic and sub-seismic deformation prediction in the context
of geological carbon trapping and storage, in: Geological Storage of CO2 – Long Term Security Aspects, pp. 97–113, Springer, Cham, Switzerland, 2015. a
Krey, T.: The significance of diffraction in the investigation of faults,
Geophysics, 17, 843–858, https://doi.org/10.1190/1.1437815, 1952. a
Krijgsman, W., Hilgen, F., Raffi, I., Sierro, F. J., and Wilson, D.:
Chronology, causes and progression of the Messinian salinity crisis,
Nature, 400, 652–655, https://doi.org/10.1038/23231, 1999. a
Kunz, B. F.: Diffraction problems in fault interpretation, Geophys.
Prospect., 8, 381–388, https://doi.org/10.1111/j.1365-2478.1960.tb01722.x, 1960. a
Landa, E., Shtivelman, V., and Gelchinsky, B.: A method for detection of
diffracted waves on common-offset sections, Geophys. Prospect., 35,
359–373, https://doi.org/10.1111/j.1365-2478.1987.tb00823.x, 1987. a, b
Li, L., Tan, J., Schwarz, B., Staněk, F., Poiata, N., Shi, P., Diekmann,
L., Eisner, L., and Gajewski, D.: Recent advances and challenges of
waveform-based seismic location methods at multiple scales, Rev.
Geophys., 58, e2019RG000667, https://doi.org/10.1029/2019RG000667, 2020. a, b, c
Lohr, T., Krawczyk, C. M., Oncken, O., and Tanner, D. C.: Evolution of a fault
surface from 3D attribute analysis and displacement measurements, J.
Struct. Geol., 30, 690–700, https://doi.org/10.1016/j.jsg.2008.02.009, 2008. a
Lowney, B., Lokmer, I., O’Brien, G. S., Amy, L., Bean, C. J., and Igoe, M.:
Enhancing interpretability with diffraction imaging using plane-wave
destruction aided by frequency-wavenumber f-k filtering, Interpretation, 8,
1–52, https://doi.org/10.1190/INT-2019-0199.1, 2020. a
Mayne, W. H.: Common reflection point horizontal data stacking techniques,
Geophysics, 27, 927–938, https://doi.org/10.1190/1.1439118, 1962. a
Moser, T. and Howard, C.: Diffraction imaging in depth, Geophys.
Prospect., 56, 627–641, https://doi.org/10.1111/j.1365-2478.2007.00718.x, 2008. a, b, c, d
Mosk, A. P., Lagendijk, A., Lerosey, G., and Fink, M.: Controlling waves in
space and time for imaging and focusing in complex media, Nat. Photonics,
6, 283–292, https://doi.org/10.1038/nphoton.2012.88, 2012. a
Neidell, N. S. and Taner, M. T.: Semblance and other coherency measures for
multichannel data, Geophysics, 36, 482–497, https://doi.org/10.1190/1.1440186, 1971. a
Netzeband, G., Hübscher, C., and Gajewski, D.: The structural evolution of
the Messinian evaporites in the Levantine Basin, Mar. Geol., 230,
249–273, https://doi.org/10.1016/j.margeo.2006.05.004, 2006. a
Nomikou, P., Druitt, T., Hübscher, C., Mather, T., Paulatto, M., Kalnins,
L., Kelfoun, K., Papanikolaou, D., Bejelou, K., Lampridou, D., Pyle, D. M.,
Carey, S., Watts, A. B., Weiß, B., and Parks, M. M.: Post-eruptive
flooding of Santorini caldera and implications for tsunami generation,
Nat. Commun., 7, 1–10, https://doi.org/10.1038/ncomms13332,
2016a. a
Nomikou, P., Hübscher, C., Ruhnau, M., and Bejelou, K.:
Tectono-stratigraphic evolution through successive extensional events of the
Anydros Basin, hosting Kolumbo volcanic field at the Aegean Sea, Greece,
Tectonophysics, 671, 202–217, https://doi.org/10.1016/j.tecto.2016.01.021,
2016b. a
Plant, N. G., Smith, K. E. L., Passeri, D. L., Smith, C. G., and Bernier,
J. C.: Barrier-island and estuarine-wetland physical-change assessment after
Hurricane Sandy, U.S. Geological Survey Open-File Report 2017, 1157,
https://doi.org/10.3133/ofr20171157, 2018. a
Reiche, S., Hübscher, C., and Beitz, M.: Fault-controlled evaporite
deformation in the Levant Basin, Eastern Mediterranean, Mar. Geol., 354,
53–68, https://doi.org/10.1016/j.margeo.2014.05.002, 2014. a, b
Rost, S. and Thomas, C.: Array seismology: Methods and applications, Rev.
Geophys., 40, 2–1, https://doi.org/10.1029/2000RG000100, 2002. a, b
Sava, P. C., Biondi, B., and Etgen, J.: Wave-equation migration velocity
analysis by focusing diffractions and reflections, Geophysics, 70, U19–U27,
https://doi.org/10.1190/1.1925749, 2005. a
Schneider, W. A.: Integral formulation for migration in two and three
dimensions, Geophysics, 43, 49–76, https://doi.org/10.1190/1.1440828, 1978. a, b
Schwarz, B.: Coherent wavefield subtraction for diffraction separation,
Geophysics, 84, V157–V168, https://doi.org/10.1190/geo2018-0368.1, 2019b. a, b
Schwarz, B. and Gajewski, D.: Accessing the diffracted wavefield by coherent
subtraction, Geophys. J. Int., 211, 45–49,
https://doi.org/10.1093/gji/ggx291, 2017a. a
Schwarz, B. and Gajewski, D.: A generalized view on normal moveout,
Geophysics, 82, V335–V349, https://doi.org/10.1190/geo2017-0159.1, 2017b. a, b, c
Schwarz, B., Vanelle, C., Gajewski, D., and Kashtan, B.: Curvatures and
inhomogeneities: An improved common-reflection-surface approach, Geophysics,
79, S231–S240, https://doi.org/10.1190/geo2013-0196.1, 2014. a
Schwarz, B., Bauer, A., and Gajewski, D.: Passive seismic source localization
via common-reflection-surface attributes, Stud. Geophys. Geod.,
60, 531–546, https://doi.org/10.1007/s11200-015-0493-x, 2016. a
Shustak, M. and Landa, E.: Time reversal for wave refocusing and scatterer
detection using machine learning, Geophysics, 83, T257–T263,
https://doi.org/10.1190/geo2017-0679.1, 2018.
a
Sibson, R. H.: Crustal stress, faulting and fluid flow, Geol. Soc. Spec. Publ., 78, 69–84,
https://doi.org/10.1144/GSL.SP.1994.078.01.07, 1994. a
Symes, W. W. and Carazzone, J. J.: Velocity inversion by differential
semblance optimization, Geophysics, 56, 654–663, https://doi.org/10.1190/1.1443082,
1991. a
Taner, M. T. and Koehler, F.: Velocity spectra—Digital computer derivation
applications of velocity functions, Geophysics, 34, 859–881,
https://doi.org/10.1190/1.1440058, 1969. a
Torrado, L., Mann, P., and Bhattacharya, J.: Application of seismic attributes
and spectral decomposition for reservoir characterization of a complex
fluvial system: Case study of the Carbonera Formation, Llanos foreland basin,
Colombia, Geophysics, 79, B221–B230, https://doi.org/10.1190/geo2013-0429.1, 2014. a
Trorey, A.: A simple theory for seismic diffractions, Geophysics, 35,
762–784, https://doi.org/10.1190/1.1440129, 1970. a
Virieux, J. and Operto, S.: An overview of full-waveform inversion in
exploration geophysics, Geophysics, 74, WCC1–WCC26,
https://doi.org/10.1190/1.3238367, 2009. a
Wang, Z., Gao, J., Wang, D., and Wei, Q.: 3D seismic attributes for a tight
gas sand reservoir characterization of the eastern Sulige gas field, Ordos
Basin, China, Geophysics, 80, B35–B43, https://doi.org/10.1190/geo2014-0362.1, 2015. a
Wu, X., Liang, L., Shi, Y., and Fomel, S.: FaultSeg3D: Using synthetic data
sets to train an end-to-end convolutional neural network for 3D seismic fault
segmentation, Geophysics, 84, IM35–IM45, https://doi.org/10.1190/geo2018-0646.1,
2019. a
Zaremba, N. J., Smith, K. E., Bishop, J. M., and Smith, C. G.:
Ground-penetrating radar and differential global positioning system data
collected from Long Beach Island, New Jersey, April 2015, U.S. Geological
Survey Data Series, 1006, https://doi.org/10.3133/ds1006, 2016. a
Short summary
Intricate fault and fracture networks cut through the upper crust, and their detailed delineation and characterization play an important role in the Earth sciences. While conventional geophysical sounding techniques only provide indirect means of detection, we present scale-spanning field data examples, in which coherent diffraction imaging – a framework inspired by optics and visual perception – enables the direct imaging of these crustal features at an unprecedented spatial resolution.
Intricate fault and fracture networks cut through the upper crust, and their detailed...
Special issue