Articles | Volume 11, issue 6
https://doi.org/10.5194/se-11-2535-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/se-11-2535-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
On a new robust workflow for the statistical and spatial analysis of fracture data collected with scanlines (or the importance of stationarity)
Andrea Bistacchi
CORRESPONDING AUTHOR
Dipartimento di Scienze dell'Ambiente e della Terra, Università
degli Studi di Milano Bicocca, Piazza della Scienza, 4, 20126 Milan, Italy
Silvia Mittempergher
Dipartimento di Scienze Chimiche e Geologiche, Università degli
Studi di Modena e Reggio Emilia, Via G. Campi 106, 41125 Modena, Italy
Mattia Martinelli
Dipartimento di Scienze dell'Ambiente e della Terra, Università
degli Studi di Milano Bicocca, Piazza della Scienza, 4, 20126 Milan, Italy
Fabrizio Storti
NEXT – Natural and Experimental Tectonics Research Group, Dipartimento
di Scienze Chimiche, della Vita e della Sostenibilità Ambientale,
Università degli Studi di Parma, Parco Area delle Scienze 157/A, 43124
Parma, Italy
Related authors
Gabriele Benedetti, Stefano Casiraghi, Daniela Bertacchi, and Andrea Bistacchi
Solid Earth, 16, 367–390, https://doi.org/10.5194/se-16-367-2025, https://doi.org/10.5194/se-16-367-2025, 2025
Short summary
Short summary
At any scale, the limited size of a study area introduces a bias in the interpretation of linear features, defined as right-censoring bias. We show the effects of not considering such bias and apply survival analysis techniques to obtain unbiased estimates of multiple parametrical distributions in three censored length datasets. Finally, we propose a novel approach to select the most representative model from a sensible candidate pool using the probability integral transform technique.
Stefano Casiraghi, Gabriele Benedetti, Daniela Bertacchi, Silvia Mittempergher, Federico Agliardi, Bruno Monopoli, Fabio La Valle, Mattia Martinelli, Francesco Bigoni, Cristian Albertini, and Andrea Bistacchi
EGUsphere, https://doi.org/10.5194/egusphere-2025-1398, https://doi.org/10.5194/egusphere-2025-1398, 2025
Short summary
Short summary
Traditional methods for investigating the subsurface cannot properly investigate fractures between 1m and 100–200m. Digital outcrop models (DOMs) provide a framework for the collection of extensive datasets in outcrop analogues. Here we present a comprehensive workflow, with a solid statistical foundation, for the characterization of all the fracture network parameters that can be obtained from this type of support, including best practices for an optimal outcrop selection and data acquisition.
Gabriele Benedetti, Stefano Casiraghi, Daniela Bertacchi, and Andrea Bistacchi
Solid Earth, 16, 367–390, https://doi.org/10.5194/se-16-367-2025, https://doi.org/10.5194/se-16-367-2025, 2025
Short summary
Short summary
At any scale, the limited size of a study area introduces a bias in the interpretation of linear features, defined as right-censoring bias. We show the effects of not considering such bias and apply survival analysis techniques to obtain unbiased estimates of multiple parametrical distributions in three censored length datasets. Finally, we propose a novel approach to select the most representative model from a sensible candidate pool using the probability integral transform technique.
Stefano Casiraghi, Gabriele Benedetti, Daniela Bertacchi, Silvia Mittempergher, Federico Agliardi, Bruno Monopoli, Fabio La Valle, Mattia Martinelli, Francesco Bigoni, Cristian Albertini, and Andrea Bistacchi
EGUsphere, https://doi.org/10.5194/egusphere-2025-1398, https://doi.org/10.5194/egusphere-2025-1398, 2025
Short summary
Short summary
Traditional methods for investigating the subsurface cannot properly investigate fractures between 1m and 100–200m. Digital outcrop models (DOMs) provide a framework for the collection of extensive datasets in outcrop analogues. Here we present a comprehensive workflow, with a solid statistical foundation, for the characterization of all the fracture network parameters that can be obtained from this type of support, including best practices for an optimal outcrop selection and data acquisition.
Mattia Pizzati, Luciana Mantovani, Antonio Lisotti, Fabrizio Storti, and Fabrizio Balsamo
EGUsphere, https://doi.org/10.5194/egusphere-2023-2636, https://doi.org/10.5194/egusphere-2023-2636, 2023
Preprint archived
Short summary
Short summary
This work proposes a new equation to calculate the 3D average particle diameter from 2D datasets acquired through image analysis technique applied on thin sectioned granular materials (loose sands with different textural and mineralogical features). The employed volume-weighted mean diameter equation provides matching results with data gained by laser granulometry and could be applied in many research areas spanning from Earth Sciences, Engineering and Material Sciences.
Cited articles
Bai, T. and Pollard, D. D.: Fracture spacing in layered rocks: A new
explanation based on the stress transition, J. Struct. Geol., 22, 43–57,
https://doi.org/10.1016/S0191-8141(99)00137-6, 2000.
Bistacchi, A.: DomStudioFracStat1D, available at: https://github.com/bistek/DomStudioFracStat1D, last access: 19 October 2020.
Bistacchi, A., Massironi, M., and Menegon, L.: Three-dimensional
characterization of a crustal-scale fault zone: The Pusteria and
Sprechenstein fault system (Eastern Alps), J. Struct. Geol., 32,
2022–2041, https://doi.org/10.1016/j.jsg.2010.06.003, 2010.
Bistacchi, A., Balsamo, F., Storti, F., Mozafari, M., Swennen, R., Solum,
J., Tueckmantel, C., and Taberner, C.: Photogrammetric digital outcrop
reconstruction, visualization with textured surfaces, and three-dimensional
structural analysis and modeling: Innovative methodologies applied to
fault-related dolomitization (Vajont Limestone, Southern Alps, Italy),
Geosphere, 11, 2031–2048, https://doi.org/10.1130/GES01005.1, 2015.
Bonneau, F., Caumon, G., and Renard, P.: Impact of a stochastic sequential
initiation of fractures on the spatial correlations and connectivity of
discrete fracture networks, J. Geophys. Res.-Sol. Ea., 121,
5641–5658, https://doi.org/10.1002/2015JB012451, 2016.
Bonnet, E., Bour, O., Odling, N. E., Davy, P., Main, I., Cowie, P., and
Berkowitz, B.: Scaling of fracture systems in geological media, Rev.
Geophys., 39, 347–383, https://doi.org/10.1029/1999RG000074, 2001.
Borradaile, G.: Statistics of Earth Science data: their distribution in
space, time, and orientation, Springer, Berlin and Heidelberg, Germany, 2003.
Caine, J. S. and Forster, C. B.: Fault zone architecture and fluid flow:
Insights from field data and numerical modeling, in: Geophysical monograph,
vol. 113, edited by: Haneberg, W. C., AGU, Washington, D.C., USA, 101–127
1999.
Choi, J.-H., Edwards, P., Ko, K., and Kim, Y.-S.: Definition and
classification of fault damage zones: A review and a new methodological
approach, Earth-Science Rev., 152, 70–87,
https://doi.org/10.1016/j.earscirev.2015.11.006, 2016.
Cosgrove, J. W.: The association of folds and fractures and the link between
folding, fracturing and fluid flow during the evolution of a fold-thrust
belt: a brief review, Geol. Soc. London, Spec. Publ., 421, 41–68,
https://doi.org/10.1144/SP421.11, 2015.
Crider, J. G. and Pollard, D. D.: Fault linkage: Three-dimensional
mechanical interaction between echelon normal faults, J. Geophys. Res.-Sol.
Ea., 103, 24373–24391, https://doi.org/10.1029/98JB01353, 1998.
Davis, G. H., Reynolds, S. J., and Kluth, C. F.: Structural geology of rocks
and regions, 3rd ed., John Wiley and Sons, 2012.
Davis, J. C.: Statistics and Data Analysis, in: Geology, 3rd ed., John Wiley
and Sons, 2002.
Dershowitz, W. S., Pointe, P. R., and La Doe, T. W.: Advances in Discrete
Fracture Network Modeling Convergence of DFN and Continuum Methods, in 2004
US EPA/NGWA Fractured Rock Conference:State of the Science and Measuring
Success in Remediation, Portland, Maine, USA, 882–894, 2004.
Elmo, D. and Stead, D.: An integrated numerical modelling-discrete fracture
network approach applied to the characterisation of rock mass strength of
naturally fractured pillars, Rock Mech. Rock Eng., 43, 3–19,
https://doi.org/10.1007/s00603-009-0027-3, 2010.
Faulkner, D. R., Mitchell, T. M., Rutter, E. H., and Cembrano, J.: On the
structure and mechanical properties of large strike-slip faults, Geol. Soc.
Spec. Publ., 299, 139–150, https://doi.org/10.1144/SP299.9, 2008.
Gillespie, P. A., Howard, C. B. B., Walsh, J. J. J., and Watterson, J.:
Measurement and characterisation of spatial distributions of fractures,
Tectonophysics, 226, 113–141, https://doi.org/10.1016/0040-1951(93)90114-Y, 1993.
Gillespie, P. A., Johnston, J. D., Loriga, M. A., McCaffrey, K. J. W.,
Walsh, J. J., and Watterson, J.: Influence of layering on vein systematics in
line samples, Geol. Soc. London, Spec. Publ., 155, 35–56,
https://doi.org/10.1144/GSL.SP.1999.155.01.05, 1999.
Gleeson, T. and Ingebritsen, S. E.: Crustal Permeability, in: edited by: Gleeson, T. and Ingebritse, S. E., John Wiley and Sons, Chichester, UK.,
2012.
Gross, M. R.: The origin and spacing of cross joints: examples from the
Monterey Formation, Santa Barbara Coastline, California, J. Struct. Geol.,
15, 737–751, https://doi.org/10.1016/0191-8141(93)90059-J, 1993.
Hobbs, D. W.: The Formation of Tension Joints in Sedimentary Rocks: An
Explanation, Geol. Mag., 104, 550, https://doi.org/10.1017/S0016756800050226, 1967.
Hoek, E.: Underground excavations in rock, Institution of mining and
metallurgy, London., 1980.
Hooker, J. N. and Katz, R. F.: Vein spacing in extending, layered rock: The
effect of synkinematic cementation, Am. J. Sci., 315, 557–588,
https://doi.org/10.2475/06.2015.03, 2015.
ISRM: Suggested methods for the quantitative description of discontinuities
in rock masses, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 15,
319–368, https://doi.org/10.1016/0148-9062(78)91472-9, 1978.
Jaeger, J. C., Cook, N. G. W., and Zimmerman, R. W.: Fundamentals of Rock
Mechanics, 4th ed., Wiley-Blackwell., 2007.
Korbar, T.: Orogenic evolution of the External Dinarides in the NE Adriatic
region: a model constrained by tectonostratigraphy of Upper Cretaceous to
Paleogene carbonates, Earth-Science Rev., 96, 296–312,
https://doi.org/10.1016/j.earscirev.2009.07.004, 2009.
Laubach, S. E., Lamarche, J., Gauthier, B. D. M., Dunne, W. M., and
Sanderson, D. J.: Spatial arrangement of faults and opening-mode fractures,
J. Struct. Geol., 108, 2–15, https://doi.org/10.1016/j.jsg.2017.08.008, 2018.
Lilliefors, H. W.: On the Kolmogorov-Smirnov Test for Normality with Mean
and Variance Unknown, J. Am. Stat. Assoc., 62, 399,
https://doi.org/10.2307/2283970, 1967.
Lilliefors, H. W.: On the Kolmogorov-Smirnov Test for the Exponential
Distribution with Mean Unknown, J. Am. Stat. Assoc., 64, 387–389,
https://doi.org/10.1080/01621459.1969.10500983, 1969.
Marrett, R. A., Gale, J. F. W., Gómez, L. A., and Laubach, S. E.:
Correlation analysis of fracture arrangement in space, J. Struct. Geol.,
108, 16–33, https://doi.org/10.1016/j.jsg.2017.06.012, 2018.
Martinelli, M., Bistacchi, A., Mittempergher, S., Bonneau, F., Balsamo, F.,
Caumon, G., and Meda, M.: Damage zone characterization combining scan-line
and scan-area analysis on a km-scale Digital Outcrop Model: The Qala Fault
(Gozo), J. Struct. Geol., 140, 104144, https://doi.org/10.1016/j.jsg.2020.104144, 2020.
Mitchell, T. M. and Faulkner, D. R.: The nature and origin of off-fault
damage surrounding strike-slip fault zones with a wide range of
displacements: A field study from the Atacama fault system, northern Chile,
J. Struct. Geol., 31, 802–816, https://doi.org/10.1016/j.jsg.2009.05.002, 2009.
Mittempergher, S., Succo, A., Bistacchi, A., Storti, F., Bruna, P. O., and
Meda, M.: Geological and structural map of the southeastern Pag Island,
Croatia: field constraints on the Cretaceous – Eocene evolution of the
Dinarides foreland, Geol. F. Trips, 11, 1–19, https://doi.org/10.3301/GFT.2019.06,
2019.
Ogata, K., Storti, F., Balsamo, F., Tinterri, R., Bedogni, E., Fetter, M.,
Gomes, L., and Hatushika, R.: Sedimentary facies control on mechanical and
fracture stratigraphy in turbidites, Geol. Soc. Am. Bull., 129,
76–92, https://doi.org/10.1130/B31517.1, 2017.
Olson, J. E.: Predicting fracture swarms – the influence of subcritical
crack growth and the crack-tip process zone on joint spacing in rock, Geol.
Soc. London, Spec. Publ., 231, 73–88, https://doi.org/10.1144/GSL.SP.2004.231.01.05,
2004.
Pollard, D. D. and Aydin, A.: Progress in understanding jointing over the
past century, Geol. Soc. Am. Bull., 100, 1181–1204,
https://doi.org/10.1130/0016-7606(1988)100<1181:PIUJOT>2.3.CO;2,
1988.
Priest, S. D. and Hudson, J. A.: Estimation of discontinuity spacing and
trace length using scanline surveys, Int. J. Rock Mech. Min. Sci. Geomech.
Abstr., 18, 183–197, https://doi.org/10.1016/0148-9062(81)90973-6, 1981.
Prioul, R. and Jocker, J.: Fracture characterization at multiple scales
using borehole images, sonic logs, and walkaround vertical seismic profile,
Am. Assoc. Pet. Geol. Bull., 93, 1503–1516, https://doi.org/10.1306/08250909019,
2009.
Rives, T., Razack, M., Petit, J.-P., and Rawnsley, K. D.: Joint spacing:
analogue and numerical simulations, J. Struct. Geol., 14, 925–937,
https://doi.org/10.1016/0191-8141(92)90024-Q, 1992.
Sanderson, D. J. and Peacock, D. C. P.: Line sampling of fracture swarms and
corridors, J. Struct. Geol., 122, 27–37,
https://doi.org/10.1016/j.jsg.2019.02.006, 2019.
Scholz, C. H.: The Mechanics of Earthquakes and Faulting, 3rd ed., Cambridge
University Press, Chambridge, UK, 2019.
Schultz, R. A.: Geologic Fracture Mechanics, Cambridge University Press., Cambridge, UK, 2019.
Spyropoulos, C., Griffith, W. J., Scholz, C. H., and Shaw, B. E.:
Experimental evidence for different strain regimes of crack populations in a
clay model, Geophys. Res. Lett., 26, 1081–1084,
https://doi.org/10.1029/1999GL900175, 1999.
Spyropoulos, C., Scholz, C. H., and Shaw, B. E.: Transition regimes for
growing crack populations, Phys. Rev. E, 65, 056105,
https://doi.org/10.1103/PhysRevE.65.056105, 2002.
Swan, A. R. H. and Sandilands, M.: Introduction to geological data analysis,
Wiley-Blackwell, 1995.
Tan, Y., Johnston, T., and Engelder, T.: The concept of joint saturation and
its application, Am. Assoc. Pet. Geol. Bull., 98, 2347–2364,
https://doi.org/10.1306/06231413113, 2014.
Tavani, S., Storti, F., Fernández, O., Muñoz, J. A., and Salvini, F.:
3-D deformation pattern analysis and evolution of the Añisclo anticline,
southern Pyrenees, J. Struct. Geol., 28, 695–712,
https://doi.org/10.1016/j.jsg.2006.01.009, 2006.
Tavani, S., Storti, F., Lacombe, O., Corradetti, A., Muñoz, J. A., and
Mazzoli, S.: A review of deformation pattern templates in foreland basin
systems and fold-and-thrust belts: Implications for the state of stress in
the frontal regions of thrust wedges, Earth-Science Rev., 141, 82–104,
https://doi.org/10.1016/j.earscirev.2014.11.013, 2015.
Terzaghi, R. D.: Sources of Error in Joint Surveys, Géotechnique, 15,
287–304, https://doi.org/10.1680/geot.1965.15.3.287, 1965.
Turcotte, D. L.: Fractals and Chaos in Geology and Geophysics, 2nd ed.,
1997.
Twiss, R. J. and Moores, E. M.: Structural Geology 2nd ed., W. H.
Freeman, 2006.
Vermilye, J. M. and Scholz, C. H.: The process zone: A microstructural view
of fault growth, J. Geophys. Res.-Sol. Ea., 103, 12223–12237,
https://doi.org/10.1029/98JB00957, 1998.
Wang, Q., Laubach, S. E., Gale, J. F. W., and Ramos, M. J.: Quantified
fracture (joint) clustering in Archean basement, Wyoming: application of the
normalized correlation count method, Pet. Geosci., 25, 415–428,
https://doi.org/10.1144/petgeo2018-146, 2019.
Wasserman, L.: All of Statistics, Springer, New York, USA, 2004.
Short summary
We present an innovative workflow for the statistical analysis of fracture data collected along scanlines. Our methodology is based on performing non-parametric statistical tests, which allow detection of important features of the spatial distribution of fractures, and on the analysis of the cumulative spacing function (CSF) and cumulative spacing derivative (CSD), which allows the boundaries of stationary domains to be defined in an objective way.
We present an innovative workflow for the statistical analysis of fracture data collected along...
Special issue