Articles | Volume 11, issue 6
https://doi.org/10.5194/se-11-2535-2020
https://doi.org/10.5194/se-11-2535-2020
Research article
 | 
23 Dec 2020
Research article |  | 23 Dec 2020

On a new robust workflow for the statistical and spatial analysis of fracture data collected with scanlines (or the importance of stationarity)

Andrea Bistacchi, Silvia Mittempergher, Mattia Martinelli, and Fabrizio Storti

Related authors

Unbiased statistical length analysis of linear features: Adapting survival analysis to geological applications
Gabriele Benedetti, Stefano Casiraghi, Daniela Bertacchi, and Andrea Luigi Paolo Bistacchi
EGUsphere, https://doi.org/10.5194/egusphere-2024-2818,https://doi.org/10.5194/egusphere-2024-2818, 2024
Short summary

Related subject area

Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Structural geology and tectonics, paleoseismology, rock physics, experimental deformation | Discipline: Structural geology
Localized shear and distributed strain accumulation as competing shear accommodation mechanisms in crustal shear zones: constraining their dictating factors
Pramit Chatterjee, Arnab Roy, and Nibir Mandal
Solid Earth, 15, 1281–1301, https://doi.org/10.5194/se-15-1281-2024,https://doi.org/10.5194/se-15-1281-2024, 2024
Short summary
Influence of water on crystallographic preferred orientation patterns in a naturally deformed quartzite
Jeffrey M. Rahl, Brendan Moehringer, Kenneth S. Befus, and John S. Singleton
Solid Earth, 15, 1233–1240, https://doi.org/10.5194/se-15-1233-2024,https://doi.org/10.5194/se-15-1233-2024, 2024
Short summary
Geomorphic expressions of active rifting reflect the role of structural inheritance: a new model for the evolution of the Shanxi Rift, northern China
Malte Froemchen, Ken J. W. McCaffrey, Mark B. Allen, Jeroen van Hunen, Thomas B. Phillips, and Yueren Xu
Solid Earth, 15, 1203–1231, https://doi.org/10.5194/se-15-1203-2024,https://doi.org/10.5194/se-15-1203-2024, 2024
Short summary
Driven magmatism and crustal thinning of coastal southern China in response to subduction
Jinbao Su, Wenbin Zhu, and Guangwei Li
Solid Earth, 15, 1133–1141, https://doi.org/10.5194/se-15-1133-2024,https://doi.org/10.5194/se-15-1133-2024, 2024
Short summary
Selection and characterization of the target fault for fluid-induced activation and earthquake rupture experiments
Peter Achtziger-Zupančič, Alberto Ceccato, Alba Simona Zappone, Giacomo Pozzi, Alexis Shakas, Florian Amann, Whitney Maria Behr, Daniel Escallon Botero, Domenico Giardini, Marian Hertrich, Mohammadreza Jalali, Xiaodong Ma, Men-Andrin Meier, Julian Osten, Stefan Wiemer, and Massimo Cocco
Solid Earth, 15, 1087–1112, https://doi.org/10.5194/se-15-1087-2024,https://doi.org/10.5194/se-15-1087-2024, 2024
Short summary

Cited articles

Bai, T. and Pollard, D. D.: Fracture spacing in layered rocks: A new explanation based on the stress transition, J. Struct. Geol., 22, 43–57, https://doi.org/10.1016/S0191-8141(99)00137-6, 2000. 
Bistacchi, A.: DomStudioFracStat1D, available at: https://github.com/bistek/DomStudioFracStat1D, last access: 19 October 2020. 
Bistacchi, A., Massironi, M., and Menegon, L.: Three-dimensional characterization of a crustal-scale fault zone: The Pusteria and Sprechenstein fault system (Eastern Alps), J. Struct. Geol., 32, 2022–2041, https://doi.org/10.1016/j.jsg.2010.06.003, 2010. 
Bistacchi, A., Balsamo, F., Storti, F., Mozafari, M., Swennen, R., Solum, J., Tueckmantel, C., and Taberner, C.: Photogrammetric digital outcrop reconstruction, visualization with textured surfaces, and three-dimensional structural analysis and modeling: Innovative methodologies applied to fault-related dolomitization (Vajont Limestone, Southern Alps, Italy), Geosphere, 11, 2031–2048, https://doi.org/10.1130/GES01005.1, 2015. 
Bonneau, F., Caumon, G., and Renard, P.: Impact of a stochastic sequential initiation of fractures on the spatial correlations and connectivity of discrete fracture networks, J. Geophys. Res.-Sol. Ea., 121, 5641–5658, https://doi.org/10.1002/2015JB012451, 2016. 
Download
Short summary
We present an innovative workflow for the statistical analysis of fracture data collected along scanlines. Our methodology is based on performing non-parametric statistical tests, which allow detection of important features of the spatial distribution of fractures, and on the analysis of the cumulative spacing function (CSF) and cumulative spacing derivative (CSD), which allows the boundaries of stationary domains to be defined in an objective way.