Articles | Volume 12, issue 5
https://doi.org/10.5194/se-12-1185-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-12-1185-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Moho topography beneath the European Eastern Alps by global-phase seismic interferometry
Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata 605, 00143, Rome, Italy
Institut für Meteorologie und Geophysik, Universität Wien, Althanstraße 14 (UZA II), 1090 Vienna, Austria
Elmer Ruigrok
Royal Netherlands Meteorological Institute, De Bilt, the Netherlands
Department of Earth Sciences, Utrecht University, Utrecht, the Netherlands
Anne Obermann
Swiss Seismological Service, ETH Zurich, Zurich, Switzerland
Edi Kissling
Swiss Seismological Service, ETH Zurich, Zurich, Switzerland
Related authors
No articles found.
Miriam Larissa Schwarz, Hansruedi Maurer, Anne Christine Obermann, Paul Antony Selvadurai, Alexis Shakas, Stefan Wiemer, and Domenico Giardini
EGUsphere, https://doi.org/10.5194/egusphere-2025-1094, https://doi.org/10.5194/egusphere-2025-1094, 2025
Short summary
Short summary
This study applied fat ray travel time tomography to image the geothermal testbed at the BedrettoLab. An active seismic crosshole survey provided a dataset of 42'843 manually picked first breaks. The complex major fault zone was successfully imaged by a 3D velocity model and validated with wireline logs and geological observations. Seismic events from hydraulic stimulation correlated with velocity structures, "avoiding" very high and low velocities, speculatively due to stress gradients.
Valentin Samuel Gischig, Antonio Pio Rinaldi, Andres Alcolea, Falko Bethman, Marco Broccardo, Kai Erich Norbert Bröker, Raymi Castilla, Federico Ciardo, Victor Clasen Repollés, Virginie Durand, Nima Gholizadeh Doonechaly, Marian Hertrich, Rebecca Hochreutener, Philipp Kästli, Dimitrios Karvounis, Xiaodong Ma, Men-Andrin Meier, Peter Meier, Maria Mesimeri, Arnaud Mignan, Anne Obermann, Katrin Plenkers, Martina Rosskopf, Francisco Serbeto, Paul Antony Selvadurai, Alexis Shakas, Linus Villiger, Quinn Wenning, Alba Zappone, Jordan Aaron, Hansruedi Maurer, and Domenico Giardini
EGUsphere, https://doi.org/10.5194/egusphere-2024-3882, https://doi.org/10.5194/egusphere-2024-3882, 2025
Short summary
Short summary
Induced earthquakes present a major obstacle for developing geoenergy resources. These occur during hydraulic stimulations that enhance fluid pathways in the rock. In the Bedretto Underground Laboratory, hydraulic stimulations are investigated in a downscaled manner. A workflow to analyse the hazard of induced earthquakes is applied at different stages of the test program. The hazard estimates illustrate the difficulty to reduce the uncertainty owing to the variable seismogenic responses.
Fritz Schlunegger, Edi Kissling, Dimitri Tibo Bandou, Guilhem Amin Douillet, David Mair, Urs Marti, Regina Reber, Patrick Schläfli, and Michael Alfred Schwenk
Earth Surf. Dynam., 12, 1371–1389, https://doi.org/10.5194/esurf-12-1371-2024, https://doi.org/10.5194/esurf-12-1371-2024, 2024
Short summary
Short summary
Overdeepenings are bedrock depressions filled with sediment. We combine the results of a gravity survey with drilling data to explore the morphology of such a depression beneath the city of Bern. We find that the target overdeepening comprises two basins >200 m deep. They are separated by a bedrock riegel that itself is cut by narrow canyons up to 150 m deep. We postulate that these structures formed underneath a glacier, where erosion by subglacial meltwater caused the formation of the canyons.
Maren Böse, Laurentiu Danciu, Athanasios Papadopoulos, John Clinton, Carlo Cauzzi, Irina Dallo, Leila Mizrahi, Tobias Diehl, Paolo Bergamo, Yves Reuland, Andreas Fichtner, Philippe Roth, Florian Haslinger, Frédérick Massin, Nadja Valenzuela, Nikola Blagojević, Lukas Bodenmann, Eleni Chatzi, Donat Fäh, Franziska Glueer, Marta Han, Lukas Heiniger, Paulina Janusz, Dario Jozinović, Philipp Kästli, Federica Lanza, Timothy Lee, Panagiotis Martakis, Michèle Marti, Men-Andrin Meier, Banu Mena Cabrera, Maria Mesimeri, Anne Obermann, Pilar Sanchez-Pastor, Luca Scarabello, Nicolas Schmid, Anastasiia Shynkarenko, Bozidar Stojadinović, Domenico Giardini, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 583–607, https://doi.org/10.5194/nhess-24-583-2024, https://doi.org/10.5194/nhess-24-583-2024, 2024
Short summary
Short summary
Seismic hazard and risk are time dependent as seismicity is clustered and exposure can change rapidly. We are developing an interdisciplinary dynamic earthquake risk framework for advancing earthquake risk mitigation in Switzerland. This includes various earthquake risk products and services, such as operational earthquake forecasting and early warning. Standardisation and harmonisation into seamless solutions that access the same databases, workflows, and software are a crucial component.
Xiaodong Ma, Marian Hertrich, Florian Amann, Kai Bröker, Nima Gholizadeh Doonechaly, Valentin Gischig, Rebecca Hochreutener, Philipp Kästli, Hannes Krietsch, Michèle Marti, Barbara Nägeli, Morteza Nejati, Anne Obermann, Katrin Plenkers, Antonio P. Rinaldi, Alexis Shakas, Linus Villiger, Quinn Wenning, Alba Zappone, Falko Bethmann, Raymi Castilla, Francisco Seberto, Peter Meier, Thomas Driesner, Simon Loew, Hansruedi Maurer, Martin O. Saar, Stefan Wiemer, and Domenico Giardini
Solid Earth, 13, 301–322, https://doi.org/10.5194/se-13-301-2022, https://doi.org/10.5194/se-13-301-2022, 2022
Short summary
Short summary
Questions on issues such as anthropogenic earthquakes and deep geothermal energy developments require a better understanding of the fractured rock. Experiments conducted at reduced scales but with higher-resolution observations can shed some light. To this end, the BedrettoLab was recently established in an existing tunnel in Ticino, Switzerland, with preliminary efforts to characterize realistic rock mass behavior at the hectometer scale.
Janneke van Ginkel, Elmer Ruigrok, Jan Stafleu, and Rien Herber
Nat. Hazards Earth Syst. Sci., 22, 41–63, https://doi.org/10.5194/nhess-22-41-2022, https://doi.org/10.5194/nhess-22-41-2022, 2022
Short summary
Short summary
A soft, shallow subsurface composition has the tendency to amplify earthquake waves, resulting in increased ground shaking. Therefore, this paper presents a workflow in order to obtain a map classifying the response of the subsurface based on local geology, earthquake signals, and background noise recordings for the Netherlands. The resulting map can be used as a first assessment in regions with earthquake hazard potential by mining or geothermal energy activities, for example.
Pavol Zahorec, Juraj Papčo, Roman Pašteka, Miroslav Bielik, Sylvain Bonvalot, Carla Braitenberg, Jörg Ebbing, Gerald Gabriel, Andrej Gosar, Adam Grand, Hans-Jürgen Götze, György Hetényi, Nils Holzrichter, Edi Kissling, Urs Marti, Bruno Meurers, Jan Mrlina, Ema Nogová, Alberto Pastorutti, Corinne Salaun, Matteo Scarponi, Josef Sebera, Lucia Seoane, Peter Skiba, Eszter Szűcs, and Matej Varga
Earth Syst. Sci. Data, 13, 2165–2209, https://doi.org/10.5194/essd-13-2165-2021, https://doi.org/10.5194/essd-13-2165-2021, 2021
Short summary
Short summary
The gravity field of the Earth expresses the overall effect of the distribution of different rocks at depth with their distinguishing densities. Our work is the first to present the high-resolution gravity map of the entire Alpine orogen, for which high-quality land and sea data were reprocessed with the exact same calculation procedures. The results reflect the local and regional structure of the Alpine lithosphere in great detail. The database is hereby openly shared to serve further research.
Alba Zappone, Antonio Pio Rinaldi, Melchior Grab, Quinn C. Wenning, Clément Roques, Claudio Madonna, Anne C. Obermann, Stefano M. Bernasconi, Matthias S. Brennwald, Rolf Kipfer, Florian Soom, Paul Cook, Yves Guglielmi, Christophe Nussbaum, Domenico Giardini, Marco Mazzotti, and Stefan Wiemer
Solid Earth, 12, 319–343, https://doi.org/10.5194/se-12-319-2021, https://doi.org/10.5194/se-12-319-2021, 2021
Short summary
Short summary
The success of the geological storage of carbon dioxide is linked to the availability at depth of a capable reservoir and an impermeable caprock. The sealing capacity of the caprock is a key parameter for long-term CO2 containment. Faults crosscutting the caprock might represent preferential pathways for CO2 to escape. A decameter-scale experiment on injection in a fault, monitored by an integrated network of multiparamerter sensors, sheds light on the mobility of fluids within the fault.
Camilla Rossi, Francesco Grigoli, Simone Cesca, Sebastian Heimann, Paolo Gasperini, Vala Hjörleifsdóttir, Torsten Dahm, Christopher J. Bean, Stefan Wiemer, Luca Scarabello, Nima Nooshiri, John F. Clinton, Anne Obermann, Kristján Ágústsson, and Thorbjörg Ágústsdóttir
Adv. Geosci., 54, 129–136, https://doi.org/10.5194/adgeo-54-129-2020, https://doi.org/10.5194/adgeo-54-129-2020, 2020
Short summary
Short summary
We investigate the microseismicity occurred at Hengill area, a complex tectonic and geothermal site, where the origin of earthquakes may be either natural or anthropogenic. We use a very dense broadband seismic monitoring network and apply full-waveform based method for location. Our results and first characterization identified different types of microseismic clusters, which might be associated to either production/injection or the tectonic activity of the geothermal area.
Janneke van Ginkel, Elmer Ruigrok, and Rien Herber
Solid Earth, 11, 2015–2030, https://doi.org/10.5194/se-11-2015-2020, https://doi.org/10.5194/se-11-2015-2020, 2020
Short summary
Short summary
Knowledge of subsurface velocities is key to understand how earthquake waves travel through the Earth. We present a method to construct velocity profiles for the upper sediment layer on top of the Groningen field, the Netherlands. Here, the soft-sediment layer causes resonance of seismic waves, and this resonance is used to compute velocities from. Recordings from large earthquakes and the background noise signals are used to derive reliable velocities for the deep sedimentary layer.
Cited articles
Adams, R. and Randall, D.: Observed Triplication of PKP, Nature, 200, 744–745,
1963. a
AlpArray Seismic Network: Eastern Alpine Seismic Investigation (EASI) – AlpArray Complimentary Experiment, AlpArray Working Group, Other/Seismic Network, https://doi.org/10.12686/alparray/xt_2014, 2014. a, b
Amante, C. and Eakins, B.: NETOPO1 1 Arc-Minute Global Relief Model:
Procedures, Data Sources and Analysis, NOAA Technical Memorandum NESDIS
NGDC-24, https://doi.org/10.7289/V5C8276M, 2009. a
Behm, M., Brückl, E., Chwatal, W., and Thybo, H.: Application of stacking
and inversion techniques to three-dimensional wide-angle reflection and
refraction seismic data of the Eastern Alps, Geophys. J.
Int., 170, 275–298, https://doi.org/10.1111/j.1365-246X.2007.03393.x, 2007. a, b
Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., Levshin, A. L., Lin, F.,
Moschetti, M. P., Shapiro, N. M., and Yang, Y.: Processing seismic ambient
noise data to obtain reliable broad-band surface wave dispersion
measurements, Geophys. J. Int., 169, 1239–1260,
https://doi.org/10.1111/j.1365-246X.2007.03374.x, 2007. a
Bianchi, I. and Bokelmann, G.: Seismic signature of the Alpine indentation,
evidence from the Eastern Alps, J. Geodynam., 82, 69–77,
https://doi.org/10.1016/j.jog.2014.07.005, 2014. a, b
Bianchi, I., Miller, M. S., and Bokelmann, G.: Insights on the upper mantle
beneath the Eastern Alps, Earth Planet. Sc. Lett., 403, 199–209, https://doi.org/10.1016/j.epsl.2014.06.051, 2014. a, b, c
Bianchi, I., Behm, M., Rumpfhuber, E. M., and Bokelmann, G.: A New Seismic Data
Set on the Depth of the Moho in the Alps, Pure Appl. Geophys., 172,
295–308, https://doi.org/10.1007/s00024-014-0953-1, 2015. a, b, c
Bigi, G., Cosentino, D., Parotto, M., Sartori, R., and Scandone, P.: Structural
model of Italy, 1:500.000, Quaderni de La Ricerca Scientifica, C.N.R., 114, available at: https://www.socgeol.it/438/structural-model-of-italy-scale-1-500-000.html (last access: 21 May 2021),
1990. a
Bleibinhaus, F. and Gebrande, H.: Crustal structure of the Eastern Alps along
the TRANSALP profile from wide-angle seismic tomography, Tectonophysics, 414,
51–69, https://doi.org/10.1016/j.tecto.2005.10.028, tRANSALP, 2006. a, b, c
Bleibinhaus, F., Brückl, E., Gosar, A., Grad, M., Hegedus, E.,
Hrubcová, P., Keller, R., Šumanovac, F., Yliniemi, J., and ALP 2002 Working Group: Alp 2002 Experiment-2D Raytracing modelling and seismic tomography of
selected profiles, 32nd International Geological Congress-Florence, 20–28 August, 2004. a
Bousquet, R., Schmid, S., Zeilinger, G., Oberhänsli, R., Rosenberg, C.,
Molli, G., Robert, C., Wiederkehr, M., and Rossi, P.: Tectonic framework of
the Alps, available at: https://ccgm.org/en/home/206-tectonic-framework-of-the-alps-pdf-9782917310335.html (last access: 21 May 2021), 2012. a
Brückl, E., Bodoky, T., Hegedüs, E., Hrubcová, P., Gosar, A., Grad,
M., Guterch, A., Hajnal, Z., Keller, G., Špičák, A., Sumanovac,
F., Thybo, H., Weber, F., Aric, K., Behm, M., Bleibinhaus, F., Broz, M.,
Chwatal, W., Gebrande, H., Grassl, H., Harder, S., Hock, S., Höck, V.,
Joergensen, P., Kohlbeck, F., Miller, K., Rumpfhuber, E., Schmid, C.,
Schmöller, R., Snelson, C., Tiira, T., Tomek,Č., Ullrich, C.,
Wilde-Piórko, M., and Yliniemi, J.: ALP 2002 seismic experiment, Stud.
Geophys. Geod., 47, 671–679, https://doi.org/10.1023/A:1024780022139, 2003. a
Brückl, E. and Hammerl, C.: Eduard Suess’ conception of the Alpine orogeny
related to geophysical data and models, Austrian J. Earth Sc.,
107, 94–114, 2014. a
Brückl, E., Bleibinhaus, F., Gosar, A., Grad, M., Guterch, A., Hrubcová,
P., Keller, G. R., Majdaáski, M., Šumanovac, F., Tiira, T., Yliniemi,
J., Hegedűs, E., and Thybo, H.: Crustal structure due to collisional and
escape tectonics in the Eastern Alps region based on profiles Alp01 and Alp02
from the ALP 2002 seismic experiment, J. Geophys. Res.-Sol.
Ea., 112, B06308, https://doi.org/10.1029/2006JB004687, 2007. a, b, c, d, e, f, g, h, i
Claerbout, J. F.: Synthesis of a layered medium from its acoustic transmission
response, Geophysics, 33, 264–269, https://doi.org/10.1190/1.1439927, 1968. a
Clauser, C.: Seismik, Springer Berlin Heidelberg, Berlin,
Heidelberg, 5–232, https://doi.org/10.1007/978-3-662-55310-7_2, 2018. a
Fantoni, R., DellaVedova, B., Guistiniani, M., Nicolich, R., Barbieri, C.,
DelBen, A., Finetti, I., and Castellarin, A.: Deep seismic profiles through
the Venetian and Adriatic foreland (Northern Italy), Mem. Sci. Geol., 54,
131–134, 2003. a
Frank, J. G., Ruigrok, E. N., and Wapenaar, K.: Shear wave seismic
interferometry for lithospheric imaging: Application to southern Mexico,
J. Geophys. Res.-Sol. Ea., 119, 5713–5726,
https://doi.org/10.1002/2013JB010692, 2014. a
Froitzheim, N., Schmid, S., and Frey, M.: Mesozoic paleogeography and the
timing of eclogite-facies metamorphism in the Alps: a working hypothesis,
Eclogae Geol. Helv., 89, 81–110, 1996. a
Grad, M., Brückl, E., Majdański, M., Behm, M., Guterch, A., CELEBRATION 2000 and ALP 2002 Working Groups: Crustal structure of the Eastern Alps and their
foreland: Seismic model beneath the CEL10/Alp04 profile and tectonic
implications, Geophys. J. Int., 177, 279–295,
https://doi.org/10.1111/j.1365-246X.2008.04074.x, 2009. a
Guterch, A., Grad, M., Špičak, A., Brückl, E.,
Hegedüs, E., Keller, G., and Thybo, H.: An overview of recent seismic
refraction experiments in Central Europe, Studia Geophyica et Geodaetica,
47, 651–657, https://doi.org/10.1023/A:1024775921231, 2004. a
Handy, M. R., M. Schmid, S., Bousquet, R., Kissling, E., and Bernoulli, D.:
Reconciling plate-tectonic reconstructions of Alpine Tethys with the
geological–geophysical record of spreading and subduction in the Alps,
Earth-Sci. Rev., 102, 121–158,
https://doi.org/10.1016/j.earscirev.2010.06.002, 2010. a, b
Handy, M. R., Ustaszewski, K., and Kissling, E.: Reconstructing the
Alps–Carpathians–Dinarides as a key to understanding switches in
subduction polarity, slab gaps and surface motion, Int. J.
Earth Sci., 104, 1–26, https://doi.org/10.1007/s00531-014-1060-3, 2015. a
Heit, B., Cristiano, L., Haberland, C., Tilmann, F., Pesaresi, D., Jia, Y.,
Hausmann, H., Hemmleb, S., Haxter, M., Zieke, T., Jaeckl, K., Schloemer, A.,
and Weber, M.: The SWATH‐D Seismological Network in the Eastern Alps,
Seismol. Res. Lett., 92, 1592–1609, https://doi.org/10.1785/0220200377, 2021. a
Hetényi, G., Molinari, I., and Clinton, J. et al.: The AlpArray Seismic
Network: A Large-Scale European Experiment to Image the Alpine Orogen, Surv.
Geophys., 39, 1009–1033, https://doi.org/10.1007/s10712-018-9472-4,
2018a. a
Hetényi, G., Plomerová, J., Bianchi, I., Kampfová Exnerová, H.,
Bokelmann, G., Handy, M. R., and Babuška, V.: From mountain summits to
roots: Crustal structure of the Eastern Alps and Bohemian Massif along
longitude 13.3∘ E, Tectonophysics, 744, 239–255,
https://doi.org/10.1016/j.tecto.2018.07.001, 2018b. a, b, c, d, e, f, g, h, i, j
Hrubcová, P. and Geissler, W. H.: The crust-mantle transition and the
Moho beneath the Vogtland/West Bohemian region in the light of different
seismic methods, Stud. Geophys. Geod., 53, 275–294,
https://doi.org/10.1007/s11200-009-0018-6, 2009. a, b, c, d
Hrubcová, P., Środa, P., Špičák, A., Guterch, A., Grad, M., Keller, G. R.,
Brueckl, E., and Thybo, H.: Crustal and uppermost mantle structure of the
Bohemian Massif based on CELEBRATION 2000 data, J. Geophys.
Res.-Sol. Ea., 110, B11305, https://doi.org/10.1029/2004JB003080, 2005. a, b, c
Kissling, E., Schmid, S. M., Lippitsch, R., Ansorge, J., and Fügenschuh,
B.: Lithosphere structure and tectonic evolution of the Alpine arc: new
evidence from high-resolution teleseismic tomography, Geol. Soc.,
London, Memoirs, 32, 129–145, https://doi.org/10.1144/GSL.MEM.2006.032.01.08, 2006. a
Lu, Y., Stehly, L., Brossier, R., Paul, A., and AlpArray Working Group:
Imaging Alpine crust using ambient noise wave-equation tomography,
Geophys. J. Int., 222, 69–85, https://doi.org/10.1093/gji/ggaa145,
2020. a
Molinari, I. and Morelli, A.: EPcrust: a reference crustal model for the
European Plate, Geophys. J. Int., 185, 352–364,
https://doi.org/10.1111/j.1365-246X.2011.04940.x, 2011. a
Molinari, I., Obermann, A., Kissling, E., Hetényi, G., and Boschi, L.: 3D
crustal structure of the Eastern Alpine region from ambient noise tomography,
Results in Geophysical Sciences, 1–4, 100006,
https://doi.org/10.1016/j.ringps.2020.100006, 2020. a
Mueller, S.: A New Model of the Continental Crust, American
Geophysical Union (AGU), 289–317, https://doi.org/10.1029/GM020p0289, 1977. a
Musacchio, G., Zappone, A., Cassinis, R., and Scarascia, S.: Petrographic
interpretation of a complex seismic crust–mantle transition in the
central-eastern Alps, Tectonophysics, 294, 75–88,
https://doi.org/10.1016/S0040-1951(98)00094-8, 1998. a
Neubauer, F., Gensler, J., and Handler, R.: The Eastern Alps: Result of a
two-stage collision process, Mitt. Österr. Geol. Ges., 117–134, 2000. a
Nishitsuji, Y., Ruigrok, E., Gomez, M., Wapenaar, K., and Draganov, D.:
Reflection imaging of aseismic zones of the Nazca slab by global-phase
seismic interferometry, Interpretation, 4, SJ1–SJ16,
https://doi.org/10.1190/INT-2015-0225.1, 2016. a
NOAA National Geophysical Data Center: NOAA National Geophysical Data Center,
2009: ETOPO1 1 Arc-Minute Global Relief Model. NOAA National Centers for
Environmental Information, https://doi.org/10.7289/V5C8276M, 2019. a
Pham, T. and Tkalcic, H.: On the feasibility and use of teleseismic P wave coda
autocorrelation for mapping shallow seismic discontinuities, J.
Geophys. Res.-Sol. Ea., 122, 3776–3791,
https://doi.org/10.1002/2017JB013975, 2017. a
Qorbani, E., Zigone, D., Handy, M. R., Bokelmann, G., and AlpArray-EASI working group: Crustal structures beneath the Eastern and Southern Alps from ambient noise tomography, Solid Earth, 11, 1947–1968, https://doi.org/10.5194/se-11-1947-2020, 2020. a
Rosenberg, C. L., Schneider, S., Scharf, A., Bertrand, A., Hammerschmidt, K.,
Rabaute, A., and Brun, J.-P.: Relating collisional kinematics to exhumation
processes in the Eastern Alps, Earth-Sci. Rev., 176, 311–344,
https://doi.org/10.1016/j.earscirev.2017.10.013, 2018. a
Ruigrok, E., Campman, X., Draganov, D., and Wapenaar, K.: High-resolution
lithospheric imaging with seismic interferometry, Geophys. J.
Int., 183, 339–357, https://doi.org/10.1111/j.1365-246X.2010.04724.x, 2010. a
Sadeghi-Bagherabadi, A., Vuan, A., Aoudia, A., Parolai, S., and the AlpArray
and AlpArray-Swath-D W. Group: High-resolution crustal S-wave velocity model
and Moho geometry beneath the Southeastern Alps: new insights from the
SWATH-D experiment, Front. Earth Sci., 9, 188,
https://doi.org/10.3389/feart.2021.641113, 2021. a, b, c
Scarascia, S. and Cassinis, R.: Crustal structures in the central-eastern
Alpine sector: A revision of the available DSS data, Tectonophysics, 271, 157–188, https://doi.org/10.1016/S0040-1951(96)00206-5, 1997. a, b, c
Schmid, S., Fügenschuh, B., Kissling, E., and Schuster, R.: Tectonic Map
and overall architecture of the Alpine orogen, Eclogae Geol. Helv.,
97, 93–117, 2004. a
Schmid, S., Bernoulli, D., Fügenschuh, B., Matenco, L., Schefer, S.,
Schuster, R., and Ustaszewski, K.: The Alpine-Carpathian-Dinaridic orogenic
system: correlation and evolution of tectonic units, Swiss J.
Geosci., 101, 139–183, 2008. a
Schuster, G. T.: Theory of daylight/interferometric imaging: Tutorial, 63rd
Conference & Technical Exhibition, EAGE, extended Abstracts, 2001. a
Snieder, R.: Extracting the Green’s function from the correlation of coda
waves: A derivation based on stationary phase, Phys. Rev., 69, 046610, 2004. a
Van Ijsseldijk, J., Ruigrok, E., Verdel, A., and Weemstra, C.: Shallow crustal
imaging using distant, high-magnitude earthquakes, Geophys. J.
Int., 219, 1082–1091, https://doi.org/10.1093/gji/ggz343, 2019.
a
Verschuur, D. J. and Berkhout, A. J.: Estimation of multiple scattering by
iterative inversion; Part II, Practical aspects and examples, Geophysics,
62, 1596–1611, https://doi.org/10.1190/1.1444262, 1997. a
Waldhauser, F., Kissling, E., Ansorge, J., and Mueller, S.: Three dimensional
interface modelling with two-dimensional seismic data: the Alpine
crust-mantle boundary, Geophys. J. Int., 135, 264–278,
https://doi.org/10.1046/j.1365-246X.1998.00647.x, 1998. a
Waldhauser, F., Lippitsch, R., Kissling, E., and Ansorge, J.: High-resolution
teleseismic tomography of upper-mantle structure using an a priori
three-dimensional crustal model, Geophys. J. Int., 150,
403–414, https://doi.org/10.1046/j.1365-246X.2002.01690.x, 2002. a
Wapenaar, K.: Synthesis of an inhomogeneous medium from its acoustic
transmission response, Geophysics, 68, 1756–1759, https://doi.org/10.1190/1.1620649,
2003. a
Ye, S., Ansorge, J., Kissling, E., and Mueller, S.: Crustal structure beneath
the eastern Swiss Alps derived from seismic refraction data, Tectonophysics,
242, 199–221, https://doi.org/10.1016/0040-1951(94)00209-R, 1995. a
Zhu, L. and Kanamori, H.: Moho depth variation in southern California from
teleseismic receiver functions, J. Geophys. Res.-Sol. Ea.,
105, 2969–2980, https://doi.org/10.1029/1999JB900322, 2000. a, b
Short summary
The European Alps formed during collision between the European and Adriatic plates and are one of the most studied orogens for understanding the dynamics of mountain building. In the Eastern Alps, the contact between the colliding plates is still a matter of debate. We have used the records from distant earthquakes to highlight the geometries of the crust–mantle boundary in the Eastern Alpine area; our results suggest a complex and faulted internal crustal structure beneath the higher crests.
The European Alps formed during collision between the European and Adriatic plates and are one...