Articles | Volume 12, issue 11
https://doi.org/10.5194/se-12-2633-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-12-2633-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Orogenic lithosphere and slabs in the greater Alpine area – interpretations based on teleseismic P-wave tomography
Institut für Geologische Wissenschaften, Freie Universität
Berlin, Malteserstr. 74–100, 12249 Berlin, Germany
Stefan M. Schmid
Institut für Geophysik, ETH-Zürich, Sonneggstr. 5, 8092
Zurich, Switzerland
Marcel Paffrath
Institut für Geologie, Mineralogie, Geophysik,
Ruhr-Universität Bochum, 44780 Bochum, Germany
Wolfgang Friederich
Institut für Geologie, Mineralogie, Geophysik,
Ruhr-Universität Bochum, 44780 Bochum, Germany
For further information regarding the team, please visit the link which appears at the end of the paper.
Related authors
Marcel Paffrath, Wolfgang Friederich, Stefan M. Schmid, Mark R. Handy, and the AlpArray and AlpArray-Swath D Working Group
Solid Earth, 12, 2671–2702, https://doi.org/10.5194/se-12-2671-2021, https://doi.org/10.5194/se-12-2671-2021, 2021
Short summary
Short summary
The Alpine mountain belt was formed by the collision of the Eurasian and African plates in the geological past, during which parts of the colliding plates sank into the earth's mantle. Using seismological data from distant earthquakes recorded by the AlpArray Seismic Network, we have derived an image of the current location of these subducted parts in the earth's mantle. Their quantity and spatial distribution is key information needed to understand how the Alpine orogen was formed.
Vincent F. Verwater, Eline Le Breton, Mark R. Handy, Vincenzo Picotti, Azam Jozi Najafabadi, and Christian Haberland
Solid Earth, 12, 1309–1334, https://doi.org/10.5194/se-12-1309-2021, https://doi.org/10.5194/se-12-1309-2021, 2021
Short summary
Short summary
Balancing along geological cross sections reveals that the Giudicarie Belt comprises two kinematic domains. The SW domain accommodated at least ~ 18 km Late Oligocene to Early Miocene shortening. Since the Middle Miocene, the SW domain experienced at least ~ 12–22 km shortening, whereas the NE domain underwent at least ~ 25–35 km. Together, these domains contributed to ~ 40–47 km of sinistral offset of the Periadriatic Fault along the Northern Giudicarie Fault since the Late Oligocene.
Azam Jozi Najafabadi, Christian Haberland, Trond Ryberg, Vincent F. Verwater, Eline Le Breton, Mark R. Handy, Michael Weber, and the AlpArray and AlpArray SWATH-D working groups
Solid Earth, 12, 1087–1109, https://doi.org/10.5194/se-12-1087-2021, https://doi.org/10.5194/se-12-1087-2021, 2021
Short summary
Short summary
This study achieved high-precision hypocenters of 335 earthquakes (1–4.2 ML) and 1D velocity models of the Southern and Eastern Alps. The general pattern of seismicity reflects head-on convergence of the Adriatic Indenter with the Alpine orogenic crust. The relatively deeper seismicity in the eastern Southern Alps and Giudicarie Belt indicates southward propagation of the Southern Alpine deformation front. The derived hypocenters form excellent data for further seismological studies, e.g., LET.
Marcel Paffrath, Wolfgang Friederich, Stefan M. Schmid, Mark R. Handy, and the AlpArray and AlpArray-Swath D Working Group
Solid Earth, 12, 2671–2702, https://doi.org/10.5194/se-12-2671-2021, https://doi.org/10.5194/se-12-2671-2021, 2021
Short summary
Short summary
The Alpine mountain belt was formed by the collision of the Eurasian and African plates in the geological past, during which parts of the colliding plates sank into the earth's mantle. Using seismological data from distant earthquakes recorded by the AlpArray Seismic Network, we have derived an image of the current location of these subducted parts in the earth's mantle. Their quantity and spatial distribution is key information needed to understand how the Alpine orogen was formed.
Rainer Kind, Stefan M. Schmid, Xiaohui Yuan, Benjamin Heit, Thomas Meier, and the AlpArray and AlpArray-SWATH-D Working Groups
Solid Earth, 12, 2503–2521, https://doi.org/10.5194/se-12-2503-2021, https://doi.org/10.5194/se-12-2503-2021, 2021
Short summary
Short summary
A large amount of new seismic data from the greater Alpine area have been obtained within the AlpArray and SWATH-D projects. S-to-P converted seismic phases from the Moho and from the mantle lithosphere have been processed with a newly developed method. Examples of new observations are a rapid change in Moho depth at 13° E below the Tauern Window from 60 km in the west to 40 km in the east and a second Moho trough along the boundary of the Bohemian Massif towards the Western Carpathians.
Marcel Paffrath, Wolfgang Friederich, and the AlpArray and AlpArray-SWATH D Working Groups
Solid Earth, 12, 1635–1660, https://doi.org/10.5194/se-12-1635-2021, https://doi.org/10.5194/se-12-1635-2021, 2021
Short summary
Short summary
Using the AlpArray seismic network, we have determined highly accurate travel times of P waves from over 370 major global earthquakes between 2015 and 2019, which shall be used for a tomography of the mantle beneath the greater Alpine region.
Comparing with theoretical travel times of a standard reference earth model, we receive very stable patterns of travel-time differences across the network which provide evidence of varying subduction behaviour along the strike of the Alpine orogen.
Vincent F. Verwater, Eline Le Breton, Mark R. Handy, Vincenzo Picotti, Azam Jozi Najafabadi, and Christian Haberland
Solid Earth, 12, 1309–1334, https://doi.org/10.5194/se-12-1309-2021, https://doi.org/10.5194/se-12-1309-2021, 2021
Short summary
Short summary
Balancing along geological cross sections reveals that the Giudicarie Belt comprises two kinematic domains. The SW domain accommodated at least ~ 18 km Late Oligocene to Early Miocene shortening. Since the Middle Miocene, the SW domain experienced at least ~ 12–22 km shortening, whereas the NE domain underwent at least ~ 25–35 km. Together, these domains contributed to ~ 40–47 km of sinistral offset of the Periadriatic Fault along the Northern Giudicarie Fault since the Late Oligocene.
Azam Jozi Najafabadi, Christian Haberland, Trond Ryberg, Vincent F. Verwater, Eline Le Breton, Mark R. Handy, Michael Weber, and the AlpArray and AlpArray SWATH-D working groups
Solid Earth, 12, 1087–1109, https://doi.org/10.5194/se-12-1087-2021, https://doi.org/10.5194/se-12-1087-2021, 2021
Short summary
Short summary
This study achieved high-precision hypocenters of 335 earthquakes (1–4.2 ML) and 1D velocity models of the Southern and Eastern Alps. The general pattern of seismicity reflects head-on convergence of the Adriatic Indenter with the Alpine orogenic crust. The relatively deeper seismicity in the eastern Southern Alps and Giudicarie Belt indicates southward propagation of the Southern Alpine deformation front. The derived hypocenters form excellent data for further seismological studies, e.g., LET.
Cited articles
Agard, P. and Handy, M. R.: Ocean subduction dynamics in the Alps, in:
Shedding Light on the European Alps, edited by: McCarthy, A. and Müntener, O.,
Guest Editors, Elements, 17, 9–16, https://doi.org/10.2138/gselements.17.1.9, 2021.
Argand, E.: Des Alpes et de l'Afrique: Bulletin de la Société
Vaudoise des Sciences Naturelles, 55, 233–236, 1924.
Artemieva, I.: The Lithosphere: An Interdisciplinary Approach, Cambridge
University Press Monograph, 794 pp., ISBN 9780521843966, 2011.
Babuska, V., Plomerova, J., and Granet, M.: The deep lithosphere in the
Alps: a model inferred from P residuals, Tectonophysics, 176, 137–165,
https://doi.org/10.1016/0040-1951(90)90263-8, 1990.
Baran, R., Friedrich, A. M., and Schlunegger, F.: The late Miocene to
Holocene erosion pattern of the Alpine foreland basin reflects Eurasian slab
unloading beneath the western Alps rather than global climate change,
Lithosphere, 6, 124–131, https://doi.org/10.1130/L307.1, 2014.
Beccaluva, L., Bianchini, G., Bonadiman, C., Coltorti, M., Milani, L.,
Salvini, L., Siena, F., and Tassinari, R.: Intraplate lithospheric and
sublithospheric components in the Adriatic domain: Nephelinite to tholeiite
magma generation in the Paleogene Veneto volcanic province, southern Alps,
Geological Society of America Special Paper, 418, 131–152,
https://doi.org/10.1130/2007.2418(07), 2007.
Behm, M., Brückl, E., Chwatal, W., and Thybo, H.:
Application of stacking and inversion techniques to three-dimensional
wide-angle reflection and refraction data of the Eastern Alps, Geophys. J.
Int. 170, 275–298, doi.org/10.1111/j.1365-246X.2007.03393.x, 2007
Bigi, G., Castellarin, A., Catalano, R., Coli, M., Cosentino, D., Dal Piaz,
G.V., Lentini, F., Parotto, M., Patacca, E., Praturlon, A., Salvini, F.,
Sartori, R., Scandone, P., and Vai, G.: Synthetic structural kinematic map
of Italy, Sheets 1 and 2, C.N.R., Progetto Finalizzato Geodinamica, SELCA
Firenze, 1989.
Bijwaard, H. and Spakman, W.: Non-linear global P-wave tomography by
iterated linearized inversion, Geophys. J. Int., 141, 71–82,
doi.org/10.1046/j.1365-246X.2000.00053.x, 2000.
Brenker, F. E. and Brey, G. P.: Reconstruction of the exhumation path of the
Alpe Arami garnet-peridotite from depths exceeding 160 km, J. Metamorphic
Geol., 15, 581–592, doi/abs/10.1111/j.1525-1314.1997.tb00637.x, 1997.
Brückl, E., Bleibinhaus, F., Gosar, A., Grad M.,
Guterch, A., Hrubcová, P.G., Keller, R., Majdanski, M., Sumanovac, F., Tiira, T., Yliniemi, J., Hegedus, E., and Thybo, H.: Crustal
structure due to collisional and escape tectonics in the Eastern Alps region
based on profiles Alp01 and Alp02 from the ALP 2002 seismic experiment, J.
Geophys. Res., 112, B06308, https://doi.org/10.1029/2006JB004687, 2007.
Cammarano, F., Goes, S., Vacher, P., and Giardini, D.: Inferring
upper-mantle temperatures from seismic velocities, Physics of the Earth and
Planetary Interiors, 138, 197–222, https://doi.org/10.1016/S0031-9201(03)00156-0, 2003.
Cassano, E., Anelli, L., Fichera, R., and Cappelli, V: Pianura Padana:
Interpretazione integrate di dati Geofisici e geologici, 73∘
Congresso Società Geologica Italiana, Roma, AGIP, 27 pp, 1986.
Champagnac, J. D., Molnar, P., Anderson, R. S., Sue, C., and Delacou, B.:
Quaternary erosion-induced isostatic rebound in the western Alps, Geology,
35, 195–198, https://doi.org/10.1130/G23053A.1, 2007.
Chopin, C.: Coesite and pure pyrope in high-grade blueschists of the Western
Alps: a first record and some consequences, Contr. Mineral. and Petrol., 86,
107–118, https://doi.org/10.1007/BF00381838, 1984.
Cederbom, C. E., van der Beek, P., Schlunegger, F., Sinclair, H. D., and
Oncken, O.: Rapid extensive erosion of the North Alpine foreland basin at
5-4 Ma, Basin Research, 23, 528–550, https://doi.org/10.1111/j.1365-2117.2011.00501.x,
2011.
Dando, B. D. E., Stuart, G. W., Houseman, G. A., Hegedüs, E.,
Brückl, E., and Radovanovic, S.: Teleseismic tomography
of the mantle in the Carpathian–Pannonian region of central Europe,
Geophys. J. Int., 186, 11–31, https://doi.org/10.1111/j.1365246X.2011.04998.x, 2011.
Davies, J. H. and von Blanckenburg, F.: Slab breakoff: A model of lithospheric detachment and its test in the magmatism and deformation of collisional orogens, Earth Planet. Sc. Lett., 129, 85–102, https://doi.org/10.1016/0012-821X(94)00237-S, 1995.
Diehl, T., Husen, S., Kissling, E., and Deichmann, N.: High-resolution 3-D P-wave model of the Alpine crust, Geophys. J. Int., 179, 1133–1147, https://doi.org/10.1111/j.1365246X.2009.04331.x, 2009.
Faccenna, C., Piromallo, C., Crespo-Blanc, A., Jolivet, L., and Rossetti,
F.: Lateral slab deformation and the origin of the western Mediterranean
arcs, Tectonics, 23, TC1012, https://doi.org/10.1029/2002TC001488, 2004.
Favaro S., Handy, M. R., Scharf, A., and Schuster, R.: Changing patterns of
exhumation and denudation in front of an advancing crustal indenter, Tauern
Window (Eastern Alps), Tectonics, 36, 1053–1071, https://doi.org/10.1002/2016TC004448,
2017.
Foulger, G. R., Panza, G. F., Artemieva, I. M., Bastow, I. D., Cammarano,
F., Evans, J. R., Hamilton, W. B., Julian, B. R., Lustrino, M., Thybo, H.,
and Yanovskaya, T. B.: Caveats on tomographic images, Terra Nova, 25,
259–281, https://doi.org/10.1111/ter.12041, 2013.
Fox, M., Herman, F., Kissling, E., and Willet, S. D.: Rapid exhumation in the
Western Alps driven by slab detachment and glacial erosion, Geology, 43, 5, 379–382
https://doi.org/10.1130/G36411.1, 2015.
Fox, M., Herman F., Willett, S. D., and Schmid, S. M.: The exhumation history
of the European Alps inferred from linear inversion of thermochronometric
data, American Journal of Science, 316, 505–541, https://doi.org/10.2475/06.2016.01,
2016.
Franke, W.: The Mid-European segment of the Variscides: tectonostratigraphic
units, terrane boundaries and plate tectonics evolution, Geological Society,
London, Special Publications, 179, 35–61, https://doi.org/10.1144/GSL, 2000.
Franke, W., Cock, L. R. M., and Torsvik, T. H.: The Palaeozoic Variscan oceans
revisited, Gondwana Research, 48, 257–284,
https://doi.org/10.1016/j.gr.2017.03.005, 2017.
Fügenschuh, B., Seward, D., and Mancktelow, N. S.: Exhumation in a
convergent orogen: the western Tauern Window, Terra Nova, 9, 213–217, https://doi.org/10.1111/j.1365-3121.1997.tb00015.x, 1997
Geissler, W. H., Sodoudi, F., and Kind, R.: Thickness of the central and
eastern European lithosphere as seen by S receiver functions, Geophys. J. Int., 181, 604–634, https://doi.org/10.1111/j.1365-246X.2010.04548.x,
2010.
Genser, J., Cloetingh, S. A. L., and Neubauer, F.: Late orogenic rebound and
oblique Alpine convergence: New constraints from subsidence analysis of the
Austrian Molasse basin, Glob. Planet. Change, 58, 214–223,
https://doi.org/10.1016/j.gloplacha.2007.03.010, 2007.
Giacomuzzi, G., Chiarabba, C., and De Gori, P.: Linking the Alps and
Apennines subduction systems: New constraints revealed by high-resolution
teleseismic tomography, Earth Planet. Sc. Lett., 301, 531–543,
https://doi.org/10.1016/j.epsl.2010.11.033, 2011.
Giacomuzzi, G., Civalleri, M., DeGori, P., and Chiarabba, C.: A 3D Vs model
of the upper mantle beneath Italy: Insight on the geodynamics of central
Mediterranean, Earth Planet. Sc. Lett., 335, 105–120,
doi.org/10.1016/j.epsl.2012.05.004, 2012.
Goes, S., Govers, R., and Vacher, P.: Shallow mantle temperatures under
Europe from P and S wave tomography, J. Geophys. Res., 105,
11153–11169, doi.org/10.1029/1999JB900300, 2000.
Grad, M., Tiira, T., and ESC Working Group: The Moho depth map of the
European Plate, Geophys. J. Int., 176, 279–292, https://doi.org/10.1111/j.1365-246X.2008.03919.x, 2009.
Grenerczy, G., Sella, G., Stein, S., and Kenyeres, A.: Tectonic implications of
the GPS velocity field in the northern Adriatic region, Geophs. Res. Lett., 32, L16311, https://doi.org/10.1029/2005GL022947, 2005.
Gross, P., Handy, M. R., John, T., Pestal, G., and Pleuger, J.:
Crustal-scale sheath folding at HP conditions in an exhumed Alpine
subduction zone (Tauern Window, Eastern Alps), Tectonics, 39, 1–22,
https://doi.org/10.1029/2019TC005942, 2020.
Grunert, P., Hinsch, R., Sachsenhofer, R. F., Bechtel, A., Ćorić,
S., Harzhauser, M., Piller, W.E., and Sperl, H.: Early Burdigalian infill of
the Puchkirchen Trough (North Alpine Foreland Basin, Central Paratethys):
Facies development and sequence stratigraphy, Mar. Petrol. Geol.,
39, 164–186, https://doi.org/10.1016/j.marpetgeo.2012.08.009, 2013.
Hammond, J. O. S.: Constraining melt geometries beneath the Afar Depression,
Ethiopia from teleseismic receiver functions: The anisotropic H-κ
stacking technique, Geochem. Geophys. Geosyst., 15, 1316–1332,
https://doi.org/10.1002/2013GC005186, 2014
Handy, M. R., Schmid, S. M., Bousquet, R., Kissling, E., and Bernoulli, D.:
Reconciling plate-tectonic reconstructions with the geological-geophysical
record of spreading and subduction in the Alps, Earth Sci. Rev., 102,
121–158, https://doi.org/10.1016/j.earscirev.2010.06.002, 2010.
Handy, M. R., Ustaszewski, K., and Kissling, E.: Reconstructing the
Alps–Carpathians–Dinarides as a key to understanding switches in
subduction polarity, slab gaps and surface motion, Int. J. Earth Sci. (Geol.
Rundsch.), 104, 1–26, https://doi.org/10.1007/s00531-014-1060-3, 2015.
Hetényi, G. Molinari, I., Clinton, J., Bokelmann, G., Bondár, I.,
Crawford, W.C., Dessa, J.X., Doubre, C., Friederich, W., Fuchs, F.,
Giardini, D., Gráczer, Z., Handy, M.R., Herak, M., Jia, Y., Kissling,
E., Kopp, H., Korn, M., Margheriti, L., Meier, T., Mucciarelli, M., Paul,
A., Pesaresi, D., Piromallo, C., Plenefisch, Th., Plomerová, J., Ritter,
J., Ruümpker, G., Šipka, V., Spallarossa, D., Thomas,
Ch., Tilmann, F., Wassermann, J., Weber, M., Wéber, Z., Wesztergom, V.,
Živčić, M., and AlpArray Seismic Network Team , AlpArray OBS
Cruise Crew, AlpArray Working Group: The AlpArray Seismic Network: A
large-scale European experiment to image the Alpine orogen, Surv. Geophys., 39, 1009–1033, doi.org/10.1007/s10712-018-9472-4, 2018.
Hinsch, R.: Laterally varying structure and kinematics of the Molasse fold
and thrust belt of the Central Eastern Alps: Implications for exploration,
AAPG Bull., 97, 1805–1831, https://doi.org/10.1306/04081312129, 2013.
Horváth, F., Bada, G., Szafian, P., Tari, G., Adam, A., and Cloetingh,
S.: Formation and deformation of the Pannonian Basin: constraints from
observational data, in: European
Lithosphere Dynamics, edited by: Gee, D. G. and Stephenson, R. A., , Geological Society London Memoirs, 32, 191–206,
doi.org/10.1144/GSL.MEM.2006.032.01.11, 2006.
Horváth, F., Musitz, B., Balázs, A., Végh, A., Uhrin, A.,
Nádor, A., Koroknai, B., Pap, N., Tóth, T., and Wórum, G.:
Evolution of the Pannonian basin and its geothermal resources, Geothermics,
53, 328–352, doi.org/10.1016/j.geothermics.2014.07.009, 2015.
Jolivet, L., Faccenna, C., and Piromallo, C.: From mantle to crust:
Stretching the Mediterranean, Earth Planet. Sc. Lett.,
285, 1–2, 198-209. https://doi.org/10.1016/j.epsl.2009.06.017, 2009.
Jones, A., G., Plomerova, J., Korja, T., Sodoudi, F., and Spakman, W.:
Europe from the bottom up: A statistical examination of the central and
northern European lithosphere–asthenosphere boundary from comparing
seismological and electromagnetic observations, Lithos, 120, 14–29,
https://doi.org/10.1016/j.lithos.2010.07.013, 2010.
Jordan, T. H.: The Continental Tectosphere, Rev. Geophys. Space Phys., 13, 3, 1–12, https://doi.org/10.1029/RG013i003p00001, 1975.
Jordan, T. H.: Continents as a chemical boundary layer, Phil. Trans. R. Soc.
Lond. A, 301, 359–373, 1981.
Karato, S. and Jung, H.: Water, partial melting and the origin of the
seismic low velocity and high attenuation zone in the upper mantle, Earth Planet. Sc. Lett., 157, 193–207, 1998.
Karousová, H., Babuška, V., and Plomerová, J.: Upper-mantle
structure beneath the southern Bohemian Massif and its surroundings imaged
by high-resolution tomography, Geophys. J. Int., 194, 1203–1215,
https://doi.org/10.1093/gji/ggt159, 2013.
Kastelic, V., Vrabec, M., Cunningham, D., and Gosar, A.: Neo-Alpine
structural evolution and present-day tectonic activity of the eastern
Southern Alps: The case of the Ravne Fault, NW Slovenia, J.
Struct. Geol., 30, 963–975, https://doi.org/10.1016/j.jsg.2008.03.009, 2008.
Kästle, E.D., Rosenberg, C., Boschi, L., Bellahsen, N., Meier, T.,
El-Sharkawy, A.: Slab break-offs in the Alpine subduction zone, Int. J.
Earth Sci. (Geol Rundsch), 109, 587–603,
https://doi.org/10.1007/s00531-020-01821-z, 2020.
Kind, R., Schmid, S. M., Yuan, X., Heit, B., Meier, T., and the AlpArray and AlpArray-SWATH-D Working Groups: Moho and uppermost mantle structure in the greater Alpine area from S-to-P converted waves, Solid Earth Discuss. [preprint], https://doi.org/10.5194/se-2021-33, in review, 2021.
Király, Á., Faccenna, C., and Funiciello, F.: Subduction zones
interaction around the Adria microplate and the origin of the Apenninic arc:
Tectonics, 37, 3941–3953, https://doi.org/10.1029/2018TC00521, 2018.
Kissling, E. and Schlunegger, F.: Rollback orogeny model for the evolution
of the Swiss Alps, Tectonics, 37, 1097–1115, https://doi.org/10.1002/2017TC004762, 2018.
Kissling, E., Schmid, S. M., Lippitsch, R., Ansorge, J., and Fügenschuh,
B.: Lithosphere structure and tectonic evolution of the Alpine arc: new
evidence from high-resolution teleseismic tomography, Geological Society of
London Memoirs, 32, 129–145, doi.org/10.1144/GSL.MEM.2006.032.01.08, 2006.
Koulakov, I., Kaban, M., Tesauro, M., and Cloetingh, S.: P-and S-velocity
anomalies in the upper mantle beneath Europe from tomographic inversion of
ISC data, Geophys. J. Int., 179, 345–366, https://doi.org/10.1111/j.1365-246X.2009.04279.x, 2009.
Kuhlemann, J. and Kempf, O.: Post-Eocene evolution of the North Alpine
Foreland Basin and its response to Alpine tectonics, Sedimentary Geology,
152, 45–78, doi.org/10.1016/S0037-0738(01)00285-8, 2002.
Kurz, W., Handler, R., and Bertoldi, C.: Tracing the exhumation of the
Eclogite Zone (Tauern Window, Eastern Alps) by 40Ar/39Ar dating of white
mica in eclogites, Swiss J. Geosci. 101, Supplement 1, S191–S206,
https://doi.org/10.1007/s00015-008-1281-1, 2008.
Le Breton, E., Brune, S., Ustaszewski, K., Zahirovic, S., Seton, M., and Müller, R. D.: Kinematics and extent of the Piemont–Liguria Basin – implications for subduction processes in the Alps, Solid Earth, 12, 885–913, https://doi.org/10.5194/se-12-885-2021, 2021.
Lippitsch, R., Kissling, E., and Ansorge, J.: Upper mantle structure beneath
the Alpine orogen from high-resolution teleseismic tomography, J. Geophys.
Res., 108, 2376, https://doi.org/10.1029/2002JB002016, 2003.
Lyu, C., Pedersen, H.A., Paul, A., Zhao, L., Solarino, S., and CIFALPS
Working Group: Shear wave velocities in the upper mantle of theWestern Alps:
new constraints using array analysis of seismic surface waves, Geophys. J.
Int., 210, 321–331, https://doi.org/10.1093/gji/ggx166, 2017.
Macera, P., Gasperini, D., Piromallo, C., Blichert-Toft, J., Bosch, D., Del
Moro, A., and Martin, S.: Geodynamic implications of deep mantle upwelling
in the source of Tertiary volcanics from the Veneto region (South-Eastern
Alps), J. Geodynam., 36, 563–590, https://doi.org/10.1016/j.jog.2003.08.004,
2003.
Macera, P., Gasperini, D., Ranalli, G., and Mahatsente, R.: Slab detachment
and mantle plume upwelling in subduction zones: an example from the Italian
South-Eastern Alps, J. Geodynam., 45, 32–48,
https://doi.org/10.1016/j.jog.2007.03.004, 2008.
Maffione, M., Speranza, F., Faccenna, C., Cascella, A., Vignaroli, G., and
Sagnotti, L.: A synchronous Alpine and Corsica-Sardinia rotation, J. Geophys. Res., 113, B03104, https://doi.org/10.1029/2007JB005214, 2008.
Magni, V. and Király, Á.: Delamination, in: Reference Module in Earth Systems and Environmental Sciences, Elsevier, 1–7, B9780124095489096000, https://doi.org/10.1016/B978-0-12-409548-9.09515-4, 2020.
Malusà, M. G., Frezzotti, M. L., Ferrando, S., Brandmayr, E., Romanelli,
F., and Panza, G. F.: Active carbon sequestration in the Alpine mantle wedge
and implications for long-term climate trends, Sci. Rep., 8,
1–8, 2018.
Malusà, M. G., Guillot, S., Zhao, L., Paul, A., Solarino, S., Dumont,
T., Schwartz, S., Aubert, C., Baccheschi, P., Eva, E., Lu, Y., Lyu, C.,
Pondrelli, S., Salimbeni, S., Sun, W., and Yuan, H.: The deep structure of
the Alps based on the CIFALPS seismic experiment: A synthesis, Geochem.
Geophys. Geosys., 22, e2020GC009466.
https://doi.org/10.1029/2020GC009466, 2021.
Márton, E., Grabowski, J., Tokarski, A. K., and Túnyi, I.:
Palaeomagnetic results from the fold and thrust belt of the Western
Carpathians: an overview, Geological Society, London, Special Publications,
425, 7–36, https://doi.org/10.1144/SP425.1, 2015.
Matenco, L. and Radivojević, D.: On the formation and evolution of the
Pannonian Basin: Constraints derived from the structure of the junction area
between the Carpathians and Dinarides, Tectonics, 31, TC6007,
https://doi.org/10.1029/2012TC003206, 2012.
Matte, P.: Tectonics and plate tectonics model for the Variscan belt of
Europe, Tectonophysics, 126, 329–332,
https://doi.org/10.1016/0040-1951(86)90237-4,
1986.
Mazur, S., Aleksandrowski, P., Gągała, Ł., Krzywiec, P., Żaba,
J., Gaidzik, K., and Sikora, R.: Late Palaeozoic strike-slip tectonics
versus oroclinal bending at the SW outskirts of Baltica: case of the
Variscan belt's eastern end in Poland, Int. J. Earth
Sci., 109, 1133–1160, https://doi.org/10.1007/s00531-019-01814-7, 2020.
Mey, J., Scherler, D., Wickert, A. D., Egholm, D. L., Tesauro, M.,
Schildgen, T. F., and Strecker M. R.: Glacial isostatic uplift of the
European Alps, Nat. Commun., 7, 13382, https://doi.org/10.1038/ncomms13382,
2016.
Mitchell, B. J.: Anelastic structure and evolution of the continental crust
and upper mantle from seismic surface wave attenuation, Rev. Geophys., 33, 441–462, https://doi.org/10.1029/95RG02074
Mitterbauer, U., Behm, M., Brückl, E., Lippitsch, R.,
Guterch, A., Keller, G. R., Koslovskaya, E., Rumpfhuber, E. M., and
Šumanovac, F.: Shape and origin of the East-Alpine slab constrained by
the ALPASS teleseismic model, Tectonophysics 510, 195–206,
https://doi.org/10.1016/j.tecto.2011.07.001, 2011.
Molli, G., Crispini, L., Mosca, P., Piana, P., and Federico, L.: Geology of
the Western Alps-Northern Apennine junction area: a regional review, Journal
of the Virtual Explorer, 36, 1–49, https://doi.org/10.3809/jvirtex.2010.00215, 2010.
Molli, G., Brogi, A., Caggianelli, A., Capezzuoli, E., Liotta, D., Spina,
A., and Zibra, I.: Late Palaeozoic tectonics in Central Mediterranean: a
reappraisal, Swiss J Geosci, 113, 23, 1-32, https://doi.org/10.1186/s00015-020-00375-1, 2020.
Munzerová, H., Plomerová, J., and Kissling, E.: Novel anisotropic
teleseismic body-wave tomography code AniTomo to illuminate heterogeneous
anisotropic upper mantle: Part I – Theory and inversion tuning with
realistic synthetic data, Geophys. J. Int., 215, 524–545, https://doi.org/10.1093/gji/ggy296, 2018.
Müntener, O., Ulmer, P., and Blundy, J. D.: Superhydrous Arc Magmas in the
Alpine Context, Elements, in: Shedding Light on the European Alps, McCarthy,
A. and Müntener, O., Guest Editors, Elements, 17, 35–40, https://doi.org/10.2138/gselements.17.1.35, 2021.
Nagel, T. J., Herwartz, D., Rexroth, S., Münker, C.,
Froitzheim, N., and Kurz, W.: Lu-Hf dating, petrography, and tectonic
implications of the youngest Alpine eclogites (Tauern Window, Austria),
Lithos, 170, 179–190, https://doi.org/10.1016/j.lithos.2013.02.008, 2013.
Nussbaum, C.: Neogene tectonics and thermal maturity of sediments of the
easternmost Southern Alps (Friuli are, Italy), unpublished PhD thesis
Université de Neuchâtel, Switzerland, 2000.
Paffrath, M., Friederich, W., and the AlpArray and AlpArray-SWATH D Working Groups: Teleseismic P waves at the AlpArray seismic network: wave fronts, absolute travel times and travel-time residuals, Solid Earth, 12, 1635–1660, https://doi.org/10.5194/se-12-1635-2021, 2021a.
Paffrath, M., Friederich, W., and the AlpArray and AlpArray-Swath D working group: Imaging structure and geometry of slabs in the greater Alpine area – a P-wave travel-time tomography using AlpArray Seismic Network data, Solid Earth, 12, 2671–2702,
https://doi.org/10.5194/se-12-2671-2021, 2021b.
Perry, H. K. C., Jaupart, C., Mareschal, J.-C., and Shapiro, N. M.: Upper
mantle velocity-temperature conversion and composition determined from
seismic refraction and heat flow, J. Geophys. Res., 111, B07301,
https://doi.org/10.1029/2005JB003921, 2006.
Pfiffner, O. A., Lehner, P., Heitzmann, P., Mueller, St., and Steck, A.
(Eds.): Deep Structure of the Swiss Alps: Results of NRP 20: Birkhäuser
et al., Basel, 460 pp., ISBN 3-7643 5254 X, 1997.
Pfiffner, O. A. and Hitz, L.: Geologic interpretation of the seismic
profiles in the Eastern Traverse (lines E1-E3, E7-E9): eastern Alps,
Chapter 9 in Pfiffner et al. (Eds.) Deep Structure of the Alps: Results of
NRP 20, Birkhäuser et al., Basel, 73–100, 1997.
Picotti, V. and Pazzaglia, F. J.: A new active tectonic model for the
construction of the Northern Apennines mountain front near Bologna (Italy),
J. Geophys. Res., 113, B08412, https://doi.org/10.1029/2007JB005307, 2008.
Piromallo, C. and Morelli, A.: P wave tomography of the mantle under the
Alpine-Mediterranean area, J. Geophys. Res., 108, 2065,
https://doi.org/10.1029/2002JB001757, 2003.
Pomella, H., Klötzli, U., Scholger, R., Stipp, M., and Fügenschuh,
B.: The Northern Giudicarie and the Meran-Mauls fault (Alps, Northern Italy)
in the light of new paleomagnetic and geochronological data from boudinaged
Eo-Oligocene tonalites, Int. J. Earth Sci., 100, 1827–1850,
https://doi.org/10.1007/s00531-010-0612-4, 2011.
Pomella, H., Stipp, M., and Fügenschuh, B.:
Thermochronological record of thrusting and strike-slip faulting along the
Giudicarie fault system (Alps, Northern Italy), Tectonophysics, 79, 118–130,
2012.
Qorbani, E., Bianchi, I., and Bokelmann, G.: Slab detachment under the
Eastern Alps seen by seismic anisotropy, Earth Planet. Sc. Lett., 409, 96–108, doi.org/10.1016/j.epsl.2014.10.049, 2015.
Ratschbacher, L., Frisch, W., Linzer, H.-G., and Merle, O.: Lateral
extrusion in the Eastern Alps, part 2: Structural analysis, Tectonics,
10, 257–271 https://doi.org/10.1029/90TC0 2623, 1991.
Ratschbacher, L., Dingeldey, C., Miller, C., Hacker, B. R., and McWilliams,
M. O.: Formation, subduction, and exhumation of Penninic oceanic crust in
the Eastern Alps: Time constraints from 40 Ar/39 Ar geochronology,
Tectonophysics, 394, 155–170,
https://doi.org/10.1016/j.tecto.2004.08.003, 2004.
Rawlinson, N. and Sambridge, M.: The Fast Marching Method: An Effective
Tool for Tomographic Imaging and Tracking Multiple Phases in Complex Layered
Media, Exploration Geophysics, 36, 341–350, https://doi.org/10.1071/EG05341, 2005.
Rawlinson, N., Reading, A. M., and Kennett, B. L. N.: Lithospheric structure
of Tasmania from a novel form of teleseismic tomography, J. Geophys. Res.,
111, B02301, https://doi.org/10.1029/2005JB003803, 2006.
Rosenberg, C. L.: Shear zones and magma ascent: A model based on a review of
the Tertiary magmatism in the Alps, Tectonics, 23, TC3002,
https://doi.org/10.1029/2003TC001526, 2004.
Rosenberg, C. L. and Kissling, E.: Three-dimensional insight into
Central-Alpine collision: Lower plate or upper-plate indentation?, Geology,
41, 1219–122, https://doi.org/10.1130/G34584.1, 2013.
Rosenberg, C. L., Schneider, S., Scharf, A., Bertrand, A., Hammerschmidt,
K., Rabaute, A., and Brun, J.-P.: Relating collisional kinematics to
exhumation processes in the Eastern Alps, Earth-Sci. Rev., 176,
311–344, doi.org/10.1016/j.earscirev.2017.10.013, 2018.
Scharf, A., Handy, M. R., Favaro, S., Schmid, S. M., and Bertrand, A.: Modes
of orogen-parallel stretching and extensional exhumation in response to
microplate indentation and roll-back subduction (Tauern Window, Eastern
Alps), Int. J. Earth Sci., 102, 1627-1654,
doi.10.1007/s00531-013-0894-4, 2013.
Schefer, S., Cvetković, V., Fügenschuh, B., Kounov,
A., Ovtcharova, M., Schaltegger, U., Schmid, S. M.: Cenozoic granitoids in
the Dinarides of southern Serbia: age of intrusion, isotope geochemistry,
exhumation history and significance for the geodynamic evolution of the
Balkan Peninsula, Int. J. Earth Sci. 100, 1181–1206,
https://doi.org/10.1007/s00531-010-0599-x, 2011.
Schertl, H.-P., Schreyer, W., and Chopin, C.: The pyrope-coesite rocks and
their country rocks at Parigi, Dora Maira Massif, Western Alps: detailed
petrography, mineral chemistry and PT-path, Contrib. Mineral. Petrol., 108,
1–21, 1991.
Schmid, S. M., Pfiffner, O. A., Froitzheim, N., Schönborn, G., and
Kissling, E.: Geophysical-geological transect and tectonic evolution of the
Swiss-Italian Alps, Tectonics, 15, 1036–1064, doi.10.1029/96TC00433, 1996.
Schmid, S. M., Fügenschuh, B., Kissling, E., and Schuster, R.: Tectonic
map and overall architecture of the Alpine orogen, Eclogae Geologicae
Helvetiae, 97, 93–117, doi.org/10.1007/s00015-004-1113-x, 2004.
Schmid, S. M., Bernoulli, D., Fügenschuh, B., Matenco, L., Schefer, S.,
Schuster, R., Tischler, M., and Ustaszewski, K.: The
Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of
tectonic units, Swiss J. Geosci., 101, 139–183,
https://doi.org/10.1007/s00015-008-1247-3, 2008.
Schmid, S. M., Scharf, A., Handy, M. R., and Rosenberg, C. L.: The Tauern
Window (Eastern Alps, Austria): a new tectonic map, with cross-sections and
a tectonometamorphic synthesis, Swiss J. Geosci., 106, 1–32,
https://doi.org/10.1007/s00015-013-0123-y, 2013.
Schmid, S. M., Kissling, E., Diehl, T., van Hinsbergen D. J. J., and Molli,
G.: Ivrea mantle wedge, arc of the Western Alps, and kinematic evolution of
the Alps–Apennines orogenic system, Swiss J. Geosci., 110,
581–612, https://doi.org/10.1007/s00015-016-0237-0, 2017.
Schönborn, G.: Alpine tectonics and kinematic models of the central
Southern Alps, Mem. Sci. Geol. Padova, 44, 229–393, 1992.
Schönborn, G.: Balancing cross sections with kinematic constraints: The
Dolomites (northern Italy), Tectonics 18, 527–545,
doi.org/10.1029/1998TC900018, 1999.
Schulmann, K., Lexa, O., Vojtech J., Lardeaux, J. M., and Edel, J. B.:
Anatomy of a diffuse cryptic suture zone: An example from the Bohemian
Massif, European Variscides, Geology, 42, 275–278, https://doi.org/10.1130/G35290.1,
2014.
Seghedi, I. and Downes, H.: Geochemistry and tectonic development of
Cenozoic magmatism in the Carpathian–Pannonian region, Gondwana Research,
20, 655–672, https://doi.org/10.1016/j.gr.2011.06.009, 2011.
Seghedi, I., Ersoy, Y. E., and Helvacı, C.: Miocene–Quaternary volcanism
and geodynamic evolution in the Pannonian Basin and the Menderes Massif: A
comparative study, Lithos, 180, 25–42,
doi.org/10.1016/j.lithos.2013.08.017, 2013.
Serpelloni, E., Vannucci, G., Anderlini, L., and Bennett, R. A.: Kinematics,
seismotectonics and seismic potential of the eastern sector of the European
Alps from GPS and seismic deformation data, Tectonophysics, 688, 157–181,
doi.org/10.1016/j.tecto.2016.09.026, 2016.
Serretti, P. and Morelli, A.: Seismic rays and traveltime tomography
of strongly heterogeneous mantle structure: application to the Central
Mediterranean, Geophys. J. Int., 187, 1708–1724, https://doi.org/10.1111/j.1365-246X.2011.05242.x, 2011.
Shito, A., Karato, S., Matsukage, K., N., and Nishihara Y.: Towards Mapping
the Three-Dimensional Distribution of Water in the Upper Mantle from
Velocity and Attenuation Tomography, Geophysical Monograph, 168, 225–236,
https://doi.org/10.1029/168GM17, 2006.
Singer, J., Diehl, T., Husen, S., Kissling, E., and Duretz, T.: Alpine
lithosphere slab rollback causing lower crustal seismicity in northern
foreland, Earth Planet. Sc. Lett., 397, 42–56,
doi.org/10.1016/j.epsl.2014.04.002, 2014.
Smye, A. J., Bickle, M. J., Holland, T. J. B., Parrish, R. R., and Condon,
D. J.: Rapid formation and exhumation of the youngest Alpine eclogites: A
thermal conundrum to Barrovian metamorphism, Earth Planet. Sc. Lett., 306, 193–204, https://doi. org/10.1016/j.epsl.2011.03.037,
2011.
Spada, M., Bianchi, I., Kissling, E., Piana Agostinetti, N., and Wiemer, S.:
Combining controlled-source seismology and receiver function information to
derive 3-D Moho topography for Italy, Geophys. J. Int., 194, 1050–1068,
https://doi.org/10.1093/gji/ggt148, 2013.
Spakman, W. and Wortel, M. J. R.: Tomographic View on Western Mediterranean
Geodynamics, in: The TRANSMED Atlas, The Mediterranean Region from Crust to
Mantle, edited by: Cavazza, W., Roure, F. M., Stampfli, G. M., and Ziegler, P. A., Springer, Berlin, Heidelberg, 31–52,
https://doi.org/10.1007/978-3-642-18919-7_2, 2004.
Speranza, F., Villa, I. M., Sagnotti, L., Florindo, F., Cosentino, D.,
Cipollari, P., and Mattei, M.: Age of the Corsica–Sardinia rotation and
Liguro–Provençal Basin spreading: new paleomagnetic and Ar/Ar evidence,
Tectonophysics, 231–251, https://doi.org/10.1016/S0040-1951(02)00031-8,
2002.
Stipčević, J., Tkalčić, H., Herak, M., Markušić, S.,
and Herak, D.: Crustal and uppermost mantle structure beneath the External
Dinarides, Croatia, determined from teleseismic receiver functions,
Geophys. J. Int., 185, 1103–1119.
https://doi.org/10.1111/j.1365-246x.2011.05004.x, 2011.
Stipčević, J., Herak, M., Molinari, I., Dasović, I.,
Tkalčić, H., and Gosar, A.: Crustal thickness beneath the Dinarides
and surrounding areas from receiver functions, Tectonics, 37,
https://doi.org/10.1029/2019TC005872, 2020.
Sun, W., Zhao, L., Malusà, M. G., Guillot, S., and Fu, L.-Y.: 3-D Pn
tomography reveals continental subduction at the boundaries of the Adriatic
microplate in the absence of a precursor oceanic slab, Earth Planet. Sc. Lett., 510, 131–141, 2019.
https://doi.org/10.1016/j.epsl.2019.01.012
Tesauro, M., Kaban, M. K., and Cloetingh, S. A. P. L.: EuCRUST-07: A new
reference model for the European crust, Geophys. Res. Lett., 35, L05313, https://doi.org/10.1029/2007/g032244, 2008.
Ustaszewski, K., Schmid, S. M., Fügenschuh, B., Tischler,
M., Kissling, E., and Spakman, W.: A map-view restoration of the
Alpine–Carpathian–Dinaridic system for the Early Miocene, Swiss J.
Geosci., 101, 273–294, https://doi.org/10.1007/s00015-008-1288-7, 2008.
Verwater, V. F., Le Breton, E., Handy, M. R., Picotti, V., Jozi Najafabadi, A., and Haberland, C.: Neogene kinematics of the Giudicarie Belt and eastern Southern Alpine orogenic front (northern Italy), Solid Earth, 12, 1309–1334, https://doi.org/10.5194/se-12-1309-2021, 2021.
van der Meer, D. G., Spakman, W., van Hinsbergen, D. J. J., Amaru, M. L.,
and Torsvik, T. H.: Towards absolute plate motions constrained by
lower-mantle slab remnants, Nat. Geosci., 3, 36–40, 2010.
van der Meer, D. G., van Hinsbergen, D. J. J., and Spakman, W.: Atlas of the
underworld: Slab remnants in the mantle, their sinking history, and a new
outlook on lower mantle viscosity, Tectonophysics, 723, 309–448,
doi.org/10.1016/j.tecto.2017.10.004, 2018.
van Hinsbergen, D. J. J., Torsvik, T. H., Schmid, S. M, Matenco, L. C.,
Maffione, M., Vissers, R. L .M., Gürer, D., and Spakman,
W.: Orogenic architecture of the Mediterranean region and kinematic
reconstruction of its tectonic evolution since the Triassic, Gondwana
Research, 81, 79–229, https://doi.org/10.1016/j.gr.2019.07.009, 2020.
von Blanckenburg, F. and Davies, J. H.: Slab breakoff: A model for
syncollisional magmatism and tectonics in the Alps, Tectonics, 14, 120–131,
https://doi.org/10.1029/94TC0205, 1995.
Waldhauser, F., Lippitsch, R., Kissling, E., and Ansorge. J.:
High-resolution teleseismic tomography of upper-mantle structure using an a
priori three-dimensional crustal model, Geophys. J. Int.,
150, 403–414, doi.org/10-1046/j.1365-246X.2002.01690.x, 2002.
Wortel, M. J. R. and Spakman, W.: Subduction and Slab Detachment in the
Mediterranean-Carpathian Region, Science, 290, 1910–1917, https://doi.org/10.1126/science.290.5498.1910, 2000.
Zahorec, P., Papčo, J., Pašteka, R., Bielik, M., Bonvalot, S., Braitenberg, C., Ebbing, J., Gabriel, G., Gosar, A., Grand, A., Götze, H.-J., Hetényi, G., Holzrichter, N., Kissling, E., Marti, U., Meurers, B., Mrlina, J., Nogová, E., Pastorutti, A., Salaun, C., Scarponi, M., Sebera, J., Seoane, L., Skiba, P., Szűcs, E., and Varga, M.: The first pan-Alpine surface-gravity database, a modern compilation that crosses frontiers, Earth Syst. Sci. Data, 13, 2165–2209, https://doi.org/10.5194/essd-13-2165-2021, 2021.
Zhao, L., Paul, A., Guillot, S., Solarino, S., Malusá, M., Zheng, T.,
Aubert, C., Dumont, T., Schwartz, S., Zhu, R., and Wang, Q.: First seismic
evidence for continental subduction beneath the Western Alps, Geology, 43, 815–818, https://doi.org/10.1130/G36833.1, 2015.
Zhao, L., Paul, A., Guillot, S., Solarino, S., Malusà, M.G., Zheng, T., Aubert, C., Salimbeni, S., Dumont, T., Schwartz, S., Zhu, R. and Wang, Q.: Continuity of the
Alpine slab unraveled by high-resolution P wave tomography, J. Geophys. Res., Solid Earth, 121, 8720–8737,
https://doi.org/10.1002/2016jb013310, 2016.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(78322 KB) - Full-text XML
Short summary
New images from the multi-national AlpArray experiment illuminate the Alps from below. They indicate thick European mantle descending beneath the Alps and forming blobs that are mostly detached from the Alps above. In contrast, the Adriatic mantle in the Alps is much thinner. This difference helps explain the rugged mountains and the abundance of subducted and exhumed units at the core of the Alps. The blobs are stretched remnants of old ocean and its margins that reach down to at least 410 km.
New images from the multi-national AlpArray experiment illuminate the Alps from below. They...