Articles | Volume 13, issue 8
https://doi.org/10.5194/se-13-1291-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/se-13-1291-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
3D deep geothermal reservoir imaging with wireline distributed acoustic sensing in two boreholes
Evgeniia Martuganova
CORRESPONDING AUTHOR
Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, 14473 Potsdam, Germany
Department of Applied Geophysics, Technische Universität Berlin, 10587 Berlin, Germany
Manfred Stiller
Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, 14473 Potsdam, Germany
Ben Norden
Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, 14473 Potsdam, Germany
Jan Henninges
Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, 14473 Potsdam, Germany
Federal Office for the Safety of Nuclear Waste Management (BASE), 10623 Berlin, Germany
Charlotte M. Krawczyk
Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, 14473 Potsdam, Germany
Department of Applied Geophysics, Technische Universität Berlin, 10587 Berlin, Germany
Related authors
No articles found.
Mikhail Tsypin, Viet Dung Nguyen, Mauro Cacace, Guido Blöcher, Magdalena Scheck-Wenderoth, Elco Luijendijk, and Charlotte Krawczyk
EGUsphere, https://doi.org/10.5194/egusphere-2025-4335, https://doi.org/10.5194/egusphere-2025-4335, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Shallow groundwater temperatures are increasing as a consequence of global warming. At the same time, climate models project substantial changes in future groundwater recharge, with impacts on groundwater levels. We investigated the combined effects of these two processes. Our modeling results suggest that decreased annual recharge or increased cold recharge in winter can locally slow groundwater warming, but not sufficiently to stop or reverse the overall warming trend.
Rahmantara Trichandi, Klaus Bauer, Trond Ryberg, Benjamin Heit, Jaime Araya Vargas, Friedhelm von Blanckenburg, and Charlotte M. Krawczyk
Earth Surf. Dynam., 12, 747–763, https://doi.org/10.5194/esurf-12-747-2024, https://doi.org/10.5194/esurf-12-747-2024, 2024
Short summary
Short summary
This study investigates subsurface weathering zones, revealing their structure through shear wave velocity variations. The research focuses on the arid climate of Pan de Azúcar National Park, Chile, using seismic ambient noise recordings to construct pseudo-3D models. The resulting models show the subsurface structure, including granite gradients and mafic dike intrusions. Comparison with other sites emphasizes the intricate relationship between climate, geology, and weathering depth.
Sonja H. Wadas, Hermann Buness, Raphael Rochlitz, Peter Skiba, Thomas Günther, Michael Grinat, David C. Tanner, Ulrich Polom, Gerald Gabriel, and Charlotte M. Krawczyk
Solid Earth, 13, 1673–1696, https://doi.org/10.5194/se-13-1673-2022, https://doi.org/10.5194/se-13-1673-2022, 2022
Short summary
Short summary
The dissolution of rocks poses a severe hazard because it can cause subsidence and sinkhole formation. Based on results from our study area in Thuringia, Germany, using P- and SH-wave reflection seismics, electrical resistivity and electromagnetic methods, and gravimetry, we develop a geophysical investigation workflow. This workflow enables identifying the initial triggers of subsurface dissolution and its control factors, such as structural constraints, fluid pathways, and mass movement.
Martin Peter Lipus, Felix Schölderle, Thomas Reinsch, Christopher Wollin, Charlotte Krawczyk, Daniela Pfrang, and Kai Zosseder
Solid Earth, 13, 161–176, https://doi.org/10.5194/se-13-161-2022, https://doi.org/10.5194/se-13-161-2022, 2022
Short summary
Short summary
A fiber-optic cable was installed along a freely suspended rod in a deep geothermal well in Munich, Germany. A cold-water injection test was monitored with fiber-optic distributed acoustic and temperature sensing. During injection, we observe vibrational events in the lower part of the well. On the basis of a mechanical model, we conclude that the vibrational events are caused by thermal contraction of the rod. The results illustrate potential artifacts when analyzing downhole acoustic data.
Djamil Al-Halbouni, Robert A. Watson, Eoghan P. Holohan, Rena Meyer, Ulrich Polom, Fernando M. Dos Santos, Xavier Comas, Hussam Alrshdan, Charlotte M. Krawczyk, and Torsten Dahm
Hydrol. Earth Syst. Sci., 25, 3351–3395, https://doi.org/10.5194/hess-25-3351-2021, https://doi.org/10.5194/hess-25-3351-2021, 2021
Short summary
Short summary
The rapid decline of the Dead Sea level since the 1960s has provoked a dynamic reaction from the coastal groundwater system, with physical and chemical erosion creating subsurface voids and conduits. By combining remote sensing, geophysical methods, and numerical modelling at the Dead Sea’s eastern shore, we link groundwater flow patterns to the formation of surface stream channels, sinkholes and uvalas. Better understanding of this karst system will improve regional hazard assessment.
Gilda Currenti, Philippe Jousset, Rosalba Napoli, Charlotte Krawczyk, and Michael Weber
Solid Earth, 12, 993–1003, https://doi.org/10.5194/se-12-993-2021, https://doi.org/10.5194/se-12-993-2021, 2021
Short summary
Short summary
We investigate the capability of distributed acoustic sensing (DAS) to record dynamic strain changes related to Etna volcano activity in 2019. To validate the DAS measurements, we compute strain estimates from seismic signals recorded by a dense broadband array. A general good agreement is found between array-derived strain and DAS measurements along the fibre optic cable. Localised short wavelength discrepancies highlight small-scale structural heterogeneities in the investigated area.
Jan Henninges, Evgeniia Martuganova, Manfred Stiller, Ben Norden, and Charlotte M. Krawczyk
Solid Earth, 12, 521–537, https://doi.org/10.5194/se-12-521-2021, https://doi.org/10.5194/se-12-521-2021, 2021
Short summary
Short summary
We performed a seismic survey in two 4.3 km deep geothermal research wells using the novel method of distributed acoustic sensing and wireline cables. The characteristics of the acquired data, methods for data processing and quality improvement, and interpretations on the geometry and structure of the sedimentary and volcanic reservoir rocks are presented. The method enables measurements at high temperatures and reduced cost compared to conventional sensors.
Benjamin Schwarz and Charlotte M. Krawczyk
Solid Earth, 11, 1891–1907, https://doi.org/10.5194/se-11-1891-2020, https://doi.org/10.5194/se-11-1891-2020, 2020
Short summary
Short summary
Intricate fault and fracture networks cut through the upper crust, and their detailed delineation and characterization play an important role in the Earth sciences. While conventional geophysical sounding techniques only provide indirect means of detection, we present scale-spanning field data examples, in which coherent diffraction imaging – a framework inspired by optics and visual perception – enables the direct imaging of these crustal features at an unprecedented spatial resolution.
Cited articles
Bartels, T., Gelhaus, M., and Humphries, M.: VSP Measurements Used as a Tool for Sub Salt Near Field Development, in: Conference Proceedings, 77th EAGE Annual Meeting, Madrid, Spain, 1–4 June, We N104 15,
https://doi.org/10.3997/2214-4609.201412918, 2015. a
Bauer, K., Norden, B., Ivanova, A., Stiller, M., and Krawczyk, C. M.: Wavelet transform-based seismic facies classification and modelling: application to a geothermal target horizon in the NE German Basin, Geophys. Prospect., 68, 466–482, https://doi.org/10.1111/1365-2478.12853, 2020. a, b, c
Bellefleur, G., Schetselaar, E., Wade, D., White, D., Enkin, R., and Schmitt, D. R.: Vertical seismic profiling using distributed acoustic sensing with scatter-enhanced fibre-optic cable at the Cu–Au New Afton porphyry deposit, British Columbia, Canada, Geophys. Prospect., 68, 313–333, https://doi.org/10.1111/1365-2478.12828, 2020. a
Blöcher, G., Reinsch, T., Henninges, J., Milsch, H., Regenspurg, S., Kummerow, J., Francke, H., Kranz, S., Saadat, A., Zimmermann, G., and Huenges, E.: Hydraulic history and current state of the deep geothermal reservoir Groß Schönebeck, Geothermics, 63, 27–43, https://doi.org/10.1016/j.geothermics.2015.07.008, 2016. a
Booth, A. D., Christoffersen, P., Schoonman, C., Clarke, A., Hubbard, B., Law, R., Doyle, S. H., Chudley, T. R., and Chalari, A.: Distributed Acoustic Sensing of Seismic Properties in a Borehole Drilled on a Fast-Flowing Greenlandic Outlet Glacier, Geophys. Res. Lett., 47, e2020GL088148, https://doi.org/10.1029/2020GL088148, 2020. a
Brisbourne, A. M., Kendall, M., Kufner, S.-K., Hudson, T. S., and Smith, A. M.: Downhole distributed acoustic seismic profiling at Skytrain Ice Rise, West Antarctica, The Cryosphere, 15, 3443–3458, https://doi.org/10.5194/tc-15-3443-2021, 2021. a
Burg, J.: Maximum Energy Spectral Analysis, PhD thesis, Stanford University, http://sepwww.stanford.edu/data/media/public/oldreports/sep06/06_01.pdf (last access: 1 May 2022), 1975. a
Burg, J. P.: The relationship between maximum entropy spectra and maximum likelihood spectra, Geophysics, 37, 375–376, https://doi.org/10.1190/1.1440265, 1972. a
Carrara, S., Shortall, R., and Uihlein, A.: Geothermal Energy – Technology Development Report 2020, https://doi.org/10.2760/16847, 2020. a, b, c
Constantinou, A., Farahani, A., Cuny, T., and Hartog, A.: Improving DAS acquisition by real-time monitoring of wireline cable coupling, in: Expanded Abstracts, 86th SEG Annual Meeting, Dallas, Texas, USA, 16–21 October 2016, 5603–5607, https://doi.org/10.1190/segam2016-13950092.1, 2016. a
Correa, J., Pevzner, R., Bona, A., Tertyshnikov, K., Freifeld, B., Robertson, M., and Daley, T.: 3D vertical seismic profile acquired with distributed acoustic sensing on tubing installation: A case study from the CO2CRC Otway Project, Interpretation, 7, SA11–SA19, https://doi.org/10.1190/INT-2018-0086.1, 2019. a, b, c
Currenti, G., Jousset, P., Napoli, R., Krawczyk, C., and Weber, M.: On the comparison of strain measurements from fibre optics with a dense seismometer array at Etna volcano (Italy), Solid Earth, 12, 993–1003, https://doi.org/10.5194/se-12-993-2021, 2021. a
Dean, T., Cuny, T., and Hartog, A. H.: The effect of gauge length on axially incident P-waves measured using fibre optic distributed vibration sensing, Geophys. Prospect., 65, 184–193, https://doi.org/10.1111/1365-2478.12419, 2017. a, b
Dillon, P. B. and Thomson, R. C.: Offset Source VSP Surveys and Their Image Reconstruction*, Geophys. Prospect., 32, 790–811, https://doi.org/10.1111/j.1365-2478.1984.tb00739.x, 1984. a
Dou, S., Lindsey, N., Wagner, A. M., Daley, T. M., Freifeld, B., Robertson, M., Peterson, J., Ulrich, C., Martin, E. R., and Ajo-Franklin, J. B.: Distributed Acoustic Sensing for Seismic Monitoring of The Near Surface: A Traffic-Noise Interferometry Case Study, Scientific Reports, 7, 11620, https://doi.org/10.1038/s41598-017-11986-4, 2017. a
Elboth, T., Fugro Geoteam, Qaisrani, H. H., and Hertweck, T.: De-noising seismic data in the time-frequency domain, in: Expanded Abstracts, 78th SEG Annual Meeting, Las Vegas, Nevada, USA, 9–14 November 2008, 2622–2626, https://doi.org/10.1190/1.3063887, 2008. a
Guterch, A., Wybraniec, S., Grad, M., Chadwick, A., Krawczyk, C., Ziegler, P., Thybo, H., and De Vos, W.: Crustal structure and structural framework, in: Petroleum Geological Atlas of the Southern Permian Basin Area, EAGE Publications b.v., Houten, the Netherlands, 11–23, ISBN: 978073781610, 2010. a
Götz, J., Lüth, S., Henninges, J., and Reinsch, T.: Vertical seismic profiling using a daisy-chained deployment of fibre-optic cables in four wells simultaneously – Case study at the Ketzin carbon dioxide storage site, Geophys. Prospect., 66, 1201–1214, https://doi.org/10.1111/1365-2478.12638, 2018. a, b, c
Henninges, J., Baumann, G., Brandt, W., Cunow, C., Poser, M., Schrötter, J., and Huenges, E.: A Novel Hybrid Wireline Logging System for Downhole Monitoring of Fluid Injection and Production in Deep Reservoirs, in: Conference Proceedings, 73rd EAGE Conference & Exhibition, Vienna, Austria, 23–26 May 2011,
C043, https://doi.org/10.3997/2214-4609.20149727, 2011. a
Henninges, J., Martuganova, E., Stiller, M., Norden, B., and Krawczyk, C. M.: Wireline distributed acoustic sensing allows 4.2 km deep vertical seismic profiling of the Rotliegend 150 ∘C geothermal reservoir in the North German Basin, Solid Earth, 12, 521–537, https://doi.org/10.5194/se-12-521-2021, 2021. a, b, c, d
Hudson, T., Baird, A., Kendall, J., Kufner, S., Brisbourne, A., Smith, A., Butcher, A., Chalari, A., and Clarke, A.: Distributed Acoustic Sensing in Antarctica: What we can learn for studying microseismicity elsewhere, in: Conference Proceedings, EAGE GeoTech 2021 Second EAGE Workshop on Distributed Fibre Optic Sensing, Online, 1–5 March 2021, 1–5, https://doi.org/10.3997/2214-4609.202131037, 2021. a
Humphries, M., Vidal, J., and de Dios, J.: VSP Monitoring for CO2 Migration Tracking in Fractured Rock Massifs, in: Conference Proceedings, 77th EAGE Conference and Exhibition no. 1, Madrid, Spain, 1–4 June 2015, 1–5, https://doi.org/10.3997/2214-4609.201412672, 2015. a
IEA Geothermal: The 2019 Annual Report, IEA Geothermal, https://iea-gia.org/publications-2/annual-reports/ (last access: 1 May 2022) 2020. a
Jiang, T., Zhan, G., Hance, T., Sugianto, S., Soulas, S., and Kjos, E.: Valhall dual-well 3D DAS VSP field trial and imaging for active wells, in: Expanded Abstracts, 86th SEG Annual Meeting, Dallas, Texas, USA, 16–21 October 2016, 5582–5586, https://doi.org/10.1190/segam2016-13871754.1, 2016. a, b
Jousset, P., Currenti, G., Schwarz, B., Chalari, A., Tilmann, F., Reinsch, T., Zuccarello, L., Privitera, E., and Krawczyk, C. M.: Fibre optic distributed acoustic sensing of volcanic events, Nat. Commun., 13, 1753, https://doi.org/10.1038/s41467-022-29184-w, 2022. a
Klaasen, S., Paitz, P., Lindner, N., Dettmer, J., and Fichtner, A.: Distributed Acoustic Sensing in Volcano-Glacial Environments – Mount Meager, British Columbia, J. Geophys. Res.-Sol. Ea., 126, e2021JB022358, https://doi.org/10.1029/2021JB022358, 2021. a
Krawczyk, C. M.: Wie Glasfaserkabel als Geosensoren zur Erkundung und Überwachung des Untergrunds genutzt werden können – Anwendungen und Potenzial von ortsverteilten faseroptischen Messungen (How fibre optic cables can be used as geosensors to explore and monitor the subsurface – Applications and Potential of distributed acoustic sensing), Brandenburgische Geowiss. Beiträge, 28, 15–28, 2021. a
Lellouch, A., Schultz, R., Lindsey, N., Biondi, B., and Ellsworth, W.: Low-Magnitude Seismicity With a Downhole Distributed Acoustic Sensing Array – Examples From the FORGE Geothermal Experiment, J. Geophys. Res.-Sol. Ea., 126, e2020JB020462, https://doi.org/10.1029/2020JB020462, 2021. a
Li, Z. and Zhan, Z.: Pushing the limit of earthquake detection with distributed acoustic sensing and template matching: a case study at the Brady geothermal field, Geophys. J. Int., 215, 1583–1593, https://doi.org/10.1093/gji/ggy359, 2018. a
Lim, T., Fujimoto, A., Kobayashi, T., and Mondanos, M.: DAS 3DVSP Data Acquisition for Methane Hydrate Research, in: Conference Proceedings, EAGE Workshop on Fiber Optic Sensing for Energy Applications in Asia Pacific, Kuala Lumpur, Malaysia, 9–11 November 2020, 1–5, https://doi.org/10.3997/2214-4609.202070014, 2020. a
Lior, I., Sladen, A., Rivet, D., Ampuero, J.-P., Hello, Y., Becerril, C., Martins, H. F., Lamare, P., Jestin, C., Tsagkli, S., and Markou, C.: On the Detection Capabilities of Underwater Distributed Acoustic Sensing, J. Geophys. Res.-Sol. Ea., 126, e2020JB020925, https://doi.org/10.1029/2020JB020925, 2021. a
Lizarralde, D. and Swift, S.: Smooth inversion of VSP traveltime data, Geophysics, 64, 659–661, https://doi.org/10.1190/1.1444574, 1999. a
Martuganova, E., Stiller, M., Bauer, K., Henninges, J., and Krawczyk, C. M.: Cable reverberations during wireline distributed acoustic sensing measurements: their nature and methods for elimination, Geophys. Prospect., 69, 1034–1054, https://doi.org/10.1111/1365-2478.13090, 2021. a, b
Miller, D., Coleman, T., Zeng, X., Patterson, J., Reinisch, E., Wang, H., Fratta, D., Trainor-Guitton, W., Thurber, C., Robertson, M., Feigl, K., and The PoroTomo Team: DAS and DTS at Brady Hot Springs: Observations about Coupling and Coupled Interpretations, in: Proceedings, 43rd Workshop on Geothermal Reservoir Engineering, Stanford, California, 12–14 February 2018, 1–13, https://pangea.stanford.edu/ERE/pdf/IGAstandard/SGW/2018/Miller.pdf (last access: 1 May 2022), 2018. a, b, c
Moeck, I., Schandelmeier, H., and Holl, H.-G.: The stress regime in a Rotliegend reservoir of the Northeast German Basin, Int. J. Earth Sci., 98, 1643–1654, https://doi.org/10.1007/s00531-008-0316-1, 2009. a, b
Nishimura, T., Emoto, K., Nakahara, H., Miura, S., Yamamoto, M., Sugimura, S., Ishikawa, A., and Kimura, T.: Source location of volcanic earthquakes and subsurface characterization using fiber-optic cable and distributed acoustic sensing system, Scientific Reports, 11, 6319, https://doi.org/10.1038/s41598-021-85621-8, 2021. a
Norden, B., Bauer, K., and Krawczyk, C. M.: From pilot site knowledge via integrated reservoir characterization to utilization perspectives of a deep geothermal reservoir: 3D geological model at the research platform Groß Schönebeck in the Northeast German Basin, Geothermal Energy [preprint], https://doi.org/10.21203/rs.3.rs-1660889/v1, 2022. a, b, c, d, e, f, g
Reinsch, T., Henninges, J., Götz, J., Jousset, P., Bruhn, D., and Lüth, S.: Distributed Acoustic Sensing Technology for Seismic Exploration in Magmatic Geothermal Areas, in: Proceedings, World Geothermal Congress, Melbourne, Australia, 16–24 April 2015, 1–5, https://gfzpublic.gfz-potsdam.de/rest/items/item_1182900_4/component/file_1182899/content (last access: 1 May 2022), 2015. a
Schleicher, J., Hubral, P., Tygel, M., and Jaya, M. S.: Minimum apertures and Fresnel zones in migration and demigration, Geophysics, 62, 183–194, https://doi.org/10.1190/1.1444118, 1997. a
Shultz, W. and Simmons, J.: 3D DAS VSP in unconventionals: A case study, in: 89th SEG Annual Meeting, Expanded Abstracts, Houston, Texas, USA, 15–20 September 2019, 979–983, https://doi.org/10.1190/segam2019-3214518.1, 2019. a, b
Spica, Z. J., Nishida, K., Akuhara, T., Pétrélis, F., Shinohara, M., and Yamada, T.: Marine Sediment Characterized by Ocean-Bottom Fiber-Optic Seismology, Geophys. Res. Lett., 47, e2020GL088360, https://doi.org/10.1029/2020GL088360, 2020a. a
Spica, Z. J., Perton, M., Martin, E. R., Beroza, G. C., and Biondi, B.: Urban Seismic Site Characterization by Fiber-Optic Seismology, J. Geophys. Res.-Sol. Ea., 125, e2019JB018656, https://doi.org/10.1029/2019JB018656, 2020b. a
Stiller, M., Krawczyk, C. M., Bauer, K., Henninges, J., Norden, B., Huenges, E., and Spalek, A.: 3D-Seismik am Geothermieforschungsstandort Groß Schönebeck, BBR – Fachmagazin für Brunnen- und Leitungsbau, 1, 84–91, 2018. a
Sun, J.: Limited-aperture migration, Geophysics, 65, 584, https://doi.org/10.1190/1.1444754, 2000. a
The European Commission: Report from the commission to the European parliament and the council. Progress on competitiveness of clean energy technologies. Part 4/5, Publications Office of the European Union, Brussels (Belgium), https://eur-lex.europa.eu/resource.html?uri=cellar:871975a1-0e05-11eb-bc07-01aa75ed71a1.0001.02/DOC_4&format=PDF (last access: 1 May 2022), 2021. a
Thomsen, L.: Weak elastic anisotropy, Geophysics, 51, 1954–1966, https://doi.org/10.1190/1.1442051, 1986. a
Trainor-Guitton, W., Guitton, A., Jreij, S., Powers, H., Sullivan, C. B., Simmons, J., and Porotomo Team: 3D Imaging from vertical DAS fiber at Brady’s Natural Laboratory, in: Proceedings, 43rd Workshop on Geothermal Reservoir Engineering, Stanford, California, 12–14 February 2018, 1–11, https://pangea.stanford.edu/ERE/pdf/IGAstandard/SGW/2018/Trainorguitton.pdf (last access: 1 May 2022), 2018. a, b, c
Trautwein, U. and Huenges, E.: Poroelastic behaviour of physical properties in Rotliegend sandstones under uniaxial strain, Int. J. Rock Mech. Min., 42, 924–932, https://doi.org/10.1016/j.ijrmms.2005.05.016, 2005. a, b
Wilson, G. A., Willis, M. E., and Ellmauthaler, A.: Evaluating 3D and 4D DAS VSP image quality of subsea carbon storage, The Leading Edge, 40, 261–266, https://doi.org/10.1190/tle40040261.1, 2021. a
Yu, G., Cai, Z., Chen, Y., Wang, X., Zhang, Q., Li, Y., Wang, Y., Liu, C., Zhao, B., and Greer, J.: Walkaway VSP using multimode optical fibers in a hybrid wireline, The Leading Edge, 35, 615–619, https://doi.org/10.1190/tle35070615.1, 2016. a, b
Yuan, S., Lellouch, A., Clapp, R. G., and Biondi, B.: Near-surface characterization using a roadside distributed acoustic sensing array, The Leading Edge, 39, 646–653, https://doi.org/10.1190/tle39090646.1, 2020.
a
Zhan, G. and Nahm, J.: Multi-well 3D DAS VSPs: Illumination and imaging beyond the wellbores, in: Expanded Abstracts, 90th SEG Annual Meeting, Online, 11–16 October 2020, 3798–3802, https://doi.org/10.1190/segam2020-3426032.1, 2020. a
Zimmermann, G., Moeck, I., and Blöcher, G.: Cyclic waterfrac stimulation to develop an Enhanced Geothermal System (EGS) – Conceptual design and experimental results, Geothermics, 39, 59–69, https://doi.org/10.1016/j.geothermics.2009.10.003, 2010. a
Short summary
We demonstrate the applicability of vertical seismic profiling (VSP) acquired using wireline distributed acoustic sensing (DAS) technology for deep geothermal reservoir imaging and characterization. Borehole DAS data provide critical input for seismic interpretation and help assess small-scale geological structures. This case study can be used as a basis for detailed structural exploration of geothermal reservoirs and provide insightful information for geothermal exploration projects.
We demonstrate the applicability of vertical seismic profiling (VSP) acquired using wireline...
Special issue