Articles | Volume 13, issue 11
https://doi.org/10.5194/se-13-1673-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-13-1673-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Geophysical analysis of an area affected by subsurface dissolution – case study of an inland salt marsh in northern Thuringia, Germany
Sonja H. Wadas
CORRESPONDING AUTHOR
Leibniz Institute for Applied Geophysics, Stilleweg 2, 30655 Hanover, Germany
Hermann Buness
Leibniz Institute for Applied Geophysics, Stilleweg 2, 30655 Hanover, Germany
Raphael Rochlitz
Leibniz Institute for Applied Geophysics, Stilleweg 2, 30655 Hanover, Germany
Peter Skiba
Leibniz Institute for Applied Geophysics, Stilleweg 2, 30655 Hanover, Germany
Department 2.3
Groundwater Resources – Quality and Dynamics, Federal Institute for Geosciences and Natural Resources, Stilleweg 2, 30655 Hanover, Germany
deceased
Thomas Günther
Leibniz Institute for Applied Geophysics, Stilleweg 2, 30655 Hanover, Germany
Michael Grinat
Leibniz Institute for Applied Geophysics, Stilleweg 2, 30655 Hanover, Germany
David C. Tanner
Leibniz Institute for Applied Geophysics, Stilleweg 2, 30655 Hanover, Germany
Ulrich Polom
Leibniz Institute for Applied Geophysics, Stilleweg 2, 30655 Hanover, Germany
Gerald Gabriel
Leibniz Institute for Applied Geophysics, Stilleweg 2, 30655 Hanover, Germany
Leibniz University Hanover, Institute of Geology, Callinstraße 30, 30167 Hanover, Germany
Charlotte M. Krawczyk
GFZ, German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Technical University Berlin, Institute for Applied Geosciences, Ernst-Reuter-Platz 1, 10587 Berlin, Germany
Related authors
Stephen P. Hesselbo, Aisha Al-Suwaidi, Sarah J. Baker, Giorgia Ballabio, Claire M. Belcher, Andrew Bond, Ian Boomer, Remco Bos, Christian J. Bjerrum, Kara Bogus, Richard Boyle, James V. Browning, Alan R. Butcher, Daniel J. Condon, Philip Copestake, Stuart Daines, Christopher Dalby, Magret Damaschke, Susana E. Damborenea, Jean-Francois Deconinck, Alexander J. Dickson, Isabel M. Fendley, Calum P. Fox, Angela Fraguas, Joost Frieling, Thomas A. Gibson, Tianchen He, Kat Hickey, Linda A. Hinnov, Teuntje P. Hollaar, Chunju Huang, Alexander J. L. Hudson, Hugh C. Jenkyns, Erdem Idiz, Mengjie Jiang, Wout Krijgsman, Christoph Korte, Melanie J. Leng, Timothy M. Lenton, Katharina Leu, Crispin T. S. Little, Conall MacNiocaill, Miguel O. Manceñido, Tamsin A. Mather, Emanuela Mattioli, Kenneth G. Miller, Robert J. Newton, Kevin N. Page, József Pálfy, Gregory Pieńkowski, Richard J. Porter, Simon W. Poulton, Alberto C. Riccardi, James B. Riding, Ailsa Roper, Micha Ruhl, Ricardo L. Silva, Marisa S. Storm, Guillaume Suan, Dominika Szűcs, Nicolas Thibault, Alfred Uchman, James N. Stanley, Clemens V. Ullmann, Bas van de Schootbrugge, Madeleine L. Vickers, Sonja Wadas, Jessica H. Whiteside, Paul B. Wignall, Thomas Wonik, Weimu Xu, Christian Zeeden, and Ke Zhao
Sci. Dril., 32, 1–25, https://doi.org/10.5194/sd-32-1-2023, https://doi.org/10.5194/sd-32-1-2023, 2023
Short summary
Short summary
We present initial results from a 650 m long core of Late Triasssic to Early Jurassic (190–202 Myr) sedimentary strata from the Cheshire Basin, UK, which is shown to be an exceptional record of Earth evolution for the time of break-up of the supercontinent Pangaea. Further work will determine periodic changes in depositional environments caused by solar system dynamics and used to reconstruct orbital history.
Sonja H. Wadas, Johanna F. Krumbholz, Vladimir Shipilin, Michael Krumbholz, David C. Tanner, and Hermann Buness
Solid Earth, 14, 871–908, https://doi.org/10.5194/se-14-871-2023, https://doi.org/10.5194/se-14-871-2023, 2023
Short summary
Short summary
The geothermal carbonate reservoir below Munich, Germany, is extremely heterogeneous because it is controlled by many factors like lithology, diagenesis, karstification, and tectonic deformation. We used a 3D seismic single- and multi-attribute analysis combined with well data and a neural-net-based lithology classification to obtain an improved reservoir concept outlining its structural and diagenetic evolution and to identify high-quality reservoir zones in the Munich area.
Janek Greskowiak, Rena Meyer, Jairo Cueto, Nico Skibbe, Anja Reckhardt, Thomas Günther, Stephan Ludger Seibert, Kai Schwalfenberg, Dietmar Pommerin, Mike Müller-Petke, and Gudrun Massmann
EGUsphere, https://doi.org/10.5194/egusphere-2025-3132, https://doi.org/10.5194/egusphere-2025-3132, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Mixing of fresh groundwater and circulating seawater below beaches triggers water-rock chemical reactions and may affect coastal water quality. The subsurface of so-called high-energy beaches that are exposed to high tides, waves and storm floods are understudied as monitoring under these conditions is difficult. For the first time, this study quantifies the subsurface flow and mixing processes of a high-energy beach with the help of computer simulations based on an extensive set of field data.
Thomas Burschil, Daniel Köhn, Matthias Körbe, Gerald Gabriel, Johannes Großmann, Gustav Firla, and Markus Fiebig
EGUsphere, https://doi.org/10.5194/egusphere-2025-2370, https://doi.org/10.5194/egusphere-2025-2370, 2025
Short summary
Short summary
The study investigates a glacially overdeepened basin near Schäftlarn, Germany, to develop a combined workflow for high-resolution seismic reflection (HRSR) and full-waveform inversion (FWI). Seismic data from various sources and receiver types reveal detailed basin structures, including previously unknown internal reflectors. HRSR with S-waves show more details than P-waves. First FWI delivers consistent velocity models.
Sarah Beraus, Thomas Burschil, Hermann Buness, Daniel Köhn, Thomas Bohlen, and Gerald Gabriel
Sci. Dril., 33, 237–248, https://doi.org/10.5194/sd-33-237-2024, https://doi.org/10.5194/sd-33-237-2024, 2024
Short summary
Short summary
We conducted seismic crosshole experiments with a sparker source in order to obtain a high-resolution subsurface velocity model in the glacially overdeepened Tannwald Basin (ICDP site 5068_1). The data show complex wave fields that contain a lot of information but also present challenges. Nevertheless, isotropic first-arrival travel-time tomography provides the first high-resolution subsurface models that correlate well with the sonic logs and the core recovered from one of the three boreholes.
Bennet Schuster, Lukas Gegg, Sebastian Schaller, Marius W. Buechi, David C. Tanner, Ulrike Wielandt-Schuster, Flavio S. Anselmetti, and Frank Preusser
Sci. Dril., 33, 191–206, https://doi.org/10.5194/sd-33-191-2024, https://doi.org/10.5194/sd-33-191-2024, 2024
Short summary
Short summary
The Tannwald Basin, explored by drilling and formed by repeated advances of the Rhine Glacier, reveals key geological insights. Ice-contact sediments and evidence of deformation highlight gravitational and glaciotectonic processes. ICDP DOVE 5068_1_C core data define lithofacies associations, reflecting basin infill cycles, marking at least three distinct glacial advances. Integrating these findings aids understanding the broader glacial evolution of the Lake Constance amphitheater.
Rahmantara Trichandi, Klaus Bauer, Trond Ryberg, Benjamin Heit, Jaime Araya Vargas, Friedhelm von Blanckenburg, and Charlotte M. Krawczyk
Earth Surf. Dynam., 12, 747–763, https://doi.org/10.5194/esurf-12-747-2024, https://doi.org/10.5194/esurf-12-747-2024, 2024
Short summary
Short summary
This study investigates subsurface weathering zones, revealing their structure through shear wave velocity variations. The research focuses on the arid climate of Pan de Azúcar National Park, Chile, using seismic ambient noise recordings to construct pseudo-3D models. The resulting models show the subsurface structure, including granite gradients and mafic dike intrusions. Comparison with other sites emphasizes the intricate relationship between climate, geology, and weathering depth.
Stephen P. Hesselbo, Aisha Al-Suwaidi, Sarah J. Baker, Giorgia Ballabio, Claire M. Belcher, Andrew Bond, Ian Boomer, Remco Bos, Christian J. Bjerrum, Kara Bogus, Richard Boyle, James V. Browning, Alan R. Butcher, Daniel J. Condon, Philip Copestake, Stuart Daines, Christopher Dalby, Magret Damaschke, Susana E. Damborenea, Jean-Francois Deconinck, Alexander J. Dickson, Isabel M. Fendley, Calum P. Fox, Angela Fraguas, Joost Frieling, Thomas A. Gibson, Tianchen He, Kat Hickey, Linda A. Hinnov, Teuntje P. Hollaar, Chunju Huang, Alexander J. L. Hudson, Hugh C. Jenkyns, Erdem Idiz, Mengjie Jiang, Wout Krijgsman, Christoph Korte, Melanie J. Leng, Timothy M. Lenton, Katharina Leu, Crispin T. S. Little, Conall MacNiocaill, Miguel O. Manceñido, Tamsin A. Mather, Emanuela Mattioli, Kenneth G. Miller, Robert J. Newton, Kevin N. Page, József Pálfy, Gregory Pieńkowski, Richard J. Porter, Simon W. Poulton, Alberto C. Riccardi, James B. Riding, Ailsa Roper, Micha Ruhl, Ricardo L. Silva, Marisa S. Storm, Guillaume Suan, Dominika Szűcs, Nicolas Thibault, Alfred Uchman, James N. Stanley, Clemens V. Ullmann, Bas van de Schootbrugge, Madeleine L. Vickers, Sonja Wadas, Jessica H. Whiteside, Paul B. Wignall, Thomas Wonik, Weimu Xu, Christian Zeeden, and Ke Zhao
Sci. Dril., 32, 1–25, https://doi.org/10.5194/sd-32-1-2023, https://doi.org/10.5194/sd-32-1-2023, 2023
Short summary
Short summary
We present initial results from a 650 m long core of Late Triasssic to Early Jurassic (190–202 Myr) sedimentary strata from the Cheshire Basin, UK, which is shown to be an exceptional record of Earth evolution for the time of break-up of the supercontinent Pangaea. Further work will determine periodic changes in depositional environments caused by solar system dynamics and used to reconstruct orbital history.
Sonja H. Wadas, Johanna F. Krumbholz, Vladimir Shipilin, Michael Krumbholz, David C. Tanner, and Hermann Buness
Solid Earth, 14, 871–908, https://doi.org/10.5194/se-14-871-2023, https://doi.org/10.5194/se-14-871-2023, 2023
Short summary
Short summary
The geothermal carbonate reservoir below Munich, Germany, is extremely heterogeneous because it is controlled by many factors like lithology, diagenesis, karstification, and tectonic deformation. We used a 3D seismic single- and multi-attribute analysis combined with well data and a neural-net-based lithology classification to obtain an improved reservoir concept outlining its structural and diagenetic evolution and to identify high-quality reservoir zones in the Munich area.
Flavio S. Anselmetti, Milos Bavec, Christian Crouzet, Markus Fiebig, Gerald Gabriel, Frank Preusser, Cesare Ravazzi, and DOVE scientific team
Sci. Dril., 31, 51–70, https://doi.org/10.5194/sd-31-51-2022, https://doi.org/10.5194/sd-31-51-2022, 2022
Short summary
Short summary
Previous glaciations eroded below the ice deep valleys in the Alpine foreland, which, with their sedimentary fillings, witness the timing and extent of these glacial advance–retreat cycles. Drilling such sedimentary sequences will thus provide well-needed evidence in order to reconstruct the (a)synchronicity of past ice advances in a trans-Alpine perspective. Eventually these data will document how the Alpine foreland was shaped and how the paleoclimate patterns varied along and across the Alps.
Evgeniia Martuganova, Manfred Stiller, Ben Norden, Jan Henninges, and Charlotte M. Krawczyk
Solid Earth, 13, 1291–1307, https://doi.org/10.5194/se-13-1291-2022, https://doi.org/10.5194/se-13-1291-2022, 2022
Short summary
Short summary
We demonstrate the applicability of vertical seismic profiling (VSP) acquired using wireline distributed acoustic sensing (DAS) technology for deep geothermal reservoir imaging and characterization. Borehole DAS data provide critical input for seismic interpretation and help assess small-scale geological structures. This case study can be used as a basis for detailed structural exploration of geothermal reservoirs and provide insightful information for geothermal exploration projects.
Martin Peter Lipus, Felix Schölderle, Thomas Reinsch, Christopher Wollin, Charlotte Krawczyk, Daniela Pfrang, and Kai Zosseder
Solid Earth, 13, 161–176, https://doi.org/10.5194/se-13-161-2022, https://doi.org/10.5194/se-13-161-2022, 2022
Short summary
Short summary
A fiber-optic cable was installed along a freely suspended rod in a deep geothermal well in Munich, Germany. A cold-water injection test was monitored with fiber-optic distributed acoustic and temperature sensing. During injection, we observe vibrational events in the lower part of the well. On the basis of a mechanical model, we conclude that the vibrational events are caused by thermal contraction of the rod. The results illustrate potential artifacts when analyzing downhole acoustic data.
Tommaso Pivetta, Carla Braitenberg, Franci Gabrovšek, Gerald Gabriel, and Bruno Meurers
Hydrol. Earth Syst. Sci., 25, 6001–6021, https://doi.org/10.5194/hess-25-6001-2021, https://doi.org/10.5194/hess-25-6001-2021, 2021
Short summary
Short summary
Gravimetry offers a valid complement to classical hydrologic measurements in order to characterize karstic systems in which the recharge process causes fast accumulation of large water volumes in the voids of the epi-phreatic system. In this contribution we show an innovative integration of gravimetric and hydrologic observations to constrain a hydrodynamic model of the Škocjan Caves (Slovenia). We demonstrate how the inclusion of gravity observations improves the water mass budget estimates.
Andreas Eberts, Hamed Fazlikhani, Wolfgang Bauer, Harald Stollhofen, Helga de Wall, and Gerald Gabriel
Solid Earth, 12, 2277–2301, https://doi.org/10.5194/se-12-2277-2021, https://doi.org/10.5194/se-12-2277-2021, 2021
Short summary
Short summary
We combine gravity anomaly and topographic data with observations from thermochronology, metamorphic grades, and the granite inventory to detect patterns of basement block segmentation and differential exhumation along the southwestern Bohemian Massif. Based on our analyses, we introduce a previously unknown tectonic structure termed Cham Fault, which, together with the Pfahl and Danube shear zones, is responsible for the exposure of different crustal levels during late to post-Variscan times.
Djamil Al-Halbouni, Robert A. Watson, Eoghan P. Holohan, Rena Meyer, Ulrich Polom, Fernando M. Dos Santos, Xavier Comas, Hussam Alrshdan, Charlotte M. Krawczyk, and Torsten Dahm
Hydrol. Earth Syst. Sci., 25, 3351–3395, https://doi.org/10.5194/hess-25-3351-2021, https://doi.org/10.5194/hess-25-3351-2021, 2021
Short summary
Short summary
The rapid decline of the Dead Sea level since the 1960s has provoked a dynamic reaction from the coastal groundwater system, with physical and chemical erosion creating subsurface voids and conduits. By combining remote sensing, geophysical methods, and numerical modelling at the Dead Sea’s eastern shore, we link groundwater flow patterns to the formation of surface stream channels, sinkholes and uvalas. Better understanding of this karst system will improve regional hazard assessment.
Pavol Zahorec, Juraj Papčo, Roman Pašteka, Miroslav Bielik, Sylvain Bonvalot, Carla Braitenberg, Jörg Ebbing, Gerald Gabriel, Andrej Gosar, Adam Grand, Hans-Jürgen Götze, György Hetényi, Nils Holzrichter, Edi Kissling, Urs Marti, Bruno Meurers, Jan Mrlina, Ema Nogová, Alberto Pastorutti, Corinne Salaun, Matteo Scarponi, Josef Sebera, Lucia Seoane, Peter Skiba, Eszter Szűcs, and Matej Varga
Earth Syst. Sci. Data, 13, 2165–2209, https://doi.org/10.5194/essd-13-2165-2021, https://doi.org/10.5194/essd-13-2165-2021, 2021
Short summary
Short summary
The gravity field of the Earth expresses the overall effect of the distribution of different rocks at depth with their distinguishing densities. Our work is the first to present the high-resolution gravity map of the entire Alpine orogen, for which high-quality land and sea data were reprocessed with the exact same calculation procedures. The results reflect the local and regional structure of the Alpine lithosphere in great detail. The database is hereby openly shared to serve further research.
Gilda Currenti, Philippe Jousset, Rosalba Napoli, Charlotte Krawczyk, and Michael Weber
Solid Earth, 12, 993–1003, https://doi.org/10.5194/se-12-993-2021, https://doi.org/10.5194/se-12-993-2021, 2021
Short summary
Short summary
We investigate the capability of distributed acoustic sensing (DAS) to record dynamic strain changes related to Etna volcano activity in 2019. To validate the DAS measurements, we compute strain estimates from seismic signals recorded by a dense broadband array. A general good agreement is found between array-derived strain and DAS measurements along the fibre optic cable. Localised short wavelength discrepancies highlight small-scale structural heterogeneities in the investigated area.
Jan Henninges, Evgeniia Martuganova, Manfred Stiller, Ben Norden, and Charlotte M. Krawczyk
Solid Earth, 12, 521–537, https://doi.org/10.5194/se-12-521-2021, https://doi.org/10.5194/se-12-521-2021, 2021
Short summary
Short summary
We performed a seismic survey in two 4.3 km deep geothermal research wells using the novel method of distributed acoustic sensing and wireline cables. The characteristics of the acquired data, methods for data processing and quality improvement, and interpretations on the geometry and structure of the sedimentary and volcanic reservoir rocks are presented. The method enables measurements at high temperatures and reduced cost compared to conventional sensors.
Vladimir Shipilin, David C. Tanner, Hartwig von Hartmann, and Inga Moeck
Solid Earth, 11, 2097–2117, https://doi.org/10.5194/se-11-2097-2020, https://doi.org/10.5194/se-11-2097-2020, 2020
Short summary
Short summary
In our work, we carry out an in-depth structural analysis of a geometrically decoupled fault system in the southern German Molasse Basin using a high-resolution 3-D seismic dataset. Based on this analysis, we reconstruct the tectonic history and changes in the stress regimes to explain the structure and evolution of faults. The results contribute in understanding the driving mechanisms behind formation, propagation, and reactivation of faults during foreland basin formation.
Benjamin Schwarz and Charlotte M. Krawczyk
Solid Earth, 11, 1891–1907, https://doi.org/10.5194/se-11-1891-2020, https://doi.org/10.5194/se-11-1891-2020, 2020
Short summary
Short summary
Intricate fault and fracture networks cut through the upper crust, and their detailed delineation and characterization play an important role in the Earth sciences. While conventional geophysical sounding techniques only provide indirect means of detection, we present scale-spanning field data examples, in which coherent diffraction imaging – a framework inspired by optics and visual perception – enables the direct imaging of these crustal features at an unprecedented spatial resolution.
Cited articles
Abelson, M., Baer, G., Shtivelman, V., Wachs, D., Raz, E., Crouvi, O., Kurzon, I., and Yechieli, Y.:
Collapse-sinkholes and radar interferometry reveal neotectonics concealed within the Dead Sea basin,
Geophys. Res. Lett., 30, 52.1–52.4, https://doi.org/10.1029/2003GL017103, 2003. a
Abou Karaki, N., Fiaschi, S., Paenen, K., Al-Awabdeh, M., and Closson, D.: Exposure of tourism development to salt karst hazards along the Jordanian Dead Sea shore, Hydrol. Earth Syst. Sci., 23, 2111–2127, https://doi.org/10.5194/hess-23-2111-2019, 2019. a
Al-Halbouni, D., Holohan, E. P., Taheri, A., Schöpfer, M. P. J., Emam, S., and Dahm, T.: Geomechanical modelling of sinkhole development using distinct elements: model verification for a single void space and application to the Dead Sea area, Solid Earth, 9, 1341–1373, https://doi.org/10.5194/se-9-1341-2018, 2018. a
Al-Halbouni, D., Holohan, E. P., Taheri, A., Watson, R. A., Polom, U., Schöpfer, M. P. J., Emam, S., and Dahm, T.: Distinct element geomechanical modelling of the formation of sinkhole clusters within large-scale karstic depressions, Solid Earth, 10, 1219–1241, https://doi.org/10.5194/se-10-1219-2019, 2019. a
Al-Halbouni, D., Watson, R. A., Holohan, E. P., Meyer, R., Polom, U., Dos Santos, F. M., Comas, X., Alrshdan, H., Krawczyk, C. M., and Dahm, T.: Dynamics of hydrological and geomorphological processes in evaporite karst at the eastern Dead Sea – a multidisciplinary study, Hydrol. Earth Syst. Sci., 25, 3351–3395, https://doi.org/10.5194/hess-25-3351-2021, 2021. a
Augarde, C. E., Lyamin, A. V., and Sloan, S. W.:
Prediction of Undrained Sinkhole Collapse,
J. Geotech. Geoenviron., 129, 197–205, https://doi.org/10.1061/(ASCE)1090-0241(2003)129:3(197), 2003. a
Batayneh, A. T., Abueladas, A. A., and Moumani, K. A.:
Use of ground-penetrating radar for assessment of potential sinkhole conditions: an example from Ghor al Haditha area, Jordan,
Environ. Geol., 41, 977–983, https://doi.org/10.1007/s00254-001-0477-8, 2002. a
Beck, B. F.:
Environmental and engineering effects of sinkholes – the process behind the problems,
Environ. Geol., 12, 71–78, https://doi.org/10.1007/BF02574791, 1988. a
Beck, B. F.:
Soil piping and sinkhole failures,
in: Encyclopedia of Caves, edited by: Culver, D. C. and White, W. B.,
Elsevier Publishing, 1st Edn., 523–528, https://doi.org/10.1016/B978-0-12-383832-2.00106-7, 2005. a
Billi, A., Valle, A., Brilli, M., Faccenna, C., and Funiciello, R.:
Fracture-controlled fluid circulation and dissolutional weathering in sinkhole-prone carbonate rocks from central Italy,
J. Struct. Geol., 29, 385–395, https://doi.org/10.1016/j.jsg.2006.09.008, 2007. a
BKG – Bundesamt für Kartographie und Geodäsie:
Digitales Geländemodell Gitterweite 25 m (DGM25), https://gdz.bkg.bund.de/index.php/default/digitales-gelandemodell-gitterweite-25-m-dgm25.html, 2009. a
Bosch, F. P. and Müller, I.:
Continuous gradient VLF measurements: a new possibility for high resolution mapping of karst structures,
First Break, 19, 343–350, https://doi.org/10.1046/j.1365-2397.2001.00173.x, 2001. a, b
Bosch, F. P. and Müller, I.:
Improved karst exploration by VLF-EM-gradient survey: comparison with other geophysical methods,
Near Surf. Geophys., 3, 299–310, https://doi.org/10.3997/1873-0604.2005025, 2005. a
Butler, K.:
Microgravimetric and gravity gradient techniques for detection of subsurface cavities,
Geophysics, 49, 1084–1096, https://doi.org/10.1190/1.1441723, 1984. a, b
Closson, D. and Abou Karaki, N.:
Salt karst and tectonics: sinkholes development along tension cracks between parallel strike-slip faults, Dead Sea, Jordan,
Earth Surf. Proc. Land., 34, 1408–1421, https://doi.org/10.1002/esp.1829, 2009. a, b
Dasios, A., McClann, C., Astin, T. R., McCann, D. M., and Fenning, P.:
Seismic imaging of the shallow subsurface: shear-wave case histories,
Geophys. Prospect., 47, 565–591, https://doi.org/10.1046/j.1365-2478.1999.00138.x, 1999. a
Davies, W. E.:
Mechanics of Cavern Breakdown,
Bull. Nat. Speleo. Soc., 13, 36–43, 1951. a
Del Prete, S., Iovine, G., Parise, M., and Santo, A.:
Origin and distribution of different types of sinkholes in the plain areas of Southern Italy,
Geodin. Acta, 23, 113–127, https://doi.org/10.3166/ga.23.113-127, 2010. a, b
De Waele, J., Piccini, L., Columbu, A., Madonia, G., Vattano, M., Calligaris, C., D'Angeli, I.M., Parise, M., Chiesi, M., Sivelli, M., Vigna, B., Zini, L., Chiarini, V., Sauro, F., Drysdale, R., and Forti, P.:
Evaporite karst in Italy: a review,
Int. J. Speleol., 46, 137–168, https://doi.org/10.5038/1827-806X.46.2.2107, 2017. a
Doetsch, J., Linde, N., Pessognelli, M., Green, A. G., and Günther, T.:
Constraining 3-D electrical resistance tomography with GPR reflection data for improved aquifer characterization,
J. Appl. Geophys., 78, 68–76, https://doi.org/10.1016/j.jappgeo.2011.04.008, 2012. a
Eppelbaum, L. V., Ezersky, M., Al-Zoubi, A., Goldshmidt, V., and Legchenko, A.:
Study of the factors affecting the karst volume assessment in the Dead Sea sinkhole problem using microgravity field analysis and 3-D modeling,
Adv. Geosci., 19, 97–115, https://doi.org/10.5194/adgeo-19-97-2008, 2008. a
Evans, M. W., Snyder, S. W., and Hine, A. C.:
High-resolution seismic expression of karst evolution within the Upper Floridian aquifer system; Crooked Lake, Polk County, Florida,
J. Sediment. Res., 64, 232–244, https://doi.org/10.1306/D4267F9B-2B26-11D7-8648000102C1865D, 1994. a, b
Ezersky, M. G. and Frumkin, A.:
Fault — Dissolution front relations and the Dead Sea sinkhole problem,
Geomorphology, 201, 35–44, https://doi.org/10.1016/j.geomorph.2013.06.002, 2013a. a, b
Ezersky, M. G., Eppelbaum, L. V., Al-Zoubi, A., Keydar, S., Abueladas, A., Akkawi, E., and Medvedev, B.:
Geophysical prediction and following development sinkholes in two Dead Sea areas, Israel and Jordan,
Environ. Earth Sci., 70, 1463–1478, https://doi.org/10.1007/s12665-013-2233-2, 2013b. a
Ezersky, M. G., Eppelbaum, L. V., Legchenko, A., Al-Zoubi, A., and Aboueladas, A.:
Salt layer characteristics in the Ghor Al-Haditha area, Jordan: comprehensive combined reprocessing of geophysical data,
Environ. Earth Sci., 80, 1–20, https://doi.org/10.1007/s12665-021-09373-4, 2021. a
Flechsig, C., Heinicke, J., Mrlina, J., Kämpf, H., Nickschick, T., Schmidt, A., Bayer, T., Günther, T., Rücker, C., Seidel, E., and Seidl, M.:
Integrated geophysical and geological methods to investigate the inner and outer structures of the Quaternary Mytina maar (W-Bohemia, Czech Republic),
Int. J. Earth Sci., 104, 2087–2105, https://doi.org/10.1007/s00531-014-1136-0, 2015. a
Frank, C.:
Beitrag zur geognostischen Kenntnis des Kyffhäusergebirges,
Berg- und Hüttenmännische Zeitung, 4, 201–257, Freiberg, Germany, 1845. a
Gabriel, G., Jahr, T., and Weber, U.:
The gravity field south of the Harz Mountains: Predominated by granitic material?,
Z. Geol. Wissenschaft, 29, 3, 249–266, http://www.zgw-online.de/en/media/249-013.pdf (last access: 21 July 2021), 2001. a
Goldscheider, N. and Bechtel, T. D.:
The housing crisis from underground-damage to a historic town by geothermal drillings through anhydrite, Staufen, Germany,
Hydrogeol. J., 17, 491–493, https://doi.org/10.1007/s10040-009-0458-7, 2009. a
Günther, T., Rücker, C., and Spitzer, K.:
3-D modeling and inversion of DC resistivity data incorporating topography – Part II: Inversion,
Geophys. J. Int., 166, 506–517, https://doi.org/10.1111/j.1365-246X.2006.03011.x, 2006. a
Gutiérrez, F., Guerrero, J., and Lucha, P.:
A genetic classification of sinkholes illustrated from evaporite paleokarst exposures in Spain,
Environ. Geol., 53, 5, 993–1006, https://doi.org/10.1007/s00254-007-0727-5, 2008. a
Gutiérrez, F., Parise, M., De Waele, J., and Jourde, H.:
A review on natural and human-induced geohazards and impacts in karst,
Earth-Sci. Rev., 138, 61–88, https://doi.org/10.1016/j.earscirev.2014.08.002, 2014. a, b, c
Hermans, T., Vandenbohede, A., Lebbe, L., Martin, R., Kemna, A., Beaujean, J., and Nguyen, F.:
Imaging artificial salt water infiltration using electrical resistivity tomography constrained by geostatistical data,
J. Hydrol., 438/439, 168–180, https://doi.org/10.1016/j.jhydrol.2012.03.021, 2012. a
Herwanger, J. V., Mohamed, F. R., Newman, R., and Vejbæk, O.:
Time-lapse seismic data-calibrated geomechanical model reveals hydraulic fracture re-orientation,
SEG, Technical Program Expanded Abstracts 2013, 4949–4953, https://doi.org/10.1190/segam2013-0947.1, 2013. a
Hinze, W. J., Aiken, C., Brozena, J., Coakley, B., Dater, D., Flanagan, G., Forsberg, R., Hildenbrand, T., Keller, G. R., and Kellogg, J.:
New standards for reducing gravity data: The North American gravity database,
Geophysics, 70, J25–J32, https://doi.org/10.1190/1.1988183, 2005. a
Inazaki, T.:
High resolution reflection surveying at paved areas using S-wave type land streamer,
Explor. Geophys., 35, 1–6, https://doi.org/10.1071/EG04001,2004. a
Iovine, G., Parise, M., and Trocino, A.:
Breakdown mechanisms in gypsum caves of southern Italy, and the related effects at the surface,
Z. Geomorphol., 54, 2, 153–178, 2010. a
Jackson, M. P. A., Vendeville, B. C., and Schultz-Ela, D. D.:
Structural dynamics of salt systems,
Annu. Rev. Earth Pl. Sc., 22, 93–117, https://doi.org/10.1146/annurev.ea.22.050194.000521, 1994. a
Jankowski, G.:
Die Tertiärbecken des südöstlichen Harzvorlandes und ihre Beziehungen zur Subrosion,
Geologie-Beiheft, 43, 1–60, 1964. a
Jordi, C., Doetsch, J., Günther, T., Schmelzbach, C., and Robertsson, J. O. A.:
Geostatistical regularization operators for geophysical inverse problems on irregular meshes,
Geophys. J. Int., 213, 1374–1386, https://doi.org/10.1093/gji/ggy055, 2018. a
Kaspar, M. and Pecen J.:
Detection of caves in a karst formation by means of electromagnetic waves,
Geophys. Prospect., 23, 611–621, https://doi.org/10.1111/j.1365-2478.1975.tb01548.x, 1975. a
Kaufmann, G.:
Geophysical mapping of solution and collapse sinkholes,
J. Appl. Geophys., 111, 271–288, https://doi.org/10.1016/j.jappgeo.2014.10.011, 2014. a
Kaufmann, G., Romanov, D., Tippelt, T., Vienken, T., Werban, U., Dietrich, P., Mai, F., and Börner, F.:
Mapping and modelling of collapse sinkholes in soluble rock – The Münsterdorf site, northern Germany,
J. Appl. Geophys., 154, 64–80, https://doi.org/10.1016/j.jappgeo.2018.04.021, 2018. a, b
Kersten, T., Kobe, M., Gabriel, G., Timmen, L., Schön, S., and Vogel, D.:
Geodetic monitoring of subrosion-induced subsidence processes in urban areas,
J. Appl. Geodesy, 11, 21–29, https://doi.org/10.1515/jag-2016-0029, 2017. a
Knoth, W. and Schwab, M.:
Abgrenzung und geologischer Bau der Halle-Wittenberg-Scholle,
Geologie, 12, 1153–1172, 1972. a
Kobe, M., Gabriel, G., Weise, A., and Vogel, D.: Time-lapse gravity and levelling surveys reveal mass loss and ongoing subsidence in the urban subrosion-prone area of Bad Frankenhausen, Germany, Solid Earth, 10, 599–619, https://doi.org/10.5194/se-10-599-2019, 2019. a, b, c, d
Krawczyk, C. M., Polom, U., Trabs, S., and Dahm, T.:
Sinkholes in the city of Hamburg–New urban shear-wave reflection seismic system enables high-resolution imaging of subrosion structures,
J. Appl. Geophys., 78, 133–143, https://doi.org/10.1016/j.jappgeo.2011.02.003, 2012. a, b, c, d
Krawczyk, C. M., Polom, U., and Beilecke, T.:
Shear-wave reflection seismics as a valuable tool for near-surface urban applications,
Lead. Edge, 32, 256–263, https://doi.org/10.1190/tle32030256.1, 2013. a
Legrand, H. E. and Stringfield, V. T.:
Karst Hydrology – A Review,
J. Hydrol., 20, 97–120, 1973. a
Malehmir, A., Socco, L.V., Bastani, M., Krawczyk, C. M., Pfaffhuber, A. A., Miller, R. D., Maurer, H., Frauenfelder, R., Suto, K., Bazin, S., Merz, K., and Dahm, T.:
Near-Surface Geophysical Characterization of Areas Prone to Natural Hazards: A Review of the Current and Perspective on the Future,
in: Advances in Geophysics, edited by: Nielsen, L., Vol. 57,
Elsevier Publishing, https://doi.org/10.1016/bs.agph.2016.08.001, 2016. a, b
Malehmir, A.:
Recording Longer for Higher-Resolution Near-Surface Imaging – Shear-Wave Reflections from Vertical Sources, and Receivers,
EAGE Near Surface Geoscience Conference and Exhibition 2019, 1–5, https://doi.org/10.3997/2214-4609.201902403, 2019. a
Margiotta, S., Negri, S., Parise, M., and Valloni, R.:
Mapping the susceptibility to sinkholes in coastal areas, based on stratigraphy, geomorphology and geophysics,
Nat. Hazards, 62, 657–676, https://doi.org/10.1007/s11069-012-0100-1, 2012. a
Margiotta, S., Negri, S., Parise, M., and Quarta, T. A. M.:
Karst geosites at risk of collapse: the sinkholes at Nociglia (Apulia, SE Italy),
Environ. Earth Sci., 75, 1–10, https://doi.org/10.1007/s12665-015-4848-y, 2016. a
McCann, T. and Saintot, A.:
Tracing Tectonic Deformation Using the Sedimentary Record,
Geol. Soc. London Spec. Publ., 208, ISBN 978-1862391291, 2003. a
Miensopust, M. P., Igel, J., Günther, T., Dlugosch, R., and Hupfer, S.:
Electric and Electromagnetic Investigation of a Karst System,
Near Surface Geoscience 2015, 21st European Meeting of Environmental and Engineering Geophysics, Turin, 6 Septembre 2015, https://doi.org/10.3997/2214-4609.201413704, 2015. a, b
Militzer, H., Rösler, R., and Lösch, W.:
Theoretical and experimental investigations for cavity research with geoelectrical resistivity methods,
Geophys. Prospect., 27, 3, 640–652, https://doi.org/10.1111/j.1365-2478.1979.tb00991.x, 1979. a, b
Miller, H. G. and Singh, V.:
Potential field tilt – a new concept for location of potential field sources,
J. Appl. Geophys., 32, 213–217, https://doi.org/10.1016/0926-9851(94)90022-1, 1994. a, b
Miller, R. D., Ivanov, J., Sloan, S. D., Walters, S. L., Leitner, B., Rech, A., Wedel, B. A., Wedel, A. R., Anderson, J. A., Metheny, O. M., and Schwarzer, J. C.:
Shear-wave Seismic Study above Vigindustries, Inc. Legacy Salt Jugs in Hutchinson, Kansas,
Kansas Geol. Surv., USA, 2009. a
Milsom, J. and Eriksen, A.:
Field Geophysics – Fourth Edition,
John Wiley and Sons, Oxford, UK, ISBN 978-0-470-74984-5, 2011. a
Müller, C. O., Wächter, J., Jahnke, C., Pueyo Morer, E. L., Riefstahl, F., and Malz, A.:
Integrated geological and gravity modelling to improve 3-D model harmonization-methods and benefits for the Saxony-Anhalt/Brandenburg cross-border region (North German Basin),
Geophys. J. Int., 227, 1295–1321, https://doi.org/10.1093/gji/ggab256, 2021. a
Neumann, R.:
Microgravity method applied to the detection of cavities,
Symposium on Detection of Subsurface Cavities at Vicksburg, Mississippi, USA, 1977. a
Nickschick, T., Flechsig, C., Mrlina, J., Oppermann, F., Löbig, F., and Günther, T.: Large-scale electrical resistivity tomography in the Cheb Basin (Eger Rift) at an International Continental Drilling Program (ICDP) monitoring site to image fluid-related structures, Solid Earth, 10, 1951–1969, https://doi.org/10.5194/se-10-1951-2019, 2019. a
Oppermann, F. and Günther, T.:
A remote-control datalogger for large-scale resistivity surveys and robust processing of its signals using a software lock-in approach,
Geosci. Instrum. Meth., 7, 55–66, https://doi.org/10.5194/gi-2017-37, 2018. a, b, c
Parise, M.:
A procedure for evaluating the susceptibility to natural and anthropogenic sinkholes,
Georisk, 8, 272–285, https://doi.org/10.1080/17499518.2015.1045002, 2015a. a
Parise, M.:
Sinkholes, Subsidence and Related Mass Movements,
in: Treatise on Geomorphology, edited by: Shroder, J. J. F., Vol. 5,
Elsevier Publishing, 200–220, https://doi.org/10.1016/B978-0-12-818234-5.00029-8, 2022. a, b
Parise, M. and Lollino P.:
A preliminary analysis of failure mechanisms in karst and man-made underground caves in Southern Italy,
Geomorphology, 134, 132–143, https://doi.org/10.1016/j.geomorph.2011.06.008, 2011. a
Parise, M., Closson, D., Gutiérrez, F., and Stevanović, Z.:
Anticipating and managing engineering problems in the complex karst environment,
Environ. Earth Sci., 74, 7823–7835, https://doi.org/10.1007/s12665-015-4647-5, 2015b. a
Perrotti, M., Lollino, P., Fazio, N. L., and Parise, M.: Stability charts based on the finite element method for underground cavities in soft carbonate rocks: validation through case-study applications, Nat. Hazards Earth Syst. Sci., 19, 2079–2095, https://doi.org/10.5194/nhess-19-2079-2019, 2019. a
Polom, U., Hansen, L., Sauvin, G., L'Heureux, J.-S., Lecomte, I., Krawczyk, C. M., Vanneste, M., and Longva, O.:
High-resolution SH-wave Seismic Reflection for Characterization of Onshore Ground Conditions in the Trondheim Harbor, Central Norway,
Geophys. Dev. Ser. – Advances in Near-surface Seismology and Ground-penetrating Radar, 297–312, https://doi.org/10.1190/1.9781560802259.ch18, 2010. a
Polom, U., Bagge, M., Wadas, S., Winsemann, J., Brandes, C., Binot, F., and Krawczyk, C. M.:
Surveying near-surface depocentres by means of shear wave seismics,
First Break, 31, 67–79, 2013. a
Polom, U., Mueller, C., Nicol, A., Villamor, P., Langridge, R. M., and Begg, J. G.:
Finding the concealed section of the Whakatane Fault in the Whakatane Township with a shear wave land streamer system: A seismic surveying report,
GNS Sci. Rep., 41, 1–41, 2016. a
Polom, U., Alrshdan, H., Al-Halbouni, D., Holohan, E. P., Dahm, T., Sawarieh, A., Atallah, M. Y., and Krawczyk, C. M.: Shear wave reflection seismic yields subsurface dissolution and subrosion patterns: application to the Ghor Al-Haditha sinkhole site, Dead Sea, Jordan, Solid Earth, 9, 1079–1098, https://doi.org/10.5194/se-9-1079-2018, 2018. a, b
Pugin, A. J.-M., Brewer, K., Cartwrigth, T., Pullan, S. E., Didier, P., Crow, H., and Hunter, J. A.:
Near surface S-wave seismic reflection profiling–new approaches and insights,
First Break, 31, 49–60, https://doi.org/10.3997/1365-2397.2013005, 2013. a
Pusch, J., Barthel, K.-J., and Westhus, W.:
Naturnahe Binnensalzstellen in Thüringen,
in: Binnensalzstellen in Thüringen – Situation, Gefährdung und Schutz – Naturschutzreport 12,
Thüringer Ministerium für Landwirtschaft, Naturschutz und Umwelt (TMLNU), Erfurt, Germany, 1997. a
Richter-Bernburg, G.:
Stratigraphische Gliederung des deutschen Zechsteins,
Z. Deut. Geol. Ges., 105, 843–854, 1953. a
Rochlitz, R., Queitsch, M., Yogeshwar, P., Günther, T., Chwala, A., Janser, S., Kukowski, N., and Stolz, R.:
Capability of low temperature SQUID for transient electromagnetics under anthropogenic noise conditions,
Geophysics, 83, E371–E383, https://doi.org/10.1190/geo2017-0582.1, 2018. a, b, c, d, e, f
Roksandic, M. M.:
Seismic Facies Analysis Concepts,
Geophys. Prospect., 26, 383–398, https://doi.org/10.1111/j.1365-2478.1978.tb01600.x, 1978. a
Ronczka, M., Hellman, K., Günther, T., Wisén, R., and Dahlin, T.: Electric resistivity and seismic refraction tomography: a challenging joint underwater survey at Äspö Hard Rock Laboratory, Solid Earth, 8, 671–682, https://doi.org/10.5194/se-8-671-2017, 2017. a
Salmi, E. F., Nazem, M., and Giacomini, A.:
A Numerical Investigation of Sinkhole Subsidence Development over Shallow Excavations in Tectonised Weak Rocks: The Dolaei Tunnel's Excavation Case,
Geotech. Geol. Eng., 35, 1685–1716, https://doi.org/10.1007/s10706-017-0202-3, 2017. a
Sandersen, P. B. E. and Jørgensen, F.:
Buried Quaternary valleys in western Denmark – occurrence and inferred implications for groundwater resources and vulnerability,
J. Appl. Geophys., 53, 229–248, https://doi.org/10.1016/j.jappgeo.2003.08.006, 2003. a
Schmidt, S., Plonka, C., Götze, H.-J., and Lahmeyer, B.:
Hybrid modelling of gravity, gravity gradients and magnetic fields,
Geophys. Prospect., 58, 1046–1051, https://doi.org/10.1111/j.1365-2478.2011.00999.x, 2011. a
Schriel, W.:
Alte und junge Tektonik am Kyffhäuser und Südharz,
Abhandlung der preußischen geologischen Landesanstalt, Neue Folge, 93, 1–65, Berlin, Germany, ISBN 978-3-510-96698-1, 1922. a
Schultz-Ela, D. D., Jackson, M. P. A., and Vendeville, B. C.:
Mechanics of active salt diapirism,
Tectonophysics, 228, 275–312, https://doi.org/10.1016/0040-1951(93)90345-K, 1993. a, b
Seidel, G.:
Geologie von Thüringen,
Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, Germany, ISBN 978-3-510-65205-1, 2003. a
Shalev, E., Lyakhovsky, V., and Yechieli, Y.:
Salt dissolution and sinkhole formation along the Dead Sea shore,
J. Geophys. Res.-Sol. Ea., 111, B03102, https://doi.org/10.1029/2005JB004038, 2006. a
Shiau, J. and Hassan, M. M.:
Numerical modelling of three-dimensional sinkhole stability using finite different method,
Innov. Infr. Solutions, 6, 1–9, doi:0.1007/s41062-021-00559-0, 2021. a
Skiba, P., Gabriel, G., Krawczyk, C. M., Scheibe, R., and Seidemann, O.:
Homogene Schwerekarte der Bundesrepublik Deutschland (Bouguer-Anomalien) – Technischer Bericht zur Fortführung der Datenbasis, deren Auswertung und Visualisierung,
LIAG – Internal report, 1–89, https://doi.org/10.25899/rep-12346-1, 2011. a, b
Smyth Jr., C. H.:
The Relative Solubilities of the Chemical Constituents of Rocks,
J. Geol., 21, 105–120, https://doi.org/10.1086/622044, 1913.
Somigliana, C.:
Teoria generale del campo gravitazionale dell'ellissoide di rotazione ,
Mem. Soc. Astron. Ital., 4, 425–469, 1929. a
Steuer, S., Smirnova, M., Becken, M., Schiffler, M., Günther, T., Rochlitz, R., Yogeshwar, P., Mörbe, W., Siemon, B., Costabel, S., Preugschat, B., Ibs-von Seht, M., Zampa, L. S., and Müller, F.:
Comparison of novel semi-airborne electromagnetic data with multi-scale geophysical, petrophysical and geological data from Schleiz, Germany,
J. Appl. Geophys., 182, 1–20, https://doi.org/10.1016/j.jappgeo.2020.104172, 2020. a
Tanner, D. C., Buness, H., Igel, J., Günther, T., Gabriel, G., Skiba, P., Plenefisch, T., Gestermann, N., and Walter, T.:
Fault Detection,
in: Understanding Faults, edited by: Tanner, D. C. and Brandes, C.,
Elsevier Publishing, 1–380, https://doi.org/10.1016/B978-0-12-815985-9.00003-5, 2020. a, b
TMLNU: Thuringian Ministry for Agriculture, Nature Conservation, and Environment:
Inland salt locations around the Kyffhäuser Mountains,
Thuringian Ministry for Agriculture, Nature Conservation, and Environment, Erfurt, Germany, 2008. a
TLUBN: Thuringian State Institute for Environment, Mining and Conservation:
Gravimetry data,
personal communication, 2017. a
Vey, S., Al-Halbouni, D., Haghshenas Haghighi, M., Alshawaf, F., Vüllers, J., Güntner, A., Dick, G., Ramatschi, M., Teatini, P., Wickert, J., and Weber, M.:
Delayed subsidence of the Dead Sea shore due to hydro-meteorological changes,
Nat. Sci. Rep., 11, 1–10, https://doi.org/10.1038/s41598-021-91949-y, 2021. a
Wadas, S. H., Tanner, D. C., Polom, U., and Krawczyk, C. M.: Structural analysis of S-wave seismics around an urban sinkhole: evidence of enhanced dissolution in a strike-slip fault zone, Nat. Hazards Earth Syst. Sci., 17, 2335–2350, https://doi.org/10.5194/nhess-17-2335-2017, 2017.
a, b, c
Wadas, S. H., Tschache, S., Polom, U., and Krawczyk, C .M.:
Ground instability of sinkhole areas indicated by elastic moduli and seismic attributes,
Geophys. J. Int., 222, 289–304, https://doi.org/10.1093/gji/ggaa167, 2020.
Watson, R. A., Holohan, E. P., Al-Halbouni, D., Saberi, L., Sawarieh, A., Closson, D., Alrshdan, H., Abou Karaki, N., Siebert, C., Walter, T. R., and Dahm, T.: Sinkholes and uvalas in evaporite karst: spatio-temporal development with links to base-level fall on the eastern shore of the Dead Sea, Solid Earth, 10, 1451–1468, https://doi.org/10.5194/se-10-1451-2019, 2019. a
Watts, A. B.:
Isostasy and Flexure of the Lithosphere,
Cambridge University Press, Cambridge, UK, ISBN 0 521 62272 7, 2001. a
Weber, H.:
Zur Systematik der Auslaugung,
Z. Deut. Geol. Ges., 82, 179–186, 1930. a
Westhus, W., Fritzlar, F., Pusch, J., and van Elsen, T.:
Binnensalzstellen in Thüringen – Situation, Gefährdung und Schutz – Naturschutzreport 12,
Thüringer Ministerium für Landwirtschaft, Naturschutz und Umwelt (TMLNU), Erfurt, Germany, 1997. a
White, E. L. and White, W. B.:
Processes of Cavern Breakdown,
Bull. Nat. Speleo. Soc., 31, 83–96, 1969. a
Wiederhold, H., Sulzbacher, H., Grinat, M., Günther, T., Igel, J., Burschil, T., and Siemon, B.:
Hydrogeophysical characterization of freshwater/saltwater systems – case study: Borkum Island, Germany,
First Break, 31, 109–117, 2013. a
Yechieli, Y., Wachs, D., Shtivelman, V., Abelson, M., Onn, C., Raz, E., and Baer, G.:
Formation of sinkholes along the shore of the Dead Sea – Ssummary of the first stage of investigation,
Geol. Surv. Isr. Curr. Res., 13, 1–6, 2002. a
Zumpano, V., Pisano, L., and Parise, M.:
An integrated framework to identify and analyze karst sinkholes,
Geomorphology, 332, 213–225, https://doi.org/10.1016/j.geomorph.2019.02.013, 2019. a
Short summary
The dissolution of rocks poses a severe hazard because it can cause subsidence and sinkhole formation. Based on results from our study area in Thuringia, Germany, using P- and SH-wave reflection seismics, electrical resistivity and electromagnetic methods, and gravimetry, we develop a geophysical investigation workflow. This workflow enables identifying the initial triggers of subsurface dissolution and its control factors, such as structural constraints, fluid pathways, and mass movement.
The dissolution of rocks poses a severe hazard because it can cause subsidence and sinkhole...