Articles | Volume 14, issue 11
https://doi.org/10.5194/se-14-1181-2023
https://doi.org/10.5194/se-14-1181-2023
Research article
 | 
21 Nov 2023
Research article |  | 21 Nov 2023

Complex fault system revealed by 3-D seismic reflection data with deep learning and fault network analysis

Thilo Wrona, Indranil Pan, Rebecca E. Bell, Christopher A.-L. Jackson, Robert L. Gawthorpe, Haakon Fossen, Edoseghe E. Osagiede, and Sascha Brune

Related authors

Cross-scale strain analysis in the Afar rift (East Africa) from automatic fault mapping and geodesy
Alessandro La Rosa, Pauline Gayrin, Sascha Brune, Carolina Pagli, Ameha A. Muluneh, Gianmaria Tortelli, and Derek Keir
EGUsphere, https://doi.org/10.5194/egusphere-2025-1215,https://doi.org/10.5194/egusphere-2025-1215, 2025
This preprint is open for discussion and under review for Solid Earth (SE).
Short summary
(D)rifting in the 21st century: key processes, natural hazards, and geo-resources
Frank Zwaan, Tiago M. Alves, Patricia Cadenas, Mohamed Gouiza, Jordan J. J. Phethean, Sascha Brune, and Anne C. Glerum
Solid Earth, 15, 989–1028, https://doi.org/10.5194/se-15-989-2024,https://doi.org/10.5194/se-15-989-2024, 2024
Short summary
Geodynamic controls on clastic-dominated base metal deposits
Anne C. Glerum, Sascha Brune, Joseph M. Magnall, Philipp Weis, and Sarah A. Gleeson
Solid Earth, 15, 921–944, https://doi.org/10.5194/se-15-921-2024,https://doi.org/10.5194/se-15-921-2024, 2024
Short summary
Tectonic interactions during rift linkage: insights from analog and numerical experiments
Timothy Chris Schmid, Sascha Brune, Anne Glerum, and Guido Schreurs
Solid Earth, 14, 389–407, https://doi.org/10.5194/se-14-389-2023,https://doi.org/10.5194/se-14-389-2023, 2023
Short summary
Rifting continents
Susanne J. H. Buiter, Sascha Brune, Derek Keir, and Gwenn Peron-Pinvidic
EGUsphere, https://doi.org/10.5194/egusphere-2022-139,https://doi.org/10.5194/egusphere-2022-139, 2022
Preprint archived
Short summary

Related subject area

Subject area: Crustal structure and composition | Editorial team: Seismics, seismology, paleoseismology, geoelectrics, and electromagnetics | Discipline: Geophysics
On the crustal composition of the Sardinia–Corsica continental block inferred from receiver functions
Fabio Cammarano, Henrique Berger Roisenberg, Alessio Conclave, Islam Fadel, and Mark van der Meijde
Solid Earth, 16, 135–154, https://doi.org/10.5194/se-16-135-2025,https://doi.org/10.5194/se-16-135-2025, 2025
Short summary
Geophysical downhole logging analysis within the shallow-depth ICDP STAR drilling project (central Italy)
Paola Montone, Simona Pierdominici, M. Teresa Mariucci, Francesco Mirabella, Marco Urbani, Assel Akimbekova, Lauro Chiaraluce, Wade Johnson, and Massimiliano Rinaldo Barchi
Solid Earth, 15, 1385–1406, https://doi.org/10.5194/se-15-1385-2024,https://doi.org/10.5194/se-15-1385-2024, 2024
Short summary
Multiphysics property prediction from hyperspectral drill core data
Akshay Kamath, Samuel Thiele, Moritz Kirsch, and Richard Gloaguen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3448,https://doi.org/10.5194/egusphere-2024-3448, 2024
Short summary
Post-Caledonian tectonic evolution of the Precambrian and Paleozoic platform boundary zone offshore Poland based on the new and vintage multi-channel reflection seismic data
Quang Nguyen, Michal Malinowski, Stanisław Mazur, Sergiy Stovba, Małgorzata Ponikowska, and Christian Hübscher
Solid Earth, 15, 1029–1046, https://doi.org/10.5194/se-15-1029-2024,https://doi.org/10.5194/se-15-1029-2024, 2024
Short summary
Comparison of surface-wave techniques to estimate S- and P-wave velocity models from active seismic data
Farbod Khosro Anjom, Frank Adler, and Laura Valentina Socco
Solid Earth, 15, 367–386, https://doi.org/10.5194/se-15-367-2024,https://doi.org/10.5194/se-15-367-2024, 2024
Short summary

Cited articles

Bartholomew, I. D., Peters, J. M., and Powell, C. M.: Regional structural evolution of the North Sea: Oblique slip and the reactivation of basement lineaments, in: Petroleum Geology Conference Proceedings, London, 1109–1122, https://doi.org/10.1144/0041109, 1993. 
Bell, R. E., Jackson, C. A. L., Whipp, P. S., and Clements, B.: Strain migration during multiphase extension: Observations from the northern North Sea, Tectonics, 33, 1936–1963, https://doi.org/10.1002/2014TC003551, 2014. 
Bingen, B., Nordgulen, Ø., and Viola, G.: A four-phase model for the sveconorwegian orogeny, SW Scandinavia, Nor. Geol. Tidsskr., 88, 43–72, 2008. 
Bissell, R. C., Vasco, D. W., Atbi, M., Hamdani, M., Okwelegbe, M., and Goldwater, M. H.: A full field simulation of the in Salah gas production and CO2 storage project using a coupled geo-mechanical and thermal fluid flow simulator, Energy Proced., 4, 3290–3297, https://doi.org/10.1016/j.egypro.2011.02.249, 2011. 
Bond, C. E.: Uncertainty in structural interpretation: Lessons to be learnt, J. Struct. Geol., 74, 185–200, https://doi.org/10.1016/j.jsg.2015.03.003, 2015. 
Download
Short summary
We need to understand where faults are to do the following: (1) assess their seismic hazard, (2) explore for natural resources and (3) store CO2 safely in the subsurface. Currently, we still map subsurface faults primarily by hand using seismic reflection data, i.e. acoustic images of the Earth. Mapping faults this way is difficult and time-consuming. Here, we show how to use deep learning to accelerate fault mapping and how to use networks or graphs to simplify fault analyses.
Share