Articles | Volume 14, issue 4
https://doi.org/10.5194/se-14-369-2023
https://doi.org/10.5194/se-14-369-2023
Research article
 | 
05 Apr 2023
Research article |  | 05 Apr 2023

The influence of crustal strength on rift geometry and development – insights from 3D numerical modelling

Thomas B. Phillips, John B. Naliboff, Ken J. W. McCaffrey, Sophie Pan, Jeroen van Hunen, and Malte Froemchen

Related authors

Fatbox: the fault analysis toolbox
Pauline Gayrin, Thilo Wrona, Sascha Brune, Derek Neuharth, Nicolas Molnar, Alessandro La Rosa, and John Naliboff
EGUsphere, https://doi.org/10.5194/egusphere-2025-3989,https://doi.org/10.5194/egusphere-2025-3989, 2025
This preprint is open for discussion and under review for Solid Earth (SE).
Short summary
Technical note: Geodynamic Thermochronology (GDTchron) – A Python package to calculate low-temperature thermochronometric ages from geodynamic numerical models
Dylan A. Vasey, Peter M. Scully, John B. Naliboff, and Sascha Brune
EGUsphere, https://doi.org/10.5194/egusphere-2025-3578,https://doi.org/10.5194/egusphere-2025-3578, 2025
This preprint is open for discussion and under review for Geochronology (GChron).
Short summary
Geomorphic expressions of active rifting reflect the role of structural inheritance: a new model for the evolution of the Shanxi Rift, northern China
Malte Froemchen, Ken J. W. McCaffrey, Mark B. Allen, Jeroen van Hunen, Thomas B. Phillips, and Yueren Xu
Solid Earth, 15, 1203–1231, https://doi.org/10.5194/se-15-1203-2024,https://doi.org/10.5194/se-15-1203-2024, 2024
Short summary
Strike-slip faulting in extending upper plates: insight from the Aegean
Agathe Faucher, Frédéric Gueydan, and Jeroen van Hunen
EGUsphere, https://doi.org/10.5194/egusphere-2024-569,https://doi.org/10.5194/egusphere-2024-569, 2024
Preprint archived
Short summary
Sensitivity of Neoproterozoic snowball-Earth inceptions to continental configuration, orbital geometry, and volcanism
Julius Eberhard, Oliver E. Bevan, Georg Feulner, Stefan Petri, Jeroen van Hunen, and James U. L. Baldini
Clim. Past, 19, 2203–2235, https://doi.org/10.5194/cp-19-2203-2023,https://doi.org/10.5194/cp-19-2203-2023, 2023
Short summary

Cited articles

Allibone, A. H. and Tulloch, A. J.: Geology of the plutonic basement rocks of Stewart Island, New Zealand, New Zeal. J Geol. Geop., 47, 233–256, https://doi.org/10.1080/00288306.2004.9515051, 2004 
Barrier, A., Nicol, A., Browne, G. H., and Bassett, K. N.: Late Cretaceous coeval multi-directional extension in South Zealandia: Implications for eastern Gondwana breakup, Mar. Petrol. Geol., 118, 104383, https://doi.org/10.1016/j.marpetgeo.2020.104383, 2020. 
Beniest, A., Willingshofer, E., Sokoutis, D., and Sassi, W.: Extending continental lithosphere with lateral strength variations: effects on deformation localization and margin geometries, Front. Earth Sci., 6, 148, https://doi.org/10.3389/feart.2018.00148, 2018. 
Brune, S., Corti, G., and Ranalli, G.: Controls of inherited lithospheric heterogeneity on rift linkage: Numerical and analog models of interaction between the Kenyan and Ethiopian rifts across the Turkana depression, Tectonics, 36, 1767–1786, https://doi.org/10.1002/2017TC004739, 2017. 
Campbell, H. J.: Biostratigraphic age review of New Zealand's Permian–Triassic central terranes, Geological Society, London, Memoirs, 49, 31-41, https://doi.org/10.1144/M49.6, 2019. 
Download
Short summary
Continental crust comprises bodies of varying strength, formed through numerous tectonic events. When subject to extension, these areas produce distinct rift and fault systems. We use 3D models to examine how rifts form above strong and weak areas of crust. We find that faults become more developed in weak areas. Faults are initially stopped at the boundaries with stronger areas before eventually breaking through. We relate our model observations to rift systems globally.
Share