Articles | Volume 14, issue 4
https://doi.org/10.5194/se-14-369-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-14-369-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The influence of crustal strength on rift geometry and development – insights from 3D numerical modelling
Department of Earth Science, Durham University, Science Labs,
Durham, DH13LE, UK
John B. Naliboff
Department of Earth and Environmental Science, New Mexico Institute of
Mining and Technology, Socorro, New Mexico, USA
Ken J. W. McCaffrey
Department of Earth Science, Durham University, Science Labs,
Durham, DH13LE, UK
Sophie Pan
Basins Research Group (BRG), Imperial College, London, SW72BP, UK
Jeroen van Hunen
Department of Earth Science, Durham University, Science Labs,
Durham, DH13LE, UK
Malte Froemchen
Department of Earth Science, Durham University, Science Labs,
Durham, DH13LE, UK
Related authors
No articles found.
Pauline Gayrin, Thilo Wrona, Sascha Brune, Derek Neuharth, Nicolas Molnar, Alessandro La Rosa, and John Naliboff
EGUsphere, https://doi.org/10.5194/egusphere-2025-3989, https://doi.org/10.5194/egusphere-2025-3989, 2025
This preprint is open for discussion and under review for Solid Earth (SE).
Short summary
Short summary
When in extension, the Earth's crust accommodates deformation by breaking. Through time, faults grow into an intricate network that can be detected by changes in topography, or through modelling (numerical or analogue). This study demonstrates how the Python library Fatbox, the fault analysis toolbox, can extract the network pattern automatically from said datasets and characterise the geometry and kinematics of the fault network.
Dylan A. Vasey, Peter M. Scully, John B. Naliboff, and Sascha Brune
EGUsphere, https://doi.org/10.5194/egusphere-2025-3578, https://doi.org/10.5194/egusphere-2025-3578, 2025
This preprint is open for discussion and under review for Geochronology (GChron).
Short summary
Short summary
We present an open-access Python package (GDTchron) designed to forward model apatite (U-Th)/He, apatite fission track, and zircon (U-Th)/He ages using temperatures output by geodynamic numerical models. The software can be used in a parallelized workflow to calculate large numbers of ages. We present two examples of potential applications of GDTchron: a simple model of an uplifting box with perfectly efficient erosion and a complex model of continental rifting followed by mountain building.
Malte Froemchen, Ken J. W. McCaffrey, Mark B. Allen, Jeroen van Hunen, Thomas B. Phillips, and Yueren Xu
Solid Earth, 15, 1203–1231, https://doi.org/10.5194/se-15-1203-2024, https://doi.org/10.5194/se-15-1203-2024, 2024
Short summary
Short summary
The Shanxi Rift is a young, active rift in northern China that formed atop a Proterozoic orogen. The impact of these structures on active rift faults is poorly understood. Here, we quantify the landscape response to active faulting and compare it with published maps of inherited structures. We find that inherited structures played an important role in the segmentation of the Shanxi Rift and in the development of rift interaction zones, which are the most active regions in the Shanxi Rift.
Agathe Faucher, Frédéric Gueydan, and Jeroen van Hunen
EGUsphere, https://doi.org/10.5194/egusphere-2024-569, https://doi.org/10.5194/egusphere-2024-569, 2024
Preprint archived
Short summary
Short summary
The formation of major strike-slip faults remains enigmatic in the framework of plate tectonics. Using 3D finite element models, we show that the co-existence of extension and shortening (at a high angle with the extension direction) and a weak lithosphere (e.g high geotherm) can trigger normal faulting and strike-slip faulting. Our results are compared to the Aegean example where strike slip faults (e.g. North Anatolian fault) and normal faults (e.g. Corinth rift) work together.
Julius Eberhard, Oliver E. Bevan, Georg Feulner, Stefan Petri, Jeroen van Hunen, and James U. L. Baldini
Clim. Past, 19, 2203–2235, https://doi.org/10.5194/cp-19-2203-2023, https://doi.org/10.5194/cp-19-2203-2023, 2023
Short summary
Short summary
During at least two phases in its past, Earth was more or less covered in ice. These “snowball Earth” events probably started suddenly upon undercutting a certain threshold in the carbon-dioxide concentration. This threshold can vary considerably under different conditions. In our study, we find the thresholds for different distributions of continents, geometries of Earth’s orbit, and volcanic eruptions. The results show that the threshold might have varied by up to 46 %.
Penelope I. R. Wilson, Robert W. Wilson, David J. Sanderson, Ian Jarvis, and Kenneth J. W. McCaffrey
Solid Earth, 12, 95–117, https://doi.org/10.5194/se-12-95-2021, https://doi.org/10.5194/se-12-95-2021, 2021
Short summary
Short summary
Magma accommodation in the shallow crust leads to deformation of the surrounding host rock through the creation of faults, fractures and folds. This deformation will impact fluid flow around intrusive magma bodies (including sills and laccoliths) by changing the porosity and permeability network of the host rock. The results may have important implications for industries where fluid flow within the subsurface adds value (e.g. oil and gas, hydrology, geothermal and carbon sequestration).
Anna M. Dichiarante, Ken J. W. McCaffrey, Robert E. Holdsworth, Tore I. Bjørnarå, and Edward D. Dempsey
Solid Earth, 11, 2221–2244, https://doi.org/10.5194/se-11-2221-2020, https://doi.org/10.5194/se-11-2221-2020, 2020
Short summary
Short summary
We studied the characteristics of fracture systems in the Devonian rocks of the Orcadian Basin in Caithness. These mineral-filled fractures have properties that may be used to predict the size and spatial arrangement of similar structures in offshore basins. This includes the Clair field in the Faroe–Shetland Basin.
Cited articles
Allibone, A. H. and Tulloch, A. J.: Geology of the plutonic basement rocks
of Stewart Island, New Zealand, New Zeal. J Geol.
Geop., 47, 233–256,
https://doi.org/10.1080/00288306.2004.9515051, 2004
Barrier, A., Nicol, A., Browne, G. H., and Bassett, K. N.: Late Cretaceous
coeval multi-directional extension in South Zealandia: Implications for
eastern Gondwana breakup, Mar. Petrol. Geol., 118, 104383,
https://doi.org/10.1016/j.marpetgeo.2020.104383, 2020.
Beniest, A., Willingshofer, E., Sokoutis, D., and Sassi, W.: Extending
continental lithosphere with lateral strength variations: effects on
deformation localization and margin geometries, Front. Earth Sci.,
6, 148, https://doi.org/10.3389/feart.2018.00148, 2018.
Brune, S., Corti, G., and Ranalli, G.: Controls of inherited lithospheric
heterogeneity on rift linkage: Numerical and analog models of interaction
between the Kenyan and Ethiopian rifts across the Turkana depression,
Tectonics, 36, 1767–1786, https://doi.org/10.1002/2017TC004739, 2017.
Campbell, H. J.: Biostratigraphic age review of New Zealand's
Permian–Triassic central terranes, Geological Society, London, Memoirs,
49, 31-41, https://doi.org/10.1144/M49.6, 2019.
Campbell, H. J., Mortimer, N., and Turnbull, I. M.: Murihiku Supergroup,
New Zealand: redefined, J. Roy. Soc. New Zeal., 33,
85–95, https://doi.org/10.1080/03014223.2003.9517722, 2003.
Chapman, D. S.: Thermal gradients in the continental crust, Geol. Soc. Spec. Publ., 24, 63–70, 1986.
Cowie, P. A., Gupta, S., and Dawers, N. H.: Implications of fault array
evolution for synrift depocentre development: insights from a numerical
fault growth model, Basin Res., 12, 241–261, https://doi.org/10.1111/j.1365-2117.2000.00126.x, 2000.
Cowie, P. A., Underhill, J. R., Behn, M. D., Lin, J., and Gill, C. E.:
Spatio-temporal evolution of strain accumulation derived from multi-scale
observations of Late Jurassic rifting in the northern North Sea: A critical
test of models for lithospheric extension, Earth Planet. Sc.
Lett., 234, 401–419, https://doi.org/10.1016/j.epsl.2005.01.039, 2005.
Daly, M. C., Chorowicz, J., and Fairhead, J. D.: Rift basin evolution in
Africa: the influence of reactivated steep basement shear zones, Geol.
Soc. Spec. Publ., 44, 309–334, https://doi.org/10.1144/GSL.SP.1989.044.01.17, 1989.
Doré, A. G., Lundin, E. R., Fichler, C., and Olesen, O.: Patterns of
basement structure and reactivation along the NE Atlantic margin, J.
Geol. Soc., 154, 85–92, https://doi.org/10.1144/gsjgs.154.1.0085, 1997.
Duclaux, G., Huismans, R. S., and May, D. A.: Rotation, narrowing, and
preferential reactivation of brittle structures during oblique rifting,
Earth Planet. Sc. Lett., 531, 115952, https://doi.org/10.1016/j.epsl.2019.115952, 2020.
Duretz, T., Petri, B., Mohn, G., Schmalholz, S. M., Schenker, F. L., and
Müntener, O.: The importance of structural softening for the evolution
and architecture of passive margins, Sci. Rep., 6, 1–7,
https://doi.org/10.1038/srep38704, 2016.
Fossen, H., Khani, H. F., Faleide, J. I., Ksienzyk, A. K., and Dunlap, W.
J.: Post-Caledonian extension in the West Norway–northern North Sea region:
the role of structural inheritance, Geol.
Soc. Spec. Publ., 439, 465–486, https://doi.org/10.1144/SP439.6,
2017.
Fraser, A. J. and Gawthorpe, R. L.: Tectono-stratigraphic development and
hydrocarbon habitat of the Carboniferous in northern England, Geol.
Soc. Spec. Publ., 55, 49–86, https://doi.org/10.1144/GSL.SP.1990.055.01.03, 1990.
Fraters, M. R., Bangerth, W., Thieulot, C., Glerum, A. C., and Spakman, W.: Efficient and practical Newton solvers for non-linear Stokes systems in geodynamic problems, Geophys. J. Int., 218, 873–894, 2019.
Ghisetti, F.: Seismic interpretation, prospects and structural analysis, Great South Basin, Ministry of Economic Development New Zealand, unpublished Petroleum Report PR4173, 2010.
Gleason, G. C. and Tullis, J.: A flow law for dislocation creep of quartz aggregates determined with the molten salt cell, Tectonophysics, 247, 1–23, 1995.
Glerum, A., Thieulot, C., Fraters, M., Blom, C., and Spakman, W.: Nonlinear viscoplasticity in ASPECT: benchmarking and applications to subduction, Solid Earth, 9, 267–294, https://doi.org/10.5194/se-9-267-2018, 2018.
Gouiza, M. and Naliboff, J.: Rheological inheritance controls the formation of
segmented rifted margins in cratonic lithosphere, Nat. Commun., 12,
4653, https://doi.org/10.1038/s41467-021-24945-5, 2021.
Heister, T., Dannberg, J., Gassmöller, R., and Bangerth, W.: High
accuracy mantle convection simulation through modern numerical methods–II:
realistic models and problems, Geophys. J. Int., 210,
833–851, https://doi.org/10.1093/gji/ggx195, 2017.
Heron, P. J., Peace, A. L., McCaffrey, K. J., Welford, J. K., Wilson, R.,
van Hunen, J., and Pysklywec, R. N.: Segmentation of rifts through
structural inheritance: Creation of the Davis Strait, Tectonics, 38,
2411–2430, https://doi.org/10.1029/2019TC005578, 2019.
Henza, A. A., Withjack, M. O., and Schlische, R. W.: How do the properties
of a pre-existing normal-fault population influence fault development during
a subsequent phase of extension?, J. Struct. Geol., 33,
1312–1324, https://doi.org/10.1016/j.jsg.2011.06.010, 2011.
Hirth, G. and Kohlstedf, D.: Rheology of the upper mantle and the mantle wedge: A view from the experimentalists, Geophys. Monogr., 138, 83–106, 2003.
Holdsworth, R. E., Handa, M., Miller, J. A., and Buick, I. S.: Continental
reactivation and reworking: an introduction, Geol.
Soc. Spec. Publ., 184, 1–12, https://doi.org/10.1144/GSL.SP.2001.184.01.01, 2001.
Howell, L., Egan, S., Leslie, G., and Clarke, S.: Structural and geodynamic
modelling of the influence of granite bodies during lithospheric extension:
application to the Carboniferous basins of northern England, Tectonophysics,
755, 47–63, https://doi.org/10.1016/j.tecto.2019.02.008, 2019.
Howell, L., Egan, S., Leslie, G., Clarke, S., Mitten, A., and Pringle, J.:
The influence of low-density granite bodies on extensional basins, Geology
Today, 36, 22–26, https://doi.org/10.1111/gto.12297, 2020.
Jourdon, A., Kergaravat, C., Duclaux, G., and Huguen, C.: Looking beyond kinematics: 3D thermo-mechanical modelling reveals the dynamics of transform margins, Solid Earth, 12, 1211–1232, https://doi.org/10.5194/se-12-1211-2021, 2021.
Kirkpatrick, J. D., Bezerra, F. H. R., Shipton, Z. K., Do Nascimento, A. F.,
Pytharouli, S. I., Lunn, R. J., and Soden, A. M.: Scale-dependent influence
of pre-existing basement shear zones on rift faulting: a case study from NE
Brazil, J. Geol. Soc., 170, 237–247, https://doi.org/10.1144/jgs2012-043, 2013.
Kronbichler, M., Heister, T., and Bangerth, W.: High accuracy mantle
convection simulation through modern numerical methods, Geophys. J.
Int., 191, 12–29, https://doi.org/10.1111/j.1365-246X.2012.05609.x, 2012.
Lang, G., ten Brink, U. S., Hutchinson, D. R., Mountain, G. S., and
Schattner, U.: The Role of Premagmatic Rifting in Shaping a Volcanic
Continental Margin: An Example From the Eastern North American Margin,
J. Geophys. Res.-Sol. Ea., 125, e2020JB019576, https://doi.org/10.1029/2020JB019576, 2020.
Larsen, B. T., Olaussen, S., Sundvoll, B., and Heeremans, M.: The
Permo-Carboniferous Oslo Rift through six stages and 65 million years,
Episodes Journal of International Geoscience, 31, 52–58, https://doi.org/10.18814/epiiugs/2008/v31i1/008, 2008.
Moresi, L. and Solomatov, V.: Mantle convection with a brittle lithosphere: thoughts on the global tectonic styles of the Earth and Venus, Geophys. J. Int., 133, 669–682, 1998.
Mortimer, N., Davey, F. J., Melhuish, A., Yu, J., and Godfrey, N. J.:
Geological interpretation of a deep seismic reflection profile across the
Eastern Province and Median Batholith, New Zealand: crustal architecture of
an extended Phanerozoic convergent orogen, New Zeal. J. Geol.
Geop., 45, 349–363, https://doi.org/10.1080/00288306.2002.9514978, 2002.
Naliboff, J. and Buiter, S. J.: Rift reactivation and migration during
multiphase extension, Earth Planet. Sc. Lett., 421, 58–67,
https://doi.org/10.1016/j.epsl.2015.03.050, 2015.
Naliboff, J. B., Buiter, S. J., Péron-Pinvidic, G., Osmundsen, P. T.,
and Tetreault, J.: Complex fault interaction controls continental rifting,
Nat. Commun., 8, 1–9, https://doi.org/10.1038/s41467-017-00904-x, 2017.
Naliboff, J. B., Glerum, A., Brune, S., Péron-Pinvidic, G., and Wrona,
T.: Development of 3-D rift heterogeneity through fault network evolution,
Geophys. Res. Lett., 47, e2019GL086611, https://doi.org/10.1029/2019GL086611, 2020.
Pan, S., Bell, R. E., Jackson, C. A. L., and Naliboff, J.: Evolution of
normal fault displacement and length as continental lithosphere stretches,
Basin Res., 34, 121–140, https://doi.org/10.1111/bre.12613, 2022.
Peace, A., McCaffrey, K., Imber, J., van Hunen, J., Hobbs, R., and Wilson,
R.: The role of pre-existing structures during rifting, continental breakup
and transform system development, offshore West Greenland, Basin Res.,
30, 373–394, https://doi.org/10.1111/bre.12257, 2018.
Phillips, T. B. and Magee, C.: Structural controls on the location,
geometry and longevity of an intraplate volcanic system: the Tuatara
Volcanic Field, Great South Basin, New Zealand, J. Geol.
Soc., 177, 1039–1056, https://doi.org/10.1144/jgs2020-050, 2020.
Phillips, T. B. and McCaffrey, K. J.: Terrane Boundary Reactivation,
Barriers to Lateral Fault Propagation and Reactivated Fabrics: Rifting
Across the Median Batholith Zone, Great South Basin, New Zealand, Tectonics,
38, 4027–4053, https://doi.org/10.1029/2019TC005772, 2019.
Phillips, T. B., Fazlikhani, H., Gawthorpe, R. L., Fossen, H., Jackson, C.
A. L., Bell, R. E., Faleide, J. I., and Rotevatn, A.: The influence of
structural inheritance and multiphase extension on rift development, the
Northern North Sea, Tectonics, 38, 4099–4126, https://doi.org/10.1029/2019TC005756, 2019.
Phillips, T. B., Naliboff, J., McCaffrey, K., Pan, S., van Hunen, J., and
Malte, F.: The influence of crustal strength on rift geometry and
development – Insights from 3D numerical modelling, Zenodo [code and data set], https://doi.org/10.5281/zenodo.7317598, 2022.
Ragon, T., Nutz, A., Schuster, M., Ghienne, J. F., Ruffet, G., and Rubino,
J. L.: Evolution of the northern Turkana Depression (East African Rift
System, Kenya) during the Cenozoic rifting: New insights from the Ekitale
Basin (28–25.5 Ma), Geol. J., 54, 3468–3488, https://doi.org/10.1002/gj.3339, 2019.
Rose, I., Buffett, B., and Heister, T.: Stability and accuracy of free
surface time integration in viscous flows, Phys. Earth
Planet. In., 262, 90–100, https://doi.org/10.1016/j.pepi.2016.11.007, 2017.
Ryan, J., Frassetto, A. M., Hurd, O., Jones, C. H., Unruh, J., Zandt, G.,
Gilbert, H., and Owens, T. J.: Unusually deep earthquakes in the central
Sierra Nevada (California, USA): Foundering ultramafic lithosphere?
Geosphere, 16, 357–377, https://doi.org/10.1130/GES02158.1,
2020.
Rybacki, E., Gottschalk, M., Wirth, R., and Dresen, G.: Influence of water fugacity and activation volume on the flow properties of fine‐grained anorthite aggregates, J. Geophys. Res.-Sol. Ea., 111, B03203, https://doi.org/10.1029/2005JB003663, 2006.
Sahoo, T. R., Nicol, A., Browne, G. H., and Strogen, D. P.: Evolution of a
normal fault system along eastern Gondwana, New Zealand, Tectonics, 39, e2020TC006181,
https://doi.org/10.1029/2020TC006181, 2020.
Samsu, A., Cruden, A. R., Molnar, N. E., and Weinberg, R. F.: Inheritance
of penetrative basement anisotropies by extension-oblique faults: Insights
from analogue experiments, Tectonics, 40, e2020TC006596, https://doi.org/10.1029/2020TC006596, 2021.
Schiffer, C., Doré, A. G., Foulger, G. R., Franke, D., Geoffroy, L.,
Gernigon, L., Holdsworth, R., Kusznir, N., Lundin, E., McCaffrey, K. J. W.,
Peace, A. L., Petersen, K. D., Phillips, T. B., Stephenson, R., Stoker, M.
S., and Welford, J. K.: Structural inheritance in the North Atlantic,
Earth-Sci. Rev., 206, 102975, https://doi.org/10.1016/j.earscirev.2019.102975, 2020.
Schmid, T. C., Brune, S., Glerum, A., and Schreurs, G.: Tectonic interactions during rift linkage: Insights from analog and numerical experiments, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2022-1203, 2022.
Sutton, J. and Watson, J. V.: Architecture of the continental lithosphere,
Philos. T. Roy. Soc. Lond. A, 317, 5–12, https://doi.org/10.1098/rsta.1986.0020, 1986.
Tarling, M. S., Smith, S. A. F., Scott, J. M., Rooney, J. S., Viti, C., and Gordon, K. C.: The internal structure and composition of a plate-boundary-scale serpentinite shear zone: the Livingstone Fault, New Zealand, Solid Earth, 10, 1025–1047, https://doi.org/10.5194/se-10-1025-2019, 2019.
Thomas, W. A.: Tectonic inheritance at a continental margin, GSA Today,
16, 4–11, https://doi.org/10.1130/1052-5173(2006)016<4:TIAACM>2.0.CO;2, 2006.
Thomas, W. A.: Tectonic inheritance at multiple scales during more than two
complete Wilson cycles recorded in eastern North America, Geol.
Soc. Spec. Publ., 470, 337, https://doi.org/10.1144/SP470.4,
2019.
Tiberi, C., Gautier, S., Ebinger, C., Roecker, S., Plasman, M., Albaric, J.,
Déverchère, J., Peyrat, S., Perrot, J., Ferdinand Wambura, R.,
Msabi, M., Muzuka, A., Mulibo, G., and Kianji, G.: Lithospheric modification by
extension and magmatism at the craton-orogenic boundary: North Tanzania
Divergence, East Africa, Geophys. J. Int., 216,
1693–1710, 4 https://doi.org/10.1093/gji/ggy521, 2019.
Tulloch, A. J., Mortimer, N., Ireland, T. R., Waight, T. E., Maas, R.,
Palin, J. M., Sahoo, T., Seebeck, H., Sagar, M. W., Barrier, A., and
Turnbull, R. E.: Reconnaissance basement geology and tectonics of South
Zealandia, Tectonics, 38, 516–551, https://doi.org/10.1029/2018TC005116, 2019.
Vasconcelos, D. L., Bezerra, F. H., Clausen, O. R., Medeiros, W. E., de
Castro, D. L., Vital, H., and Barbosa, J. A.: Influence of Precambrian
shear zones on the formation of oceanic fracture zones along the continental
margin of Brazil, Mar. Petrol. Geol., 101, 322–333, https://doi.org/10.1016/j.marpetgeo.2018.12.010, 2019.
Wilson, R. W., Klint, K. E. S., Van Gool, J. A. M., McCaffrey, K. J. W.,
Holdsworth, R. E., and Chalmers, J. A.: Faults and fractures in central West
Greenland: onshore expression of continental break-up and sea-floor spreading
in the Labrador–Baffin Bay Sea, GEUS Bulletin, 11,
185–204, https://doi.org/10.34194/geusb.v11.4931, 2006.
Wright, L. J., Muirhead, J. D., and Scholz, C. A.: Spatiotemporal
Variations in Upper Crustal Extension Across the Different Basement Terranes
of the Lake Tanganyika Rift, East Africa, Tectonics, 39, e2019TC006019, https://doi.org/10.1029/2019TC006019, 2020.
Zwaan, F., Chenin, P., Erratt, D., Manatschal, G., and Schreurs, G.: Complex rift patterns, a result of interacting crustal and mantle weaknesses, or multiphase rifting? Insights from analogue models, Solid Earth, 12, 1473–1495, https://doi.org/10.5194/se-12-1473-2021, 2021.
Short summary
Continental crust comprises bodies of varying strength, formed through numerous tectonic events. When subject to extension, these areas produce distinct rift and fault systems. We use 3D models to examine how rifts form above
strongand
weakareas of crust. We find that faults become more developed in weak areas. Faults are initially stopped at the boundaries with stronger areas before eventually breaking through. We relate our model observations to rift systems globally.
Continental crust comprises bodies of varying strength, formed through numerous tectonic events....