Articles | Volume 14, issue 5
https://doi.org/10.5194/se-14-499-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-14-499-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Mapping the basement of the Cerdanya Basin (eastern Pyrenees) using seismic ambient noise
GeoSciences Barcelona, Geo3Bcn, CSIC c/ Solé Sabarís sn,
08028 Barcelona, Spain
Sergi Ventosa
GeoSciences Barcelona, Geo3Bcn, CSIC c/ Solé Sabarís sn,
08028 Barcelona, Spain
Martin Schimmel
GeoSciences Barcelona, Geo3Bcn, CSIC c/ Solé Sabarís sn,
08028 Barcelona, Spain
Mario Ruiz
GeoSciences Barcelona, Geo3Bcn, CSIC c/ Solé Sabarís sn,
08028 Barcelona, Spain
Albert Macau
Institut Cartogràfic i Geològic de Catalunya, Barcelona, Spain
Anna Gabàs
Institut Cartogràfic i Geològic de Catalunya, Barcelona, Spain
David Martí
GeoSciences Barcelona, Geo3Bcn, CSIC c/ Solé Sabarís sn,
08028 Barcelona, Spain
Özgenç Akin
GeoSciences Barcelona, Geo3Bcn, CSIC c/ Solé Sabarís sn,
08028 Barcelona, Spain
Department of Geophysical Engineering, Karadeniz Technical University, Trabzon, Turkey
Jaume Vergés
GeoSciences Barcelona, Geo3Bcn, CSIC c/ Solé Sabarís sn,
08028 Barcelona, Spain
Related authors
Jordi Diaz, Mario Ruiz, and José-Antonio Jara
Solid Earth, 12, 725–739, https://doi.org/10.5194/se-12-725-2021, https://doi.org/10.5194/se-12-725-2021, 2021
Short summary
Short summary
During the COVID-19 pandemic lockdown, the city of Barcelona was covered by a network of 19 seismometers. The results confirm that the quieting of human activity during lockdown has resulted in a reduction of seismic vibrations. The different lockdown phases in Barcelona are recognized consistently at most of the seismic stations. Our contribution demonstrates that seismic noise can be used as a free and reliable tool to monitor human activity in urban environments.
Irene DeFelipe, Juan Alcalde, Monika Ivandic, David Martí, Mario Ruiz, Ignacio Marzán, Jordi Diaz, Puy Ayarza, Imma Palomeras, Jose-Luis Fernandez-Turiel, Cecilia Molina, Isabel Bernal, Larry Brown, Roland Roberts, and Ramon Carbonell
Earth Syst. Sci. Data, 13, 1053–1071, https://doi.org/10.5194/essd-13-1053-2021, https://doi.org/10.5194/essd-13-1053-2021, 2021
Short summary
Short summary
Seismic data provide critical information about the structure of the lithosphere, and their preservation is essential for innovative research reusing data. The Seismic DAta REpository (SeisDARE) comprises legacy and recently acquired seismic data in the Iberian Peninsula and Morocco. This database has been built by a network of different institutions that promote multidisciplinary research. We aim to make seismic data easily available to the research, industry, and educational communities.
Victoria Susin, Aline Melo, Koen Torremans, Juan Alcalde, David Martí, and Rafael Bartolome
EGUsphere, https://doi.org/10.5194/egusphere-2025-2512, https://doi.org/10.5194/egusphere-2025-2512, 2025
Short summary
Short summary
We integrated petrophysical and travel-time tomography data to refine the velocity model of a legacy seismic profile from the Limerick Syncline, a geologically complex Zn-Pb district in southwest Ireland. The improved seismic imaging enhanced subsurface characterisation and revealed previously unrecognised structural features, contributing to a better geological understanding and supporting future mineral exploration.
Montserrat Torne, Tiago M. Alves, Ivone Jiménez-Munt, Joao Carvalho, Conxi Ayala, Elsa C. Ramalho, Angela María Gómez-García, Hugo Matias, Hanneke Heida, Abraham Balaguera, José Luis García-Lobón, and Jaume Vergés
Earth Syst. Sci. Data, 17, 1275–1293, https://doi.org/10.5194/essd-17-1275-2025, https://doi.org/10.5194/essd-17-1275-2025, 2025
Short summary
Short summary
Sediments are like history books for geologists and geophysicists. By studying them, we can learn about past environments, sea level and climate changes, and where the sediments came from. To aid in understanding the geology, georesources, and potential hazards in the Iberian Peninsula and its surrounding seas, we present the SedDARE-IB sediment data repository. As an application in geothermal exploration, we investigate how sediment thickness affects the depth of the 150 °C isotherm.
Jari Joutsenvaara, Marko Holma, Pasi Kuusiniemi, Jarmo Korteniemi, Helena Seivane, David Marti-Linares, Martin Schimmel, Giulio Casini, Grant George Buffett, Markku Pirttijärvi, Ari Saartenoja, Barbara Štimac Tumara, and Ivan Kapustin
Adv. Geosci., 65, 171–180, https://doi.org/10.5194/adgeo-65-171-2025, https://doi.org/10.5194/adgeo-65-171-2025, 2025
Short summary
Short summary
The AGEMERA project (Agile Exploration and Geo-Modelling for European Critical Raw Materials) enhances EU critical raw materials exploration by integrating non-invasive methods such as ambient noise passive seismic, drone-based surveys, and muography. These technologies map bedrock properties and resource distribution effectively, feeding data into a comprehensive web-based repository for strategic analysis.
Roberto Cabieces, Mariano S. Arnaiz-Rodríguez, Antonio Villaseñor, Elizabeth Berg, Andrés Olivar-Castaño, Sergi Ventosa, and Ana M. G. Ferreira
Solid Earth, 13, 1781–1801, https://doi.org/10.5194/se-13-1781-2022, https://doi.org/10.5194/se-13-1781-2022, 2022
Short summary
Short summary
This paper presents a new 3D shear-wave velocity model of the lithosphere of northeastern Venezuela, including new Moho and Vp / Vs maps. Data were retrieved from land and broadband ocean bottom seismometers from the BOLIVAR experiment.
Jordi Diaz, Mario Ruiz, and José-Antonio Jara
Solid Earth, 12, 725–739, https://doi.org/10.5194/se-12-725-2021, https://doi.org/10.5194/se-12-725-2021, 2021
Short summary
Short summary
During the COVID-19 pandemic lockdown, the city of Barcelona was covered by a network of 19 seismometers. The results confirm that the quieting of human activity during lockdown has resulted in a reduction of seismic vibrations. The different lockdown phases in Barcelona are recognized consistently at most of the seismic stations. Our contribution demonstrates that seismic noise can be used as a free and reliable tool to monitor human activity in urban environments.
Irene DeFelipe, Juan Alcalde, Monika Ivandic, David Martí, Mario Ruiz, Ignacio Marzán, Jordi Diaz, Puy Ayarza, Imma Palomeras, Jose-Luis Fernandez-Turiel, Cecilia Molina, Isabel Bernal, Larry Brown, Roland Roberts, and Ramon Carbonell
Earth Syst. Sci. Data, 13, 1053–1071, https://doi.org/10.5194/essd-13-1053-2021, https://doi.org/10.5194/essd-13-1053-2021, 2021
Short summary
Short summary
Seismic data provide critical information about the structure of the lithosphere, and their preservation is essential for innovative research reusing data. The Seismic DAta REpository (SeisDARE) comprises legacy and recently acquired seismic data in the Iberian Peninsula and Morocco. This database has been built by a network of different institutions that promote multidisciplinary research. We aim to make seismic data easily available to the research, industry, and educational communities.
Juvenal Andrés, Puy Ayarza, Martin Schimmel, Imma Palomeras, Mario Ruiz, and Ramon Carbonell
Solid Earth, 11, 2499–2513, https://doi.org/10.5194/se-11-2499-2020, https://doi.org/10.5194/se-11-2499-2020, 2020
Cited articles
Addison, P. S., Watson, J. N., and Feng, T.: Low-oscillation complex
wavelets, J. Sound Vib., 254, 733–762,
https://doi.org/10.1006/jsvi.2001.4119, 2002.
Agustí, J., Oms, O., Furió, M., Pérez-Vila, M. J., and Roca,
E.: The Messinian terrestrial record in the Pyrenees: The case of Can
Vilella (Cerdanya Basin), Palaeogeogr. Palaeoclimatol. Palaeoecol., 238,
179–189, https://doi.org/10.1016/j.palaeo.2006.03.024, 2006.
Akin, Ö. and Sayil, N.: Site characterization using surface wave methods
in the Arsin-Trabzon province, NE Turkey, Environ. Earth Sci., 75, 1–17,
https://doi.org/10.1007/s12665-015-4840-6, 2016.
Angrand, P. and Mouthereau, F.: Evolution of the Alpine orogenic belts in
the Western Mediterranean region as resolved by the kinematics of the
Europe-Africa diffuse plate boundary, BSGF – Earth Sciences Bulletin, 192, 42,
https://doi.org/10.1051/bsgf/2021031, 2021.
Bard, P. Y.: The SESAME project: an overview and main results, Proc. of the 13th World Conference on Earthquake Engineering, 1–6 August 2004, Vancouver, 2004.
Benjumea, B., Macau, A., Gabàs, A., Bellmunt, F., Figueras, S., and
Cirés, J.: Integrated geophysical profiles and H/V microtremor
measurements for subsoil characterization, Near Surf. Geophys., 9,
413–425, https://doi.org/10.3997/1873-0604.2011021, 2011.
Briais, A., Armijo, R., Winter, T., Tapponnier, P., and Herbecq, A.:
Morphological evidence for quaternary normal faulting and seismic hazard in
the Eastern Pyrenees, Annales Tectonicae, 4, 19–42, 1990.
Brocher, T. M.: Empirical Relations between Elastic Wavespeeds and Density
in the Earth's Crust, B. Seismol. Soc. Am., 95, 2081–2092, https://doi.org/10.1785/0120050077,
2005.
Cabrera, L., Roca, E., and Santanach, P.: Basin formation at the end of a
strike-slip fault: the Cerdanya Basin (eastern Pyrenees), J.
Geol. Soc., 145, 261–268, 1988.
Calvet, M.: Régimes des contraintes et volumes de relief dans l'est des
Pyrénées/Stress regimes and volumes of reliefs in the Eastern
Pyrenees, Géomorphologie, 5, 253–278,
https://doi.org/10.3406/morfo.1999.991, 1999.
Calvet, M., Gunnell, Y., and Laumonier, B.: Denudation history and
palaeogeography of the Pyrenees and their peripheral basins: an
84-million-year geomorphological perspective, Earth-Sci. Rev., 215, 103436,
https://doi.org/10.1016/j.earscirev.2020.103436, 2021.
Calvet, M., Delmas, M., Gunnell, Y., and Laumonier, B.: Geology and
Landscapes of the Eastern Pyrenees, Springer International Publishing, Cham,
https://doi.org/10.1007/978-3-030-84266-6, 2022.
Campillo, M. and Paul, A.: Long range correlations in the diffuse seismic
coda, Science, 299, 547–549,
https://doi.org/10.1126/science.1078551, 2003.
Chevrot, S., Sylvander, M., Diaz, J., Martin, R., Mouthereau, F.,
Manatschal, G., Masini, E., Calassou, S., Grimaud, F., Pauchet, H., and
Ruiz, M.: The non-cylindrical crustal architecture of the Pyrenees, Sci. Rep.-UK, 9591,
https://doi.org/10.1038/s41598-018-27889-x, 2018.
Claerbout, J. F.: Synthesis of a layered medium from its acoustic
transmission response, Geophysics, 33, 264–269,
https://doi.org/10.1190/1.1439927, 1968.
Delgado, J., López Casado, C., Estévez, A., Giner, J., Cuenca, A.,
and Molina, S.: Mapping soft soils in the Segura river valley (SE Spain): a
case study of microtremors as an exploration tool, J. Appl. Geophy., 45,
19–32, https://doi.org/10.1016/S0926-9851(00)00016-1, 2000.
Díaz, J.: On the origin of the signals observed across the seismic
spectrum, Earth Sci. Rev., 161, 224–232,
https://doi.org/10.1016/j.earscirev.2016.07.006, 2016.
Diaz, J. and Schimmel, M.: SANIMS, International Federation of Digital Seismograph Networks [data set], https://doi.org/10.7914/SN/YS_2019, 2019.
Diaz, J., Gallart, J., and Carbonell, R.: Moho topography beneath the
Iberian-Western Mediterranean region mapped from controlled-source and
natural seismicity surveys, Tectonophysics, 692, 74–85,
https://doi.org/10.1016/j.tecto.2016.08.023, 2016.
Diaz, J., Vergés, J., Chevrot, S., Antonio-Vigil, A., Ruiz, M.,
Sylvander, M., and Gallart, J.: Mapping the crustal structure beneath the
eastern Pyrenees, Tectonophysics, 744, 296–309,
https://doi.org/10.1016/j.tecto.2018.07.011, 2018.
Diaz, J., Ruiz, M., and Jara, J.-A.: Seismic monitoring of urban activity in Barcelona during the COVID-19 lockdown, Solid Earth, 12, 725–739, https://doi.org/10.5194/se-12-725-2021, 2021.
Diaz, J., Ruiz, M., Udina, M., Polls, F., Martí, D., and Bech, J.:
Monitoring storm evolution using a high-density seismic network, Sci. Rep.-UK,
13, 1853, https://doi.org/10.1038/s41598-023-28902-8, 2023.
Efron, B. and Stein, C.: The Jackknife Estimate of Variance, Ann.
Stat., 9, 586–596, 1981.
Ekström, G., Abers, G. A., and Webb, S. C.: Determination of
surface-wave phase velocities across USArray from noise and Aki's spectral
formulation, Geophys. Res. Lett., 36, L18301,
https://doi.org/10.1029/2009GL039131, 2009.
Field, E. and Jacob, K.: The theoretical response of sedimentary layers to
ambient seismic noise, Geophys. Res. Lett., 20, 2925–2928,
https://doi.org/10.1029/93GL03054, 1993.
Gabàs, A., Macau, A., Benjumea, B., Queralt, P., Ledo, J., Figueras, S.,
and Marcuello, A.: Joint Audio-Magnetotelluric and Passive Seismic Imaging
of the Cerdanya Basin, Surv. Geophys., 37, 897–921,
https://doi.org/10.1007/s10712-016-9372-4, 2016.
Gallart, J., Daignières, M., Banda, E., Surinach, E., and Hirn, A.: The
eastern Pyrenean domain: lateral variations at crust-mantle level, Ann.
Geophys., 36, 141–158, 1980.
Ibs-Von Seht, M. and Wohlenberg, J.: Microtremor Measurements Used to Map
Thickness of Soft Sediments, B. Seismol. Soc.
Am., 89, 250–259, 1999.
Institut Cartogràfic i Geològic de Catalunya: Catalan Seismic Network, International Federation of Digital Seismograph Networks [data set], https://doi.org/10.7914/SN/CA, 1984.
Instituto Geografico Nacional, Spain: Spanish Digital Seismic Network, International Federation of Digital Seismograph Networks [data set], https://doi.org/10.7914/SN/ES, 1999.
Instituto Geológico y Minero de España and Bureau de Recherches
Géologiques et Minières: Mapa Geológico de Pirineos a escala
1:400.000, Shapefiles online access,
http://info.igme.es/cartografiadigital/datos/tematicos/pdfs/Pirineos400.pdf (last access: 4 May 2023),
2009.
Konno, K. and Ohmachi, T.: Ground-motion characteristics estimated from
spectral ratio between horizontal and vertical components of microtremor,
B. Seismol. Soc. Am., 88, 228–241,
https://doi.org/10.1785/BSSA0880010228, 1998.
Krischer, L., Megies, T., Barsch, R., Beyreuther, M., Lecocq, T., Caudron,
C., and Wassermann, J.: ObsPy: A bridge for seismology into the scientific
Python ecosystem, Comput. Sci. Discov., 8, 1–17,
https://doi.org/10.1088/1749-4699/8/1/014003, 2015.
Lacan, P. and Ortuño, M.: Active Tectonics of the Pyrenees: A review, J. Iber. Geol.,
38, 9–30, 2012.
Lecocq, T., Hicks, S. P., van Noten, K., van Wijk, K., and Koelemeijer, P.:
Global quieting of high-frequency seismic noise due to COVID-19 pandemic
lockdown measures, Science, 369, 1338–1343, 2020a.
Lecocq, T., Massin, F., Satriano, C., Vanstone, M., and Megies, T.: SeismoRMS – A simple python/jupyter notebook package for studying seismic noise changes (1.0), Zenodo [code], https://doi.org/10.5281/zenodo.3820046, 2020b.
Macau, A., Figueras, S., Colas, B., le Brun, B., Bitri, A., Susagna, T., Cirés, J., González, M., and Roullé, A.: Seismic microzonation in two valleys of the eastern Pyrenees: Andorra and the Cerdanya, Proc. of the First European Conference on Earthquake Engineering and Seismology, 3–8 September 2006, Geneva, paper number: 655,
2006.
Maciel, S. T. R., Rocha, M. P., and Schimmel, M.: Urban seismic monitoring
in Brasilia, Brazil, PLoS One, 16, 1–14,
https://doi.org/10.1371/journal.pone.0253610, 2021.
Mcnamara, D. E., Hutt, C. R., Gee, L. S., Benz, H. M., and Buland, R. P.: A
Method to Establish Seismic Noise Baselines for Automated Station
Assessment, Seismol. Res. Lett., 80, 628–637,
https://doi.org/10.1785/gssrl.80.4.628, 2009.
Milesi, G., Monié, P., Soliva, R., Münch, P., Valla, P. G., Brichau,
S., Bonno, M., Martin, C., and Bellanger, M.: Deciphering the Cenozoic
Exhumation History of the Eastern Pyrenees Along a Crustal-Scale Normal
Fault Using Low-Temperature Thermochronology, Tectonics, 41, e2021TC007172,
https://doi.org/10.1029/2021TC007172, 2022.
Muñoz, J. A.: Evolution of a continental collision belt: ECORS-Pyrenees
crustal balanced cross-section BT – Thrust Tectonics, edited by: McClay, K.
R., Springer Netherlands, Dordrecht, 235–246,
https://doi.org/10.1007/978-94-011-3066-0_21, 1992.
Nakamura, Y.: A method for dynamic characteristics estimation of subsurface
using microtremor on the ground surface, Quarterly Report of RTI, 30,
25–33, 1989.
Pous, J., Julia, R., Sole Sugranes, L., and Frunqub, M.: Cerdanya basin
geometry and its implication on the neogene evolution of the eastern
Pyrenees, Tectonophysics, 129, 355–365, 1986, 1986.
Rawlinson, N. and Sambridge, M.: The Fast Marching Method: An Effective Tool
for Tomographic Imaging and Tracking Multiple Phases in Complex Layered
Media, Explor. Geophys., 36, 341–350,
https://doi.org/10.1071/EG05341, 2005.
RESIF: RESIF-RLBP French Broad-band network, RESIF-RAP strong motion network and other seismic stations in metropolitan France, RESIF – Réseau Sismologique et géodésique Français [data set], https://doi.org/10.15778/resif.fr, 1995.
Rivero, L., Pinto, V., and Casas, A.: Moho depth structure of the eastern
part of the Pyrenean belt derived from gravity data, J. Geodynam., 33, 315–332, 2002.
Roca, E.: The Neogene Cerdanya and Seu d'Urgell intramontane basins (Eastern
Pyrenees), in: Tertiary basins of Spain: the stratigraphic record of
crustal kinematics, edited by: Friend, P. F. and Dabrio, C. J., Cambridge
University Press, Cambridge, 114–119, 1996.
Roca, E. and Santanach, P.: Génesis y evolución de la fosa de la
Cerdanya (Pirineos Orientales), Geogaceta, 1, 37–38, 1996.
Romero, P. and Schimmel, M.: Mapping the Basement of the Ebro Basin in Spain
With Seismic Ambient Noise Autocorrelations, J. Geophys. Res.-Sol. Ea., 123,
5052–5067, https://doi.org/10.1029/2018JB015498, 2018.
Ruigrok, E., Campman, X., and Wapenaar, K.: Basin delineation with a 40-hour
passive seismic record, B. Seismol. Soc. Am.,
102, 2165–2176, https://doi.org/10.1785/0120110242, 2012.
Schimmel, M., Stutzmann, E., and Ventosa, S.: Measuring Group Velocity in
Seismic Noise Correlation Studies Based on Phase Coherence and Resampling
Strategies, IEEE T. Geosci. Remote, 55, 1928–1935,
https://doi.org/10.1109/TGRS.2016.2631445, 2017.
Séranne, M., Couëffé, R., Husson, E., Baral, C., and Villard,
J.: The transition from Pyrenean shortening to Gulf of Lion rifting in
Languedoc (South France) – A tectonic-sedimentation analysis, BSGF – Earth Sciences Bulletin, 192, 27,
https://doi.org/10.1051/bsgf/2021017, 2021.
Shapiro, N. M., Campillo, M., Stehly, L., and Ritzwoller, M. H.:
High-Resolution Surface-Wave Tomography from Ambient Seismic Noise, New
Series, Science, 307, 1615–1618, 2005.
Taillefer, A., Milesi, G., Soliva, R., Monnier, L., Delorme, P.,
Guillou-Frottier, L., and le Goff, E.: Polyphased brittle deformation around
a crustal fault: A multi-scale approach based on remote sensing and field
data on the mountains surrounding the Têt hydrothermal system (Eastern
Pyrénées, France), Tectonophysics, 804, 228710,
https://doi.org/10.1016/j.tecto.2020.228710, 2021.
Tarantola, A.: Inverse Problem Theory and Methods for Model Parameter
Estimation, Society for Industrial and Applied Mathematics,
https://doi.org/10.1137/1.9780898717921, 2005.
Teixell, A.: Crustal structure and orogenic material budget in the west
central Pyrenees, Tectonics, 17, 395–406,
https://doi.org/10.1029/98TC00561, 1998.
Turu, V., Peña-Monné, J. L., Cunha, P. P., Jalut, G., Buylaert,
J.-P., Murray, A. S., Bridgland, D., Faurschou-Knudsen, M., Oliva, M.,
Carrasco, R. M., Ros, X., Turu-Font, L., and Ventura Roca, J.:
Glacial–interglacial cycles in the south-central and southeastern Pyrenees
since ∼180 ka (NE Spain–Andorra–S France), Quaternay Res., 1–28,
https://doi.org/10.1017/qua.2022.68, 2023.
Ventosa, S. and Schimmel, M.: ts-PWS: software to compute time-scale phase-weighted stack, DIGITAL.CSIC [code], https://doi.org/10.20350/digitalCSIC/13846, 2017.
Ventosa, S. and Schimmel, M.: FastPCC: software to compute phase cross-correlations, DIGITAL.CSIC [code], https://doi.org/10.20350/digitalCSIC/13837, 2019.
Ventosa, S., Schimmel, M., and Stutzmann, E.: Extracting surface waves, hum
and normal modes: time-scale phase-weighted stack and beyond, Geophys. J. Int., 211,
30–44, https://doi.org/10.1093/gji/ggx284, 2017.
Ventosa, S., Schimmel, M., and Stutzmann, E.: Towards the processing of
large data volumes with phase cross-correlation, Seismol. Res.
Lett., 90, 1663–1669, https://doi.org/10.1785/0220190022, 2019.
Vergés, J., Kullberg, J. C., Casas-Sainz, A., de Vicente, G., Duarte, L.
V., Fernàndez, M., Gómez, J. J., Gómez-Pugnaire, M. T., Jabaloy
Sánchez, A., López-Gómez, J., Macchiavelli, C.,
Martín-Algarra, A., Martín-Chivelet, J., Muñoz, J. A.,
Quesada, C., Terrinha, P., Torné, M., and Vegas, R.: An Introduction to
the Alpine Cycle in Iberia, in: The Geology of Iberia: A Geodynamic
Approach: Volume 3: The Alpine Cycle, edited by: Quesada, C. and Oliveira,
J. T., Springer International Publishing, Cham, 1–14,
https://doi.org/10.1007/978-3-030-11295-0_1, 2019.
Wapenaar, K.: Retrieving the elastodynamic Green's function of an arbitrary
inhomogeneous medium by cross correlation, Phys. Rev. Lett., 93, 254301,
https://doi.org/10.1103/PhysRevLett.93.254301, 2004.
Wapenaar, K., Draganov, D., Snieder, R., Campman, X., and Verdel, A.:
Tutorial on seismic interferometry: Part 1 – Basic principles and
applications, Geophysics, 75, 75A195–75A209,
https://doi.org/10.1190/1.3457445, 2010.
Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J., and Wobb, F.: Generic
Mapping Tools, Eos, Washington DC, 94, 409, https://doi.org/10.1002/2013EO450001, 2013.
Yu, Y., Song, J., Liu, K. H., and Gao, S. S.: Determining crustal structure
beneath seismic stations overlying a low-velocity sedimentary layer using
receiver functions, J. Geophys. Res.-Sol. Ea., 120, 3208–3218,
https://doi.org/10.1002/2014JB011610, 2015.
Zelt, B. C. and Ellis, R. M.: Receiver-function studies in the Trans-Hudson
Orogen, Saskatchewan, Can. J. Earth Sci., 36, 585–603, 1999.
Short summary
We assess the capability of multiple methods based on the interpretation of seismic noise to map the basement of the Cerdanya Basin, located in the eastern Pyrenees. Basement depth estimations retrieved from the different approaches are consistent, with maximum depths reaching 700 m close to the Têt fault bounding the basin to the east. Our results prove that seismic noise analysis using high-density networks is an excellent tool to improve the geological characterization of sedimentary basins.
We assess the capability of multiple methods based on the interpretation of seismic noise to map...