Articles | Volume 6, issue 3
https://doi.org/10.5194/se-6-1045-2015
https://doi.org/10.5194/se-6-1045-2015
Research article
 | 
02 Sep 2015
Research article |  | 02 Sep 2015

Pinch and swell structures: evidence for strain localisation by brittle–viscous behaviour in the middle crust

R. L. Gardner, S. Piazolo, and N. R. Daczko

Related authors

A comparative study of fabric evolution models and anisotropic rheologies
Daniel H. Richards, Elisa Mantelli, Samuel S. Pegler, and Sandra Piazolo
EGUsphere, https://doi.org/10.5194/egusphere-2024-3067,https://doi.org/10.5194/egusphere-2024-3067, 2024
Short summary
Electron backscatter diffraction analysis unveils foraminiferal calcite microstructure and processes of diagenetic alteration
Frances A. Procter, Sandra Piazolo, Eleanor H. John, Richard Walshaw, Paul N. Pearson, Caroline H. Lear, and Tracy Aze
Biogeosciences, 21, 1213–1233, https://doi.org/10.5194/bg-21-1213-2024,https://doi.org/10.5194/bg-21-1213-2024, 2024
Short summary
Grain growth of natural and synthetic ice at 0 °C
Sheng Fan, David J. Prior, Brent Pooley, Hamish Bowman, Lucy Davidson, David Wallis, Sandra Piazolo, Chao Qi, David L. Goldsby, and Travis F. Hager
The Cryosphere, 17, 3443–3459, https://doi.org/10.5194/tc-17-3443-2023,https://doi.org/10.5194/tc-17-3443-2023, 2023
Short summary
Ice fabrics in two-dimensional flows: beyond pure and simple shear
Daniel H. Richards, Samuel S. Pegler, and Sandra Piazolo
The Cryosphere, 16, 4571–4592, https://doi.org/10.5194/tc-16-4571-2022,https://doi.org/10.5194/tc-16-4571-2022, 2022
Short summary
Strain localization in brittle–ductile shear zones: fluid-abundant vs. fluid-limited conditions (an example from Wyangala area, Australia)
L. Spruzeniece and S. Piazolo
Solid Earth, 6, 881–901, https://doi.org/10.5194/se-6-881-2015,https://doi.org/10.5194/se-6-881-2015, 2015

Related subject area

Structural geology
Localized shear and distributed strain accumulation as competing shear accommodation mechanisms in crustal shear zones: constraining their dictating factors
Pramit Chatterjee, Arnab Roy, and Nibir Mandal
Solid Earth, 15, 1281–1301, https://doi.org/10.5194/se-15-1281-2024,https://doi.org/10.5194/se-15-1281-2024, 2024
Short summary
Influence of water on crystallographic preferred orientation patterns in a naturally deformed quartzite
Jeffrey M. Rahl, Brendan Moehringer, Kenneth S. Befus, and John S. Singleton
Solid Earth, 15, 1233–1240, https://doi.org/10.5194/se-15-1233-2024,https://doi.org/10.5194/se-15-1233-2024, 2024
Short summary
Geomorphic expressions of active rifting reflect the role of structural inheritance: a new model for the evolution of the Shanxi Rift, northern China
Malte Froemchen, Ken J. W. McCaffrey, Mark B. Allen, Jeroen van Hunen, Thomas B. Phillips, and Yueren Xu
Solid Earth, 15, 1203–1231, https://doi.org/10.5194/se-15-1203-2024,https://doi.org/10.5194/se-15-1203-2024, 2024
Short summary
Driven magmatism and crustal thinning of coastal southern China in response to subduction
Jinbao Su, Wenbin Zhu, and Guangwei Li
Solid Earth, 15, 1133–1141, https://doi.org/10.5194/se-15-1133-2024,https://doi.org/10.5194/se-15-1133-2024, 2024
Short summary
Selection and characterization of the target fault for fluid-induced activation and earthquake rupture experiments
Peter Achtziger-Zupančič, Alberto Ceccato, Alba Simona Zappone, Giacomo Pozzi, Alexis Shakas, Florian Amann, Whitney Maria Behr, Daniel Escallon Botero, Domenico Giardini, Marian Hertrich, Mohammadreza Jalali, Xiaodong Ma, Men-Andrin Meier, Julian Osten, Stefan Wiemer, and Massimo Cocco
Solid Earth, 15, 1087–1112, https://doi.org/10.5194/se-15-1087-2024,https://doi.org/10.5194/se-15-1087-2024, 2024
Short summary

Cited articles

Abe, S. and Urai, J. L.: Discrete element modeling of boudinage: Insights on rock rheology, matrix flow, and evolution of geometry, J. Geophys. Res.-Sol. Ea., 117, B01407, https://doi.org/10.1029/2011jb008555, 2012.
Arslan, A., Passchier, C. W., and Koehn, D.: Foliation boudinage, J. Struct. Geol., 30, 291–309, https://doi.org/10.1016/j.jsg.2007.11.004, 2008.
Bestmann, M. and Prior, D. J.: Intragranular dynamic recrystallization in naturally deformed calcite marble: diffusion accommodated grain boundary sliding as a result of subgrain rotation recrystallization, J. Struct. Geol., 25, 1597–1613, https://doi.org/10.1016/S0191-8141(03)00006-3, 2003.
Brander, L., Svahnberg, H., and Piazolo, S.: Brittle-plastic deformation in initially dry rocks at fluid-present conditions: transient behaviour of feldspar at mid-crustal levels, Contrib. Mineral. Petr., 163, 403–425, https://doi.org/10.1007/s00410-011-0677-5, 2012.
Brantut, N., Heap, M. J., Meredith, P. G., and Baud, P.: Time-dependent cracking and brittle creep in crustal rocks: A review, J. Struct. Geol. 52, 17–43, https://doi.org/10.1016/j.jsg.2013.03.007, 2013.
Download
Short summary
We find pinch and swell structures from a mid-crustal zone in Fiordland, NZ are initiated by brittle failure of the strongest layer. Modelling this strain localisation and viscous flow shows material softening is important and structures develop in both Newtonian and non-Newtonian flow, with strain localisation impacting both bedding rotation and structure formation. We also find strain localising behaviour combined with viscous flow is a viable alternative representation of the middle crust.