Articles | Volume 8, issue 1
https://doi.org/10.5194/se-8-199-2017
https://doi.org/10.5194/se-8-199-2017
Research article
 | 
21 Feb 2017
Research article |  | 21 Feb 2017

Rheological transitions in the middle crust: insights from Cordilleran metamorphic core complexes

Frances J. Cooper, John P. Platt, and Whitney M. Behr

Related authors

Dislocation creep and glide in experimentally deformed glaucophane aggregates
Lonnie Justin Hufford, Leif Tokle, Whitney Maria Behr, Luiz Grafula Morales, and Claudio Madonna
EGUsphere, https://doi.org/10.5194/egusphere-2025-531,https://doi.org/10.5194/egusphere-2025-531, 2025
This preprint is open for discussion and under review for Solid Earth (SE).
Short summary
Insights from elastic thermobarometry into exhumation of high-pressure metamorphic rocks from Syros, Greece
Miguel Cisneros, Jaime D. Barnes, Whitney M. Behr, Alissa J. Kotowski, Daniel F. Stockli, and Konstantinos Soukis
Solid Earth, 12, 1335–1355, https://doi.org/10.5194/se-12-1335-2021,https://doi.org/10.5194/se-12-1335-2021, 2021
Short summary
Comment on “Channel flow, tectonic overpressure, and exhumation of high-pressure rocks in the Greater Himalayas” by Marques et al. (2018)
John P. Platt
Solid Earth, 10, 357–361, https://doi.org/10.5194/se-10-357-2019,https://doi.org/10.5194/se-10-357-2019, 2019
Short summary
Structural and rheological evolution of the Laramide subduction channel in southern California
Haoran Xia and John P. Platt
Solid Earth, 8, 379–403, https://doi.org/10.5194/se-8-379-2017,https://doi.org/10.5194/se-8-379-2017, 2017
Short summary

Related subject area

Structural geology
Origin of the Bohai Sea Basin, North China Craton, and implications for bidirectional back-arc extension in the East Asian continental margin
Alan Liu Chen and Xuanhua Chen
Solid Earth, 16, 63–80, https://doi.org/10.5194/se-16-63-2025,https://doi.org/10.5194/se-16-63-2025, 2025
Short summary
Earthquake swarms frozen in an exhumed hydrothermal system (Bolfin Fault Zone, Chile)
Simone Masoch, Giorgio Pennacchioni, Michele Fondriest, Rodrigo Gomila, Piero Poli, José Cembrano, and Giulio Di Toro
Solid Earth, 16, 23–43, https://doi.org/10.5194/se-16-23-2025,https://doi.org/10.5194/se-16-23-2025, 2025
Short summary
Reconciling post-orogenic faulting, paleostress evolution, and structural inheritance in the seismogenic northern Apennines (Italy): insights from the Monti Martani Fault System
Riccardo Asti, Selina Bonini, Giulio Viola, and Gianluca Vignaroli
Solid Earth, 15, 1525–1551, https://doi.org/10.5194/se-15-1525-2024,https://doi.org/10.5194/se-15-1525-2024, 2024
Short summary
Understanding the stress field at the lateral termination of a thrust fold using generic geomechanical models and clustering methods
Anthony Adwan, Bertrand Maillot, Pauline Souloumiac, Christophe Barnes, Christophe Nussbaum, Meinert Rahn, and Thomas Van Stiphout
Solid Earth, 15, 1445–1463, https://doi.org/10.5194/se-15-1445-2024,https://doi.org/10.5194/se-15-1445-2024, 2024
Short summary
Localized shear and distributed strain accumulation as competing shear accommodation mechanisms in crustal shear zones: constraining their dictating factors
Pramit Chatterjee, Arnab Roy, and Nibir Mandal
Solid Earth, 15, 1281–1301, https://doi.org/10.5194/se-15-1281-2024,https://doi.org/10.5194/se-15-1281-2024, 2024
Short summary

Cited articles

Anderson, J. L. and Rowley, M.: Synkinematic intrusion of peraluminous and associated metaluminous granitic magmas, Whipple Mountains, California, Canadian Mineralogist, 19 pp., 1981.
Anderson, J. L., Barth, A. P., and Young, E. D.: Mid-crustal Cretaceous roots of Cordilleran Metamorphic Core Complexes, Geology, 16, 366–369, 1988.
Axen, G. J. and Selverstone, J.: Stress state and fluid-pressure level along the Whipple detachment fault, California, Geology, 22, 835–838, 1994.
Bartley, J. M. and Wernicke, B. P.: The Snake Range decollement interpreted as a major extensional shear zone, Tectonics, 3, 647–657, 1984.
Behr, W. M. and Platt, J. P.: A naturally constrained stress profile through the middle crust in an extensional terrane, Earth Planet. Sc. Lett., 303, 181–192, 2011.
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
We examine how deformation of the Earth’s crust varies with depth beneath the surface. By looking in detail at exhumed rocks from three case studies in the USA, we identify three main deformation zones: 1, a brittle deformation zone (low temperatures mean rocks break along faults and fractures); 2, a localized deformation zone (warmer rocks deform along discrete zones that shear but do not break); and 3, a distributed deformation zone (hot rocks flow ductilely and no discrete shearing occurs).
Share