Articles | Volume 9, issue 1
https://doi.org/10.5194/se-9-1-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-9-1-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Deformation mechanisms and evolution of the microstructure of gouge in the Main Fault in Opalinus Clay in the Mont Terri rock laboratory (CH)
Institute for Structural Geology, Tectonics and Geomechanics, RWTH Aachen University, Lochnerstrasse 4–20, 52056 Aachen, Germany
now at: Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg 2, 30655 Hanover, Germany
Janos L. Urai
Institute for Structural Geology, Tectonics and Geomechanics, RWTH Aachen University, Lochnerstrasse 4–20, 52056 Aachen, Germany
Christian Vollmer
Institute for Mineralogy, University of Münster, Correnstraße 24, 48149 Münster, Germany
Christophe Nussbaum
Swiss Geological Survey, Federal Office of Topography Swisstopo, Seftigenstrasse 264, 3084 Wabern, Switzerland
Related authors
Larissa Friedenberg, Jeroen Bartol, James Bean, Steffen Beese, Hendrik Bollmann, Hans J. P. de Bresser, Jibril Coulibaly, Oliver Czaikowski, Uwe Düsterloh, Ralf Eickemeier, Ann-Kathrin Gartzke, Suzanne Hangx, Ben Laurich, Christian Lerch, Svetlana Lerche, Wenting Liu, Christoph Lüdeling, Melissa M. Mills, Nina Müller-Hoeppe, Bart van Oosterhout, Till Popp, Ole Rabbel, Michael Rahmig, Benjamin Reedlunn, Christopher Rölke, Christopher Spiers, Kristoff Svensson, Jan Thiedau, and Kornelia Zemke
Saf. Nucl. Waste Disposal, 2, 109–111, https://doi.org/10.5194/sand-2-109-2023, https://doi.org/10.5194/sand-2-109-2023, 2023
Short summary
Short summary
For the deep geological disposal of high-level nuclear waste in rock salt formations, the safety concept includes the backfilling of open cavities with crushed salt. For the prognosis of the sealing function of the backfill for the safe containment of the nuclear waste, it is crucial to have a comprehensive process understanding of the crushed-salt compaction behavior. The KOMPASS projects were initiated to improve the scientific knowledge of using crushed salt as backfill material.
Larissa Friedenberg, James Bean, Oliver Czaikowski, Uwe Düsterloh, Nina Müller-Hoeppe, Ben Laurich, Christian Lerch, Svetlana Lerche, Christoph Lüdeling, Melissa Mills, Till Popp, Benjamin Reedlunn, Dieter Stührenberg, Kristoff Svensson, Kornelia Zemke, and Juan Zhao
Saf. Nucl. Waste Disposal, 1, 121–123, https://doi.org/10.5194/sand-1-121-2021, https://doi.org/10.5194/sand-1-121-2021, 2021
Kornelia Zemke, Kristoff Svensson, Ben Laurich, and Johanna Lippmann-Pipke
Saf. Nucl. Waste Disposal, 1, 137–139, https://doi.org/10.5194/sand-1-137-2021, https://doi.org/10.5194/sand-1-137-2021, 2021
Kristoff Svensson, Kornelia Zemke, and Ben Laurich
Saf. Nucl. Waste Disposal, 1, 131–132, https://doi.org/10.5194/sand-1-131-2021, https://doi.org/10.5194/sand-1-131-2021, 2021
Gesa Ziefle, Tuanny Cajuhi, Sebastian Condamin, Stephan Costabel, Oliver Czaikowski, Antoine Fourriére, Larissa Friedenberg, Markus Furche, Nico Graebling, Bastian Graupner, Jürgen Hesser, David Jaeggi, Kyra Jantschik, Tilo Kneuker, Olaf Kolditz, Franz Königer, Herbert Kunz, Ben Laurich, Jobst Maßmann, Christian Ostertag-Henning, Dorothee Rebscher, Karsten Rink, Wolfram Rühaak, Senecio Schefer, Rainer Schuhmann, Marc Wengler, and Klaus Wieczorek
Saf. Nucl. Waste Disposal, 1, 79–81, https://doi.org/10.5194/sand-1-79-2021, https://doi.org/10.5194/sand-1-79-2021, 2021
Ben Laurich
Saf. Nucl. Waste Disposal, 1, 295–297, https://doi.org/10.5194/sand-1-295-2021, https://doi.org/10.5194/sand-1-295-2021, 2021
Ben Laurich, Jürgen Hesser, Sibylle Mayr, Lisa Winhausen, Amin Ghanizadeh, Antonia Nitsch, Julia Leuthold, Christian Weber, and Garri Gaus
Saf. Nucl. Waste Disposal, 1, 299–300, https://doi.org/10.5194/sand-1-299-2021, https://doi.org/10.5194/sand-1-299-2021, 2021
Ben Laurich, Janos L. Urai, and Christophe Nussbaum
Solid Earth, 8, 27–44, https://doi.org/10.5194/se-8-27-2017, https://doi.org/10.5194/se-8-27-2017, 2017
Short summary
Short summary
Scaly clay is a well-known rock fabric that can develop in tectonic systems and that can alter the physical rock properties of a formation. However, the internal microstructure and evolution of this fabric remain poorly understood. We examined the scaly microstructure of progressively faulted Opalinus Clay using optical as well as scanning electron microscopy. We show that as little as 1 vol.% in scaly clay aggregates is strained and present an evolutionary model for this.
Anthony Adwan, Bertrand Maillot, Pauline Souloumiac, Christophe Barnes, Christophe Nussbaum, Meinert Rahn, and Thomas Van Stiphout
Solid Earth, 15, 1445–1463, https://doi.org/10.5194/se-15-1445-2024, https://doi.org/10.5194/se-15-1445-2024, 2024
Short summary
Short summary
We use computer simulations to study how stress is distributed in large-scale geological models, focusing on how fault lines behave under pressure. By running many 2D and 3D simulations with varying conditions, we discover patterns in how faults form and interact. Our findings reveal that even small changes in conditions can lead to different stress outcomes. This research helps us better understand earthquake mechanics and could improve predictions of fault behavior in real-world scenarios.
Jens T. Birkholzer, Yves Guglielmi, and Christophe Nussbaum
Saf. Nucl. Waste Disposal, 2, 61–62, https://doi.org/10.5194/sand-2-61-2023, https://doi.org/10.5194/sand-2-61-2023, 2023
Short summary
Short summary
This presentation discusses a series of in situ experiments of fault activation by fluid injection conducted in argillite rock at the Mont Terri underground research laboratory in Switzerland to better understand whether pressurization of natural faults can lead to their reactivation and permeability generation in case such features are present near disposal tunnels. Lessons learned from these experiments help inform the safety assessment of geologic disposal in argillite host rock.
Larissa Friedenberg, Jeroen Bartol, James Bean, Steffen Beese, Hendrik Bollmann, Hans J. P. de Bresser, Jibril Coulibaly, Oliver Czaikowski, Uwe Düsterloh, Ralf Eickemeier, Ann-Kathrin Gartzke, Suzanne Hangx, Ben Laurich, Christian Lerch, Svetlana Lerche, Wenting Liu, Christoph Lüdeling, Melissa M. Mills, Nina Müller-Hoeppe, Bart van Oosterhout, Till Popp, Ole Rabbel, Michael Rahmig, Benjamin Reedlunn, Christopher Rölke, Christopher Spiers, Kristoff Svensson, Jan Thiedau, and Kornelia Zemke
Saf. Nucl. Waste Disposal, 2, 109–111, https://doi.org/10.5194/sand-2-109-2023, https://doi.org/10.5194/sand-2-109-2023, 2023
Short summary
Short summary
For the deep geological disposal of high-level nuclear waste in rock salt formations, the safety concept includes the backfilling of open cavities with crushed salt. For the prognosis of the sealing function of the backfill for the safe containment of the nuclear waste, it is crucial to have a comprehensive process understanding of the crushed-salt compaction behavior. The KOMPASS projects were initiated to improve the scientific knowledge of using crushed salt as backfill material.
Jessica Barabasch, Joyce Schmatz, Jop Klaver, Alexander Schwedt, and Janos L. Urai
Solid Earth, 14, 271–291, https://doi.org/10.5194/se-14-271-2023, https://doi.org/10.5194/se-14-271-2023, 2023
Short summary
Short summary
We analysed Zechstein salt with microscopes and observed specific microstructures that indicate much faster deformation in rock salt with fine halite grains when compared to salt with larger grains. This is important because people build large cavities in the subsurface salt for energy storage or want to deposit radioactive waste inside it. When engineers and scientists use grain-size data and equations that include this mechanism, it will help to make better predictions in geological models.
Trudy M. Wassenaar, Cees W. Passchier, Nora Groschopf, Anna Jantschke, Regina Mertz-Kraus, and Janos L. Urai
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-32, https://doi.org/10.5194/bg-2023-32, 2023
Manuscript not accepted for further review
Short summary
Short summary
Marbles in the desert areas of Namibia and Oman were found to be consumed from inside the rock mass by microbiological activity of a thus far unknown nature that created bands of parallel tubules. These bands formed along fractures in the rock and only surfaced after erosion made them visible. We consider this a new niche for life that has so far not been described. These life forms may have an unknown impact on the global carbon cycle.
Sivaji Lahiri, Kitty L. Milliken, Peter Vrolijk, Guillaume Desbois, and Janos L. Urai
Solid Earth, 13, 1513–1539, https://doi.org/10.5194/se-13-1513-2022, https://doi.org/10.5194/se-13-1513-2022, 2022
Short summary
Short summary
Understanding the mechanism of mechanical compaction is important. Previous studies on mechanical compaction were mostly done by performing experiments. Studies on natural rocks are rare due to compositional heterogeneity of the sedimentary succession with depth. Due to remarkable similarity in composition and grain size, the Sumatra subduction complex provides a unique opportunity to study the micromechanism of mechanical compaction on natural samples.
Manuel D. Menzel, Janos L. Urai, Estibalitz Ukar, Thierry Decrausaz, and Marguerite Godard
Solid Earth, 13, 1191–1218, https://doi.org/10.5194/se-13-1191-2022, https://doi.org/10.5194/se-13-1191-2022, 2022
Short summary
Short summary
Mantle rocks can bind large quantities of carbon by reaction with CO2, but this capacity requires fluid pathways not to be clogged by carbonate. We studied mantle rocks from Oman to understand the mechanisms allowing their transformation into carbonate and quartz. Using advanced imaging techniques, we show that abundant veins were essential fluid pathways driving the reaction. Our results show that tectonic stress was important for fracture opening and a key ingredient for carbon fixation.
Lisa Winhausen, Kavan Khaledi, Mohammadreza Jalali, Janos L. Urai, and Florian Amann
Solid Earth, 13, 901–915, https://doi.org/10.5194/se-13-901-2022, https://doi.org/10.5194/se-13-901-2022, 2022
Short summary
Short summary
Triaxial compression tests at different effective stresses allow for analysing the deformation behaviour of Opalinus Clay, the potential host rock for nuclear waste in Switzerland. We conducted microstructural investigations of the deformed samples to relate the bulk hydro-mechanical behaviour to the processes on the microscale. Results show a transition from brittle- to more ductile-dominated deformation. We propose a non-linear failure envelop associated with the failure mode transition.
Larissa Friedenberg, James Bean, Oliver Czaikowski, Uwe Düsterloh, Nina Müller-Hoeppe, Ben Laurich, Christian Lerch, Svetlana Lerche, Christoph Lüdeling, Melissa Mills, Till Popp, Benjamin Reedlunn, Dieter Stührenberg, Kristoff Svensson, Kornelia Zemke, and Juan Zhao
Saf. Nucl. Waste Disposal, 1, 121–123, https://doi.org/10.5194/sand-1-121-2021, https://doi.org/10.5194/sand-1-121-2021, 2021
Kornelia Zemke, Kristoff Svensson, Ben Laurich, and Johanna Lippmann-Pipke
Saf. Nucl. Waste Disposal, 1, 137–139, https://doi.org/10.5194/sand-1-137-2021, https://doi.org/10.5194/sand-1-137-2021, 2021
Kristoff Svensson, Kornelia Zemke, and Ben Laurich
Saf. Nucl. Waste Disposal, 1, 131–132, https://doi.org/10.5194/sand-1-131-2021, https://doi.org/10.5194/sand-1-131-2021, 2021
Gesa Ziefle, Tuanny Cajuhi, Sebastian Condamin, Stephan Costabel, Oliver Czaikowski, Antoine Fourriére, Larissa Friedenberg, Markus Furche, Nico Graebling, Bastian Graupner, Jürgen Hesser, David Jaeggi, Kyra Jantschik, Tilo Kneuker, Olaf Kolditz, Franz Königer, Herbert Kunz, Ben Laurich, Jobst Maßmann, Christian Ostertag-Henning, Dorothee Rebscher, Karsten Rink, Wolfram Rühaak, Senecio Schefer, Rainer Schuhmann, Marc Wengler, and Klaus Wieczorek
Saf. Nucl. Waste Disposal, 1, 79–81, https://doi.org/10.5194/sand-1-79-2021, https://doi.org/10.5194/sand-1-79-2021, 2021
Ben Laurich
Saf. Nucl. Waste Disposal, 1, 295–297, https://doi.org/10.5194/sand-1-295-2021, https://doi.org/10.5194/sand-1-295-2021, 2021
Ben Laurich, Jürgen Hesser, Sibylle Mayr, Lisa Winhausen, Amin Ghanizadeh, Antonia Nitsch, Julia Leuthold, Christian Weber, and Garri Gaus
Saf. Nucl. Waste Disposal, 1, 299–300, https://doi.org/10.5194/sand-1-299-2021, https://doi.org/10.5194/sand-1-299-2021, 2021
Rahul Prabhakaran, Giovanni Bertotti, Janos Urai, and David Smeulders
Solid Earth, 12, 2159–2209, https://doi.org/10.5194/se-12-2159-2021, https://doi.org/10.5194/se-12-2159-2021, 2021
Short summary
Short summary
Rock fractures are organized as networks with spatially varying arrangements. Due to networks' influence on bulk rock behaviour, it is important to quantify network spatial variation. We utilize an approach where fracture networks are treated as spatial graphs. By combining graph similarity measures with clustering techniques, spatial clusters within large-scale fracture networks are identified and organized hierarchically. The method is validated on a dataset with nearly 300 000 fractures.
Lisa Winhausen, Jop Klaver, Joyce Schmatz, Guillaume Desbois, Janos L. Urai, Florian Amann, and Christophe Nussbaum
Solid Earth, 12, 2109–2126, https://doi.org/10.5194/se-12-2109-2021, https://doi.org/10.5194/se-12-2109-2021, 2021
Short summary
Short summary
An experimentally deformed sample of Opalinus Clay (OPA), which is being considered as host rock for nuclear waste in Switzerland, was studied by electron microscopy to image deformation microstructures. Deformation localised by forming micrometre-thick fractures. Deformation zones show dilatant micro-cracking, granular flow and bending grains, and pore collapse. Our model, with three different stages of damage accumulation, illustrates microstructural deformation in a compressed OPA sample.
Marta Adamuszek, Dan M. Tămaş, Jessica Barabasch, and Janos L. Urai
Solid Earth, 12, 2041–2065, https://doi.org/10.5194/se-12-2041-2021, https://doi.org/10.5194/se-12-2041-2021, 2021
Short summary
Short summary
We analyse folded multilayer sequences in the Ocnele Mari salt mine (Romania) to gain insight into the long-term rheological behaviour of rock salt. Our results indicate the large role of even a small number of impurities in the rock salt for its effective mechanical behaviour. We demonstrate how the development of folds that occur at various scales can be used to constrain the viscosity ratio in the deformed multilayer sequence.
Alba Zappone, Antonio Pio Rinaldi, Melchior Grab, Quinn C. Wenning, Clément Roques, Claudio Madonna, Anne C. Obermann, Stefano M. Bernasconi, Matthias S. Brennwald, Rolf Kipfer, Florian Soom, Paul Cook, Yves Guglielmi, Christophe Nussbaum, Domenico Giardini, Marco Mazzotti, and Stefan Wiemer
Solid Earth, 12, 319–343, https://doi.org/10.5194/se-12-319-2021, https://doi.org/10.5194/se-12-319-2021, 2021
Short summary
Short summary
The success of the geological storage of carbon dioxide is linked to the availability at depth of a capable reservoir and an impermeable caprock. The sealing capacity of the caprock is a key parameter for long-term CO2 containment. Faults crosscutting the caprock might represent preferential pathways for CO2 to escape. A decameter-scale experiment on injection in a fault, monitored by an integrated network of multiparamerter sensors, sheds light on the mobility of fluids within the fault.
Stephanie Pabich, Christian Vollmer, and Nikolaus Gussone
Eur. J. Mineral., 32, 613–622, https://doi.org/10.5194/ejm-32-613-2020, https://doi.org/10.5194/ejm-32-613-2020, 2020
Short summary
Short summary
Electron backscatter diffraction (EBSD) is a powerful tool to visualize and differentiate between foraminiferal test structures, by providing information on crystal orientation and crystal sizes. This can be used to trace diagenetic recrystallization, altering geochemical proxy signals. The sediment samples from a core from the equatorial Pacific used here, spanning the last 45 Myr, showed no evidence for foraminiferal recrystallization, highlighting the suitability as geochemical proxy archive.
Christopher Weismüller, Rahul Prabhakaran, Martijn Passchier, Janos L. Urai, Giovanni Bertotti, and Klaus Reicherter
Solid Earth, 11, 1773–1802, https://doi.org/10.5194/se-11-1773-2020, https://doi.org/10.5194/se-11-1773-2020, 2020
Short summary
Short summary
We photographed a fractured limestone pavement with a drone to compare manual and automatic fracture tracing and analyze the evolution and spatial variation of the fracture network in high resolution. We show that automated tools can produce results comparable to manual tracing in shorter time but do not yet allow the interpretation of fracture generations. This work pioneers the automatic fracture mapping of a complete outcrop in detail, and the results can be used as fracture benchmark.
Heijn van Gent and Janos L. Urai
Solid Earth, 11, 513–526, https://doi.org/10.5194/se-11-513-2020, https://doi.org/10.5194/se-11-513-2020, 2020
Short summary
Short summary
Faults form due to stresses caused by crustal processes. As faults influence the stress field locally, fault interaction leads to local variations in the stress field, but this is difficult to observe directly.
We describe an outcrop of one fault abuting into another one. By careful measurement of structures in the overlapping deformation zones and separating them using published relative age data, we show a rotation in the local stress field resulting from the faults growing to each other
Christopher Weismüller, Janos L. Urai, Michael Kettermann, Christoph von Hagke, and Klaus Reicherter
Solid Earth, 10, 1757–1784, https://doi.org/10.5194/se-10-1757-2019, https://doi.org/10.5194/se-10-1757-2019, 2019
Short summary
Short summary
We use drones to study surface geometries of massively dilatant faults (MDFs) in Iceland, with apertures up to tens of meters at the surface. Based on throw, aperture and structures, we define three geometrically different endmembers of the surface expression of MDFs and show that they belong to one continuum. The transition between the endmembers is fluent and can change at one fault over short distances, implying less distinct control of deeper structures on surface geometries than expected.
Mark G. Rowan, Janos L. Urai, J. Carl Fiduk, and Peter A. Kukla
Solid Earth, 10, 987–1013, https://doi.org/10.5194/se-10-987-2019, https://doi.org/10.5194/se-10-987-2019, 2019
Short summary
Short summary
Ancient evaporite sequences were deposited as interlayered rocksalt, other evaporites, and non-evaporite rocks that have enormous differences in strength. Whereas the ductile layers flow during deformation, strong layers are folded and/or torn apart, with the intrasalt deformation dependent on the mode and history of salt tectonics. This has important implications for accurately imaging and interpreting subsurface seismic data and for drilling wells through evaporite sequences.
Ismay Vénice Akker, Josef Kaufmann, Guillaume Desbois, Jop Klaver, Janos L. Urai, Alfons Berger, and Marco Herwegh
Solid Earth, 9, 1141–1156, https://doi.org/10.5194/se-9-1141-2018, https://doi.org/10.5194/se-9-1141-2018, 2018
Short summary
Short summary
We studied porosity changes of slates from eastern Switzerland, which were deposited in an ocean in front of the emerging Alps during the Cenozoic. The Alpine collision between the European and African plates brought the rocks from this basin to today’s position in the Alps. From the basin to the surface, the porosity first decreased down to a small number of round cavities (<1 vol%) to microfractures, and once at the surface, the porosity increased again due to the formation of macro-fractures.
Simon Virgo, Christoph von Hagke, and Janos L. Urai
Solid Earth, 9, 91–113, https://doi.org/10.5194/se-9-91-2018, https://doi.org/10.5194/se-9-91-2018, 2018
Short summary
Short summary
The marbles of the migmatitic dome on the island Naxos contain deformed layers of amphibolite with multiple phases of boudinage. The boudins formed by E–W shortening normal to the layers and layer parallel extension in various directions. We identified five different generations of boudins that show that E–W shortening is the prevalent deformation in these rocks during the peak metamorphosis and the following cooling, different from other parts of the island dominated by top-to-north shearing.
Guillaume Desbois, Nadine Höhne, Janos L. Urai, Pierre Bésuelle, and Gioacchino Viggiani
Solid Earth, 8, 291–305, https://doi.org/10.5194/se-8-291-2017, https://doi.org/10.5194/se-8-291-2017, 2017
Short summary
Short summary
This work integrates measurements of the mechanical and transport properties with microstructures to understand deformation mechanisms in cemented mudrock. Cataclastic mechanisms are dominant down to nanometre scale. At low strain the fabric contains recognizable open fractures, while at high strain the reworked clay gouge shows resealing of initial fracture porosity. In the future, it will provide a microphysical basis for constitutive models to improve their extrapolation for long timescales.
Ben Laurich, Janos L. Urai, and Christophe Nussbaum
Solid Earth, 8, 27–44, https://doi.org/10.5194/se-8-27-2017, https://doi.org/10.5194/se-8-27-2017, 2017
Short summary
Short summary
Scaly clay is a well-known rock fabric that can develop in tectonic systems and that can alter the physical rock properties of a formation. However, the internal microstructure and evolution of this fabric remain poorly understood. We examined the scaly microstructure of progressively faulted Opalinus Clay using optical as well as scanning electron microscopy. We show that as little as 1 vol.% in scaly clay aggregates is strained and present an evolutionary model for this.
A. F. Raith, F. Strozyk, J. Visser, and J. L. Urai
Solid Earth, 7, 67–82, https://doi.org/10.5194/se-7-67-2016, https://doi.org/10.5194/se-7-67-2016, 2016
Short summary
Short summary
3D seismic and well data were used to study the evolution of salt pillows with extreme mechanical stratification to gain a better understanding of layered evaporite deposits. During evaporation an active basement graben caused the local accumulation of thick K-Mg salts. The resulting structure after the following extensional and compressional salt flow was strongly influenced by folding of the ruptured ZIII-AC stringer, leading to thickening and internal deformation of the soft K-Mg salt layers.
Related subject area
Tectonics
Influence of lateral heterogeneities on strike-slip fault behaviour: insights from analogue models
Importance of basement faulting and salt decoupling for the structural evolution of the Fars Arc (Zagros fold-and-thrust belt): a numerical modeling approach
On the role of trans-lithospheric faults in the long-term seismotectonic segmentation of active margins: a case study in the Andes
Along-strike variation in volcanic addition controlling post-breakup sedimentary infill: Pelotas margin, austral South Atlantic
Stress state at faults: the influence of rock stiffness contrast, stress orientation, and ratio
(D)rifting in the 21st century: key processes, natural hazards, and geo-resources
Interseismic and long-term deformation of southeastern Sicily driven by the Ionian slab roll-back
Rift and plume: a discussion on active and passive rifting mechanisms in the Afro-Arabian rift based on synthesis of geophysical data
Propagating rifts: the roles of crustal damage and ascending mantle fluids
Magma-poor continent–ocean transition zones of the southern North Atlantic: a wide-angle seismic synthesis of a new frontier
Cretaceous–Paleocene extension at the southwestern continental margin of India and opening of the Laccadive basin: constraints from geophysical data
Extensional exhumation of cratons: insights from the Early Cretaceous Rio Negro–Juruena belt (Amazonian Craton, Colombia)
Hydrogen solubility of stishovite provides insights into water transportation to the deep Earth
Modelling transient thermal processes in the lithosphere: application to the NW Pannonian basin
Networks of geometrically coherent faults accommodate Alpine tectonic inversion offshore southwestern Iberia
Oblique rifting triggered by slab tearing: the case of the Alboran rifted margin in the eastern Betics
Melt-enhanced strain localization and phase mixing in a large-scale mantle shear zone (Ronda peridotite, Spain)
Selective inversion of rift basins in lithospheric-scale analogue experiments
The link between Somalian Plate rotation and the East African Rift System: an analogue modelling study
Inversion of extensional basins parallel and oblique to their boundaries: inferences from analogue models and field observations from the Dolomites Indenter, European eastern Southern Alps
Magnetic fabric analyses of basin inversion: a sandbox modelling approach
Tectonic interactions during rift linkage: insights from analog and numerical experiments
The influence of crustal strength on rift geometry and development – insights from 3D numerical modelling
Construction of the Ukrainian Carpathian wedge from low-temperature thermochronology and tectono-stratigraphic analysis
Analogue modelling of basin inversion: a review and future perspectives
Insights into the interaction of a shale with CO2
Tectonostratigraphic evolution of the Slyne Basin
Assessing the role of thermal disequilibrium in the evolution of the lithosphere–asthenosphere boundary: an idealized model of heat exchange during channelized melt transport
Control of crustal strength, tectonic inheritance, and stretching/ shortening rates on crustal deformation and basin reactivation: insights from laboratory models
Numerical simulation of contemporary kinematics at the northeastern Tibetan Plateau and its implications for seismic hazard assessment
Late Cretaceous–early Palaeogene inversion-related tectonic structures at the northeastern margin of the Bohemian Massif (southwestern Poland and northern Czechia)
A tectonic-rules-based mantle reference frame since 1 billion years ago – implications for supercontinent cycles and plate–mantle system evolution
An efficient partial-differential-equation-based method to compute pressure boundary conditions in regional geodynamic models
The analysis of slip tendency of major tectonic faults in Germany
Earthquake ruptures and topography of the Chilean margin controlled by plate interface deformation
Together but separate: decoupled Variscan (late Carboniferous) and Alpine (Late Cretaceous–Paleogene) inversion tectonics in NW Poland
Late Quaternary faulting in the southern Matese (Italy): implications for earthquake potential and slip rate variability in the southern Apennines
The topographic signature of temperature-controlled rheological transitions in an accretionary prism
Rare earth elements associated with carbonatite–alkaline complexes in western Rajasthan, India: exploration targeting at regional scale
Exhumation and erosion of the Northern Apennines, Italy: new insights from low-temperature thermochronometers
Structural complexities and tectonic barriers controlling recent seismic activity in the Pollino area (Calabria–Lucania, southern Italy) – constraints from stress inversion and 3D fault model building
The Mid Atlantic Appalachian Orogen Traverse: a comparison of virtual and on-location field-based capstone experiences
Chronology of thrust propagation from an updated tectono-sedimentary framework of the Miocene molasse (western Alps)
Orogenic lithosphere and slabs in the greater Alpine area – interpretations based on teleseismic P-wave tomography
Ground-penetrating radar signature of Quaternary faulting: a study from the Mt. Pollino region, southern Apennines, Italy
U–Pb dating of middle Eocene–Pliocene multiple tectonic pulses in the Alpine foreland
Detrital zircon provenance record of the Zagros mountain building from the Neotethys obduction to the Arabia–Eurasia collision, NW Zagros fold–thrust belt, Kurdistan region of Iraq
The Subhercynian Basin: an example of an intraplate foreland basin due to a broken plate
Late to post-Variscan basement segmentation and differential exhumation along the SW Bohemian Massif, central Europe
Holocene surface-rupturing earthquakes on the Dinaric Fault System, western Slovenia
Sandra González-Muñoz, Guido Schreurs, Timothy C. Schmid, and Fidel Martín-González
Solid Earth, 15, 1509–1523, https://doi.org/10.5194/se-15-1509-2024, https://doi.org/10.5194/se-15-1509-2024, 2024
Short summary
Short summary
This work investigates how strike-slip faults propagate across domains with lateral contrasting brittle strength using analogue models. The introduction of brittle vertical domains was achieved using quartz microbead sand. The reference vertical domains influence synthetic fault propagation, segmentation, and linkage, as well as the antithetic faults which rotate about a vertical axis due to the applied simple shear. The results aligned with the faults in the NW of the Iberian Peninsula.
Fatemeh Gomar, Jonas B. Ruh, Mahdi Najafi, and Farhad Sobouti
Solid Earth, 15, 1479–1507, https://doi.org/10.5194/se-15-1479-2024, https://doi.org/10.5194/se-15-1479-2024, 2024
Short summary
Short summary
Our study investigates the structural evolution of the Fars Arc in the Zagros Mountains through numerical modeling. We focus on the effects of the interaction between basement faults and salt décollement levels during tectonic inversion, including a rifting and a convergence phase. In conclusion, our results emphasize the importance of considering fault geometry, salt rheology, and basement involvement in understanding the resistance to deformation and the seismic behavior of fold–thrust belts.
Gonzalo Yanez C., Jose Piquer R., and Orlando Rivera H.
Solid Earth, 15, 1319–1342, https://doi.org/10.5194/se-15-1319-2024, https://doi.org/10.5194/se-15-1319-2024, 2024
Short summary
Short summary
We postulate that the observed spatial distribution of large earthquakes in active convergence zones, organised in segments where large events are repeated every 100–300 years, depends on large-scale continental faults and fluid release from the subducting slab. In order to support this model, we use proxies at different spatial and temporal scales (historic seismicity, megathrust slip solutions, inter-seismic cumulative seismicity, GPS/viscous plate coupling, and coastline morphology).
Marlise C. Cassel, Nick Kusznir, Gianreto Manatschal, and Daniel Sauter
Solid Earth, 15, 1265–1279, https://doi.org/10.5194/se-15-1265-2024, https://doi.org/10.5194/se-15-1265-2024, 2024
Short summary
Short summary
We investigate the along-strike variation in volcanics on the Pelotas segment of the Brazilian margin created during continental breakup and formation of the southern South Atlantic. We show that the volume of volcanics strongly controls the amount of space available for post-breakup sedimentation. We also show that breakup varies along-strike from very magma-rich to magma-normal within a relatively short distance of less than 300 km. This is not as expected from a simple mantle plume model.
Moritz O. Ziegler, Robin Seithel, Thomas Niederhuber, Oliver Heidbach, Thomas Kohl, Birgit Müller, Mojtaba Rajabi, Karsten Reiter, and Luisa Röckel
Solid Earth, 15, 1047–1063, https://doi.org/10.5194/se-15-1047-2024, https://doi.org/10.5194/se-15-1047-2024, 2024
Short summary
Short summary
The rotation of the principal stress axes in a fault structure because of a rock stiffness contrast has been investigated for the impact of the ratio of principal stresses, the angle between principal stress axes and fault strike, and the ratio of the rock stiffness contrast. A generic 2D geomechanical model is employed for the systematic investigation of the parameter space.
Frank Zwaan, Tiago M. Alves, Patricia Cadenas, Mohamed Gouiza, Jordan J. J. Phethean, Sascha Brune, and Anne C. Glerum
Solid Earth, 15, 989–1028, https://doi.org/10.5194/se-15-989-2024, https://doi.org/10.5194/se-15-989-2024, 2024
Short summary
Short summary
Rifting and the break-up of continents are key aspects of Earth’s plate tectonic system. A thorough understanding of the geological processes involved in rifting, and of the associated natural hazards and resources, is of great importance in the context of the energy transition. Here, we provide a coherent overview of rift processes and the links with hazards and resources, and we assess future challenges and opportunities for (collaboration between) researchers, government, and industry.
Amélie Viger, Stéphane Dominguez, Stéphane Mazzotti, Michel Peyret, Maxime Henriquet, Giovanni Barreca, Carmelo Monaco, and Adrien Damon
Solid Earth, 15, 965–988, https://doi.org/10.5194/se-15-965-2024, https://doi.org/10.5194/se-15-965-2024, 2024
Short summary
Short summary
New satellite geodetic data (PS-InSAR) evidence a generalized subsidence and an eastward tilting of southeastern Sicily combined with a local relative uplift along its eastern coast. We perform flexural and elastic modeling and show that the slab pull force induced by the Ionian slab roll-back and extrado deformation reproduce the measured surface deformation. Finally, we propose an original seismic cycle model that is mainly driven by the southward migration of the Ionian slab roll-back.
Ran Issachar, Peter Haas, Nico Augustin, and Jörg Ebbing
Solid Earth, 15, 807–826, https://doi.org/10.5194/se-15-807-2024, https://doi.org/10.5194/se-15-807-2024, 2024
Short summary
Short summary
In this contribution, we explore the causal relationship between the arrival of the Afar plume and the initiation of the Afro-Arabian rift. We mapped the rift architecture in the triple-junction region using geophysical data and reviewed the available geological data. We interpret a progressive development of the plume–rift system and suggest an interaction between active and passive mechanisms in which the plume provided a push force that changed the kinematics of the associated plates.
Folarin Kolawole and Rasheed Ajala
Solid Earth, 15, 747–762, https://doi.org/10.5194/se-15-747-2024, https://doi.org/10.5194/se-15-747-2024, 2024
Short summary
Short summary
We investigate the upper-crustal structure of the Rukwa–Tanganyika rift zone in East Africa, where the Tanganyika rift interacts with the Rukwa and Mweru-Wantipa rifts, coinciding with abundant seismicity at the rift tips. Seismic velocity structure and patterns of seismicity clustering reveal zones around 10 km deep with anomalously high Vp / Vs ratios at the rift tips, indicative of a localized mechanically weakened crust caused by mantle volatiles and damage associated with bending strain.
J. Kim Welford
Solid Earth, 15, 683–710, https://doi.org/10.5194/se-15-683-2024, https://doi.org/10.5194/se-15-683-2024, 2024
Short summary
Short summary
I present a synthesis of the continent–ocean boundaries of the southern North Atlantic Ocean, as probed using seismic methods for rock velocity estimation, to assess their deep structures from the crust to the upper mantle and to discuss how they were formed. With this knowledge, it is possible to start evaluating these regions of the Earth for their capacity to produce hydrogen and critical minerals and to store excess carbon dioxide, all with the goal of greening our economy.
Mathews George Gilbert, Parakkal Unnikrishnan, and Munukutla Radhakrishna
Solid Earth, 15, 671–682, https://doi.org/10.5194/se-15-671-2024, https://doi.org/10.5194/se-15-671-2024, 2024
Short summary
Short summary
The study identifies evidence for extension south of Tellicherry Arch along the southwestern continental margin of India through the integrated analysis of multichannel seismic and gravity data. The sediment deposition pattern indicates that this extension occurred after the Eocene. We further propose that the anticlockwise rotation of India and the passage of the Réunion plume have facilitated the opening of the Laccadive basin.
Ana Fonseca, Simon Nachtergaele, Amed Bonilla, Stijn Dewaele, and Johan De Grave
Solid Earth, 15, 329–352, https://doi.org/10.5194/se-15-329-2024, https://doi.org/10.5194/se-15-329-2024, 2024
Short summary
Short summary
This study explores the erosion and exhumation processes and history of early continental crust hidden within the Amazonian Rainforest. This crust forms part of the Amazonian Craton, an ancient continental fragment. Our surprising findings reveal the area underwent rapid early Cretaceous exhumation triggered by tectonic forces. This discovery challenges the traditional perception that cratons are stable and long-lived entities and shows they can deform readily under specific geological contexts.
Mengdan Chen, Changxin Yin, Danling Chen, Long Tian, Liang Liu, and Lei Kang
Solid Earth, 15, 215–227, https://doi.org/10.5194/se-15-215-2024, https://doi.org/10.5194/se-15-215-2024, 2024
Short summary
Short summary
Stishovite remains stable under mantle conditions and can incorporate various amounts of water in its crystal structure. We provide a systematic review of previous studies on water in stishovite and propose a new model for water solubility of Al-bearing stishovite. Calculation results based on this model suggest that stishovite may effectively accommodate water from the breakdown of hydrous minerals and could make an important contribution to water enrichment in the mantle transition zone.
Eszter Békési, Jan-Diederik van Wees, Kristóf Porkoláb, Mátyás Hencz, and Márta Berkesi
EGUsphere, https://doi.org/10.5194/egusphere-2024-308, https://doi.org/10.5194/egusphere-2024-308, 2024
Short summary
Short summary
We present a workflow to model the temperature distribution within the lithosphere of sedimentary basins and apply it to NW Hungary. The model can reproduce the thermal evolution through basin formation, making use of temperature measurements from wells. Models provide key input to constrain geodynamic processes and geo-energy resource potential.
Tiago M. Alves
Solid Earth, 15, 39–62, https://doi.org/10.5194/se-15-39-2024, https://doi.org/10.5194/se-15-39-2024, 2024
Short summary
Short summary
Alpine tectonic inversion is reviewed for southwestern Iberia, known for its historical earthquakes and tsunamis. High-quality 2D seismic data image 26 faults mapped to a depth exceeding 10 km. Normal faults accommodated important vertical uplift and shortening. They are 100–250 km long and may generate earthquakes with Mw > 8.0. Regions of Late Mesozoic magmatism comprise thickened, harder crust, forming lateral buttresses to compression and promoting the development of fold-and-thrust belts.
Marine Larrey, Frédéric Mouthereau, Damien Do Couto, Emmanuel Masini, Anthony Jourdon, Sylvain Calassou, and Véronique Miegebielle
Solid Earth, 14, 1221–1244, https://doi.org/10.5194/se-14-1221-2023, https://doi.org/10.5194/se-14-1221-2023, 2023
Short summary
Short summary
Extension leading to the formation of ocean–continental transition can be highly oblique to the main direction of crustal thinning. Here we explore the case of a continental margin exposed in the Betics that developed in a back-arc setting perpendicular to the direction of the retreating Gibraltar subduction. We show that transtension is the main mode of crustal deformation that led to the development of metamorphic domes and extensional intramontane basins.
Sören Tholen, Jolien Linckens, and Gernold Zulauf
Solid Earth, 14, 1123–1154, https://doi.org/10.5194/se-14-1123-2023, https://doi.org/10.5194/se-14-1123-2023, 2023
Short summary
Short summary
Intense phase mixing with homogeneously distributed secondary phases and irregular grain boundaries and shapes indicates that metasomatism formed the microstructures predominant in the shear zone of the NW Ronda peridotite. Amphibole presence, olivine crystal orientations, and the consistency to the Beni Bousera peridotite (Morocco) point to OH-bearing metasomatism by small fractions of evolved melts. Results confirm a strong link between reactions and localized deformation in the upper mantle.
Anindita Samsu, Weronika Gorczyk, Timothy Chris Schmid, Peter Graham Betts, Alexander Ramsay Cruden, Eleanor Morton, and Fatemeh Amirpoorsaeed
Solid Earth, 14, 909–936, https://doi.org/10.5194/se-14-909-2023, https://doi.org/10.5194/se-14-909-2023, 2023
Short summary
Short summary
When a continent is pulled apart, it breaks and forms a series of depressions called rift basins. These basins lie above weakened crust that is then subject to intense deformation during subsequent tectonic compression. Our analogue experiments show that when a system of basins is squeezed in a direction perpendicular to the main trend of the basins, some basins rise up to form mountains while others do not.
Frank Zwaan and Guido Schreurs
Solid Earth, 14, 823–845, https://doi.org/10.5194/se-14-823-2023, https://doi.org/10.5194/se-14-823-2023, 2023
Short summary
Short summary
The East African Rift System (EARS) is a major plate tectonic feature splitting the African continent apart. Understanding the tectonic processes involved is of great importance for societal and economic reasons (natural hazards, resources). Laboratory experiments allow us to simulate these large-scale processes, highlighting the links between rotational plate motion and the overall development of the EARS. These insights are relevant when studying other rift systems around the globe as well.
Anna-Katharina Sieberer, Ernst Willingshofer, Thomas Klotz, Hugo Ortner, and Hannah Pomella
Solid Earth, 14, 647–681, https://doi.org/10.5194/se-14-647-2023, https://doi.org/10.5194/se-14-647-2023, 2023
Short summary
Short summary
Through analogue models and field observations, we investigate how inherited platform–basin geometries control strain localisation, style, and orientation of reactivated and new structures during inversion. Our study shows that the style of evolving thrusts and their changes along-strike are controlled by pre-existing rheological discontinuities. The results of this study are relevant for understanding inversion structures in general and for the European eastern Southern Alps in particular.
Thorben Schöfisch, Hemin Koyi, and Bjarne Almqvist
Solid Earth, 14, 447–461, https://doi.org/10.5194/se-14-447-2023, https://doi.org/10.5194/se-14-447-2023, 2023
Short summary
Short summary
A magnetic fabric analysis provides information about the reorientation of magnetic grains and is applied to three sandbox models that simulate different stages of basin inversion. The analysed magnetic fabrics reflect the different developed structures and provide insights into the different deformed stages of basin inversion. It is a first attempt of applying magnetic fabric analyses to basin inversion sandbox models but shows the possibility of applying it to such models.
Timothy Chris Schmid, Sascha Brune, Anne Glerum, and Guido Schreurs
Solid Earth, 14, 389–407, https://doi.org/10.5194/se-14-389-2023, https://doi.org/10.5194/se-14-389-2023, 2023
Short summary
Short summary
Continental rifts form by linkage of individual rift segments and disturb the regional stress field. We use analog and numerical models of such rift segment interactions to investigate the linkage of deformation and stresses and subsequent stress deflections from the regional stress pattern. This local stress re-orientation eventually causes rift deflection when multiple rift segments compete for linkage with opposingly propagating segments and may explain rift deflection as observed in nature.
Thomas B. Phillips, John B. Naliboff, Ken J. W. McCaffrey, Sophie Pan, Jeroen van Hunen, and Malte Froemchen
Solid Earth, 14, 369–388, https://doi.org/10.5194/se-14-369-2023, https://doi.org/10.5194/se-14-369-2023, 2023
Short summary
Short summary
Continental crust comprises bodies of varying strength, formed through numerous tectonic events. When subject to extension, these areas produce distinct rift and fault systems. We use 3D models to examine how rifts form above
strongand
weakareas of crust. We find that faults become more developed in weak areas. Faults are initially stopped at the boundaries with stronger areas before eventually breaking through. We relate our model observations to rift systems globally.
Marion Roger, Arjan de Leeuw, Peter van der Beek, Laurent Husson, Edward R. Sobel, Johannes Glodny, and Matthias Bernet
Solid Earth, 14, 153–179, https://doi.org/10.5194/se-14-153-2023, https://doi.org/10.5194/se-14-153-2023, 2023
Short summary
Short summary
We study the construction of the Ukrainian Carpathians with LT thermochronology (AFT, AHe, and ZHe) and stratigraphic analysis. QTQt thermal models are combined with burial diagrams to retrieve the timing and magnitude of sedimentary burial, tectonic burial, and subsequent exhumation of the wedge's nappes from 34 to ∼12 Ma. Out-of-sequence thrusting and sediment recycling during wedge building are also identified. This elucidates the evolution of a typical wedge in a roll-back subduction zone.
Frank Zwaan, Guido Schreurs, Susanne J. H. Buiter, Oriol Ferrer, Riccardo Reitano, Michael Rudolf, and Ernst Willingshofer
Solid Earth, 13, 1859–1905, https://doi.org/10.5194/se-13-1859-2022, https://doi.org/10.5194/se-13-1859-2022, 2022
Short summary
Short summary
When a sedimentary basin is subjected to compressional tectonic forces after its formation, it may be inverted. A thorough understanding of such
basin inversionis of great importance for scientific, societal, and economic reasons, and analogue tectonic models form a key part of our efforts to study these processes. We review the advances in the field of basin inversion modelling, showing how the modelling results can be applied, and we identify promising venues for future research.
Eleni Stavropoulou and Lyesse Laloui
Solid Earth, 13, 1823–1841, https://doi.org/10.5194/se-13-1823-2022, https://doi.org/10.5194/se-13-1823-2022, 2022
Short summary
Short summary
Shales are identified as suitable caprock formations for geolocigal CO2 storage thanks to their low permeability. Here, small-sized shale samples are studied under field-representative conditions with X-ray tomography. The geochemical impact of CO2 on calcite-rich zones is for the first time visualised, the role of pre-existing micro-fissures in the CO2 invasion trapping in the matererial is highlighted, and the initiation of micro-cracks when in contact with anhydrous CO2 is demonstrated.
Conor M. O'Sullivan, Conrad J. Childs, Muhammad M. Saqab, John J. Walsh, and Patrick M. Shannon
Solid Earth, 13, 1649–1671, https://doi.org/10.5194/se-13-1649-2022, https://doi.org/10.5194/se-13-1649-2022, 2022
Short summary
Short summary
The Slyne Basin is a sedimentary basin located offshore north-western Ireland. It formed through a long and complex evolution involving distinct periods of extension. The basin is subdivided into smaller basins, separated by deep structures related to the ancient Caledonian mountain-building event. These deep structures influence the shape of the basin as it evolves in a relatively unique way, where early faults follow these deep structures, but later faults do not.
Mousumi Roy
Solid Earth, 13, 1415–1430, https://doi.org/10.5194/se-13-1415-2022, https://doi.org/10.5194/se-13-1415-2022, 2022
Short summary
Short summary
This study investigates one of the key processes that may lead to the destruction and destabilization of continental tectonic plates: the infiltration of buoyant, hot, molten rock (magma) into the base of the plate. Using simple calculations, I suggest that heating during melt–rock interaction may thermally perturb the tectonic plate, weakening it and potentially allowing it to be reshaped from beneath. Geochemical, petrologic, and geologic observations are used to guide model parameters.
Benjamin Guillaume, Guido M. Gianni, Jean-Jacques Kermarrec, and Khaled Bock
Solid Earth, 13, 1393–1414, https://doi.org/10.5194/se-13-1393-2022, https://doi.org/10.5194/se-13-1393-2022, 2022
Short summary
Short summary
Under tectonic forces, the upper part of the crust can break along different types of faults, depending on the orientation of the applied stresses. Using scaled analogue models, we show that the relative magnitude of compressional and extensional forces as well as the presence of inherited structures resulting from previous stages of deformation control the location and type of faults. Our results gives insights into the tectonic evolution of areas showing complex patterns of deformation.
Liming Li, Xianrui Li, Fanyan Yang, Lili Pan, and Jingxiong Tian
Solid Earth, 13, 1371–1391, https://doi.org/10.5194/se-13-1371-2022, https://doi.org/10.5194/se-13-1371-2022, 2022
Short summary
Short summary
We constructed a three-dimensional numerical geomechanics model to obtain the continuous slip rates of active faults and crustal velocities in the northeastern Tibetan Plateau. Based on the analysis of the fault kinematics in the study area, we evaluated the possibility of earthquakes occurring in the main faults in the area, and analyzed the crustal deformation mechanism of the northeastern Tibetan Plateau.
Andrzej Głuszyński and Paweł Aleksandrowski
Solid Earth, 13, 1219–1242, https://doi.org/10.5194/se-13-1219-2022, https://doi.org/10.5194/se-13-1219-2022, 2022
Short summary
Short summary
Old seismic data recently reprocessed with modern software allowed us to study at depth the Late Cretaceous tectonic structures in the Permo-Mesozoic rock sequences in the Sudetes. The structures formed in response to Iberia collision with continental Europe. The NE–SW compression undulated the crystalline basement top and produced folds, faults and joints in the sedimentary cover. Our results are of importance for regional geology and in prospecting for deep thermal waters.
R. Dietmar Müller, Nicolas Flament, John Cannon, Michael G. Tetley, Simon E. Williams, Xianzhi Cao, Ömer F. Bodur, Sabin Zahirovic, and Andrew Merdith
Solid Earth, 13, 1127–1159, https://doi.org/10.5194/se-13-1127-2022, https://doi.org/10.5194/se-13-1127-2022, 2022
Short summary
Short summary
We have built a community model for the evolution of the Earth's plate–mantle system. Created with open-source software and an open-access plate model, it covers the last billion years, including the formation, breakup, and dispersal of two supercontinents, as well as the creation and destruction of numerous ocean basins. The model allows us to
seeinto the Earth in 4D and helps us unravel the connections between surface tectonics and the
beating heartof the Earth, its convecting mantle.
Anthony Jourdon and Dave A. May
Solid Earth, 13, 1107–1125, https://doi.org/10.5194/se-13-1107-2022, https://doi.org/10.5194/se-13-1107-2022, 2022
Short summary
Short summary
In this study we present a method to compute a reference pressure based on density structure in which we cast the problem in terms of a partial differential equation (PDE). We show in the context of 3D models of continental rifting that using the pressure as a boundary condition within the flow problem results in non-cylindrical velocity fields, producing strain localization in the lithosphere along large-scale strike-slip shear zones and allowing the formation and evolution of triple junctions.
Luisa Röckel, Steffen Ahlers, Birgit Müller, Karsten Reiter, Oliver Heidbach, Andreas Henk, Tobias Hergert, and Frank Schilling
Solid Earth, 13, 1087–1105, https://doi.org/10.5194/se-13-1087-2022, https://doi.org/10.5194/se-13-1087-2022, 2022
Short summary
Short summary
Reactivation of tectonic faults can lead to earthquakes and jeopardize underground operations. The reactivation potential is linked to fault properties and the tectonic stress field. We create 3D geometries for major faults in Germany and use stress data from a 3D geomechanical–numerical model to calculate their reactivation potential and compare it to seismic events. The reactivation potential in general is highest for NNE–SSW- and NW–SE-striking faults and strongly depends on the fault dip.
Nadaya Cubas, Philippe Agard, and Roxane Tissandier
Solid Earth, 13, 779–792, https://doi.org/10.5194/se-13-779-2022, https://doi.org/10.5194/se-13-779-2022, 2022
Short summary
Short summary
Earthquake extent prediction is limited by our poor understanding of slip deficit patterns. From a mechanical analysis applied along the Chilean margin, we show that earthquakes are bounded by extensive plate interface deformation. This deformation promotes stress build-up, leading to earthquake nucleation; earthquakes then propagate along smoothed fault planes and are stopped by heterogeneously distributed deformation. Slip deficit patterns reflect the spatial distribution of this deformation.
Piotr Krzywiec, Mateusz Kufrasa, Paweł Poprawa, Stanisław Mazur, Małgorzata Koperska, and Piotr Ślemp
Solid Earth, 13, 639–658, https://doi.org/10.5194/se-13-639-2022, https://doi.org/10.5194/se-13-639-2022, 2022
Short summary
Short summary
Legacy 2-D seismic data with newly acquired 3-D seismic data were used to construct a new model of geological evolution of NW Poland over last 400 Myr. It illustrates how the destruction of the Caledonian orogen in the Late Devonian–early Carboniferous led to half-graben formation, how they were inverted in the late Carboniferous, how the study area evolved during the formation of the Permo-Mesozoic Polish Basin and how supra-evaporitic structures were inverted in the Late Cretaceous–Paleogene.
Paolo Boncio, Eugenio Auciello, Vincenzo Amato, Pietro Aucelli, Paola Petrosino, Anna C. Tangari, and Brian R. Jicha
Solid Earth, 13, 553–582, https://doi.org/10.5194/se-13-553-2022, https://doi.org/10.5194/se-13-553-2022, 2022
Short summary
Short summary
We studied the Gioia Sannitica normal fault (GF) within the southern Matese fault system (SMF) in southern Apennines (Italy). It is a fault with a long slip history that has experienced recent reactivation or acceleration. Present activity has resulted in late Quaternary fault scarps and Holocene surface faulting. The maximum slip rate is ~ 0.5 mm/yr. Activation of the 11.5 km GF or the entire 30 km SMF can produce up to M 6.2 or M 6.8 earthquakes, respectively.
Sepideh Pajang, Laetitia Le Pourhiet, and Nadaya Cubas
Solid Earth, 13, 535–551, https://doi.org/10.5194/se-13-535-2022, https://doi.org/10.5194/se-13-535-2022, 2022
Short summary
Short summary
The local topographic slope of an accretionary prism is often used to determine the effective friction on subduction megathrust. We investigate how the brittle–ductile and the smectite–illite transitions affect the topographic slope of an accretionary prism and its internal deformation to provide clues to determine the origin of observed low topographic slopes in subduction zones. We finally discuss their implications in terms of the forearc basin and forearc high genesis and nature.
Malcolm Aranha, Alok Porwal, Manikandan Sundaralingam, Ignacio González-Álvarez, Amber Markan, and Karunakar Rao
Solid Earth, 13, 497–518, https://doi.org/10.5194/se-13-497-2022, https://doi.org/10.5194/se-13-497-2022, 2022
Short summary
Short summary
Rare earth elements (REEs) are considered critical mineral resources for future industrial growth due to their short supply and rising demand. This study applied an artificial-intelligence-based technique to target potential REE-deposit hosting areas in western Rajasthan, India. Uncertainties associated with the prospective targets were also estimated to aid decision-making. The presented workflow can be applied to similar regions elsewhere to locate potential zones of REE mineralisation.
Erica D. Erlanger, Maria Giuditta Fellin, and Sean D. Willett
Solid Earth, 13, 347–365, https://doi.org/10.5194/se-13-347-2022, https://doi.org/10.5194/se-13-347-2022, 2022
Short summary
Short summary
We present an erosion rate analysis on dated rock and sediment from the Northern Apennine Mountains, Italy, which provides new insights on the pattern of erosion rates through space and time. This analysis shows decreasing erosion through time on the Ligurian side but increasing erosion through time on the Adriatic side. We suggest that the pattern of erosion rates is consistent with the present asymmetric topography in the Northern Apennines, which has likely existed for several million years.
Daniele Cirillo, Cristina Totaro, Giusy Lavecchia, Barbara Orecchio, Rita de Nardis, Debora Presti, Federica Ferrarini, Simone Bello, and Francesco Brozzetti
Solid Earth, 13, 205–228, https://doi.org/10.5194/se-13-205-2022, https://doi.org/10.5194/se-13-205-2022, 2022
Short summary
Short summary
The Pollino region is a highly seismic area of Italy. Increasing the geological knowledge on areas like this contributes to reducing risk and saving lives. We reconstruct the 3D model of the faults which generated the 2010–2014 seismicity integrating geological and seismological data. Appropriate relationships based on the dimensions of the activated faults suggest that they did not fully discharge their seismic potential and could release further significant earthquakes in the near future.
Steven Whitmeyer, Lynn Fichter, Anita Marshall, and Hannah Liddle
Solid Earth, 12, 2803–2820, https://doi.org/10.5194/se-12-2803-2021, https://doi.org/10.5194/se-12-2803-2021, 2021
Short summary
Short summary
Field trips in the Stratigraphy, Structure, Tectonics (SST) course transitioned to a virtual format in Fall 2020, due to the COVID pandemic. Virtual field experiences (VFEs) were developed in web Google Earth and were evaluated in comparison with on-location field trips via an online survey. Students recognized the value of VFEs for revisiting outcrops and noted improved accessibility for students with disabilities. Potential benefits of hybrid field experiences were also indicated.
Amir Kalifi, Philippe Hervé Leloup, Philippe Sorrel, Albert Galy, François Demory, Vincenzo Spina, Bastien Huet, Frédéric Quillévéré, Frédéric Ricciardi, Daniel Michoux, Kilian Lecacheur, Romain Grime, Bernard Pittet, and Jean-Loup Rubino
Solid Earth, 12, 2735–2771, https://doi.org/10.5194/se-12-2735-2021, https://doi.org/10.5194/se-12-2735-2021, 2021
Short summary
Short summary
Molasse deposits, deposited and deformed at the western Alpine front during the Miocene (23 to 5.6 Ma), record the chronology of that deformation. We combine the first precise chronostratigraphy (precision of ∼0.5 Ma) of the Miocene molasse, the reappraisal of the regional structure, and the analysis of growth deformation structures in order to document three tectonic phases and the precise chronology of thrust westward propagation during the second one involving the Belledonne basal thrust.
Mark R. Handy, Stefan M. Schmid, Marcel Paffrath, Wolfgang Friederich, and the AlpArray Working Group
Solid Earth, 12, 2633–2669, https://doi.org/10.5194/se-12-2633-2021, https://doi.org/10.5194/se-12-2633-2021, 2021
Short summary
Short summary
New images from the multi-national AlpArray experiment illuminate the Alps from below. They indicate thick European mantle descending beneath the Alps and forming blobs that are mostly detached from the Alps above. In contrast, the Adriatic mantle in the Alps is much thinner. This difference helps explain the rugged mountains and the abundance of subducted and exhumed units at the core of the Alps. The blobs are stretched remnants of old ocean and its margins that reach down to at least 410 km.
Maurizio Ercoli, Daniele Cirillo, Cristina Pauselli, Harry M. Jol, and Francesco Brozzetti
Solid Earth, 12, 2573–2596, https://doi.org/10.5194/se-12-2573-2021, https://doi.org/10.5194/se-12-2573-2021, 2021
Short summary
Short summary
Past strong earthquakes can produce topographic deformations, often
memorizedin Quaternary sediments, which are typically studied by paleoseismologists through trenching. Using a ground-penetrating radar (GPR), we unveiled possible buried Quaternary faulting in the Mt. Pollino seismic gap region (southern Italy). We aim to contribute to seismic hazard assessment of an area potentially prone to destructive events as well as promote our workflow in similar contexts around the world.
Luca Smeraglia, Nathan Looser, Olivier Fabbri, Flavien Choulet, Marcel Guillong, and Stefano M. Bernasconi
Solid Earth, 12, 2539–2551, https://doi.org/10.5194/se-12-2539-2021, https://doi.org/10.5194/se-12-2539-2021, 2021
Short summary
Short summary
In this paper, we dated fault movements at geological timescales which uplifted the sedimentary successions of the Jura Mountains from below the sea level up to Earth's surface. To do so, we applied the novel technique of U–Pb geochronology on calcite mineralizations that precipitated on fault surfaces during times of tectonic activity. Our results document a time frame of the tectonic evolution of the Jura Mountains and provide new insight into the broad geological history of the Western Alps.
Renas I. Koshnaw, Fritz Schlunegger, and Daniel F. Stockli
Solid Earth, 12, 2479–2501, https://doi.org/10.5194/se-12-2479-2021, https://doi.org/10.5194/se-12-2479-2021, 2021
Short summary
Short summary
As continental plates collide, mountain belts grow. This study investigated the provenance of rocks from the northwestern segment of the Zagros mountain belt to unravel the convergence history of the Arabian and Eurasian plates. Provenance data synthesis and field relationships suggest that the Zagros Mountains developed as a result of the oceanic crust emplacement on the Arabian continental plate, followed by the Arabia–Eurasia collision and later uplift of the broader region.
David Hindle and Jonas Kley
Solid Earth, 12, 2425–2438, https://doi.org/10.5194/se-12-2425-2021, https://doi.org/10.5194/se-12-2425-2021, 2021
Short summary
Short summary
Central western Europe underwent a strange episode of lithospheric deformation, resulting in a chain of small mountains that run almost west–east across the continent and that formed in the middle of a tectonic plate, not at its edges as is usually expected. Associated with these mountains, in particular the Harz in central Germany, are marine basins contemporaneous with the mountain growth. We explain how those basins came to be as a result of the mountains bending the adjacent plate.
Andreas Eberts, Hamed Fazlikhani, Wolfgang Bauer, Harald Stollhofen, Helga de Wall, and Gerald Gabriel
Solid Earth, 12, 2277–2301, https://doi.org/10.5194/se-12-2277-2021, https://doi.org/10.5194/se-12-2277-2021, 2021
Short summary
Short summary
We combine gravity anomaly and topographic data with observations from thermochronology, metamorphic grades, and the granite inventory to detect patterns of basement block segmentation and differential exhumation along the southwestern Bohemian Massif. Based on our analyses, we introduce a previously unknown tectonic structure termed Cham Fault, which, together with the Pfahl and Danube shear zones, is responsible for the exposure of different crustal levels during late to post-Variscan times.
Christoph Grützner, Simone Aschenbrenner, Petra Jamšek
Rupnik, Klaus Reicherter, Nour Saifelislam, Blaž Vičič, Marko Vrabec, Julian Welte, and Kamil Ustaszewski
Solid Earth, 12, 2211–2234, https://doi.org/10.5194/se-12-2211-2021, https://doi.org/10.5194/se-12-2211-2021, 2021
Short summary
Short summary
Several large strike-slip faults in western Slovenia are known to be active, but most of them have not produced strong earthquakes in historical times. In this study we use geomorphology, near-surface geophysics, and fault excavations to show that two of these faults had surface-rupturing earthquakes during the Holocene. Instrumental and historical seismicity data do not capture the strongest events in this area.
Cited articles
Amann, F., Button, E. A., Evans, K. F., Gischig, V. S., and Blümel, M.: Experimental Study of the Brittle Behavior of Clay shale in Rapid Unconfined Compression, Rock Mech. Rock Eng., 44, 415–430, https://doi.org/10.1007/s00603-011-0156-3, 2011.
Arch, J. and Maltman, A.: Anisotropic permeability and tortuosity in deformed wet sediments, J. Geophys. Res.-Sol. Ea., 95, 9035–9045, https://doi.org/10.1029/JB095iB06p09035, 1990.
Bakker, E., Kaszuba, J. P., and Hangx, S. J. T.: Assessing Chemo-mechanical Behavior Induced by CO2-Water-rock Interactions in Clay-rich Fault Gouges, Proced. Earth Plan. Sc., 17, 292–295, https://doi.org/10.1016/j.proeps.2016.12.060, 2017.
Becker, A.: The Jura Mountains – an active foreland fold-and-thrust belt?, Tectonophysics, 321, 381–406, 2000.
Bigi, S.: An example of inversion in a brittle shear zone, J. Struct. Geol., 28, 431–443, https://doi.org/10.1016/j.jsg.2005.12.012, 2006.
Bock, H. and Blümling, P.: RA Experiment Rock mechancis analysis and synthesis: data report on rock mechanics. Mont Terri Technical Report 2000-02. Bern-Ittigen, Switzerland, available at: https://www.mont-terri.ch/content/mont-terri-internet/de/documentation/free-reports.download/mont-terri-internet/de/documents/technical-reports/TR2000-02s.pdf (last access: 8 January 2018), 2001.
Bock, H., Dehandschutter, B., Martin, C. D., Mazurek, M., de Haller, A., Skoczylas, F., and Davy, C.: Self-sealing of fractures in argillaceous formations in the context of geological disposal of radioactive waste: Review and Synthesis, Radioactive Waste Management, OECD 2010 NEA No. 6184, 2010.
Bonnet, E., Bour, O., Odling, N. E., Davy, P., Main, I., Cowie, P., and Berkowitz, B.: Scaling of fracture systems in geological media, Rev. Geophys., 39, 347–383, https://doi.org/10.1029/1999RG000074, 2001.
Bossart, P. J. and Thury, M.: Mont Terri Rock Laboratory: project, programme 1996 to 2007 and results, edited by: Bossart, P. and Thury, M., Federal Office of Topography swisstopo, Wabern, Switzerland, 2008.
Bou Daher, S., Nader, F. H., Strauss, H., and Littke, R.: Depositional environment and source-rock characterisation of organic-matter rich upper santonian – upper campanian carbonates, Northern Lebanon, J. Petrol. Geol., 37, 5–24, https://doi.org/10.1111/jpg.12566, 2014.
Brodsky, E. E., Rowe, C. D., Meneghini, F., and Moore, J. C.: A geological fingerprint of low-viscosity fault fluids mobilized during an earthquake, J. Geophys. Res.-Sol. Ea., 114, 1–14, https://doi.org/10.1029/2008JB005633, 2009.
Buatier, M. D., Cavailhes, T., Charpentier, D., Lerat, J., Sizun, J. P., Labaume, P., and Gout, C.: Evidence of multi-stage faulting by clay mineral analysis: Example in a normal fault zone affecting arkosic sandstones (Annot sandstones), J. Struct. Geol., 75, 101–117, https://doi.org/10.1016/j.jsg.2015.03.012, 2015.
Caine, J. S., Evans, J. P., and Forster, C. B.: Fault zone architechture and permeability structure, Geology, 24, 1025–1028, https://doi.org/10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2, 1996.
Casciello, E., Cosgrove, J. W., Cesarano, M., Romero, E., Queralt, I., and Vergés, J.: Illite-smectite patterns in sheared Pleistocene mudstones of the Southern Apennines and their implications regarding the process of illitization: A multiscale analysis, J. Struct. Geol., 33, 1699–1711, https://doi.org/10.1016/j.jsg.2011.08.002, 2011.
Chen, X., Madden, A. S. E., and Reches, Z.: Powder Rolling as a Mechanism of Dynamic Fault Weakening, in: Fault Zone Dynamic Processes: Evolution of Fault Properties During Seismic Rupture, Geophysical Monograph, 227, 133–150, https://doi.org/10.1002/9781119156895.ch7, 2017.
Chester, F. M. and Chester, J. S.: Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California, Tectonophysics, 295, 199–221, https://doi.org/10.1016/S0040-1951(98)00121-8, 1998.
Cladouhos, T. T.: A kinematic model for deformation within brittle shear zones, J. Struct. Geol., 21, 437–448, https://doi.org/10.1016/S0191-8141(98)00124-2, 1999a.
Cladouhos, T. T.: Shape preferred orientations of survivor grains in fault gouge, J. Struct. Geol., 21, 419–436, https://doi.org/10.1016/S0191-8141(98)00123-0, 1999b.
Clauer, N., Techer, I., Nussbaum, C., and Laurich, B.: Geochemical signature of paleofluids in microstructures from Main Fault in the Opalinus Clay of the Mont Terri rock laboratory, Switzerland, Swiss J. Geosci., 110, 105–128, https://doi.org/10.1007/s00015-016-0253-0, 2017.
Collettini, C., Niemeijer, A., Viti, C., and Marone, C.: Fault zone fabric and fault weakness, Nature, 462, 907–910, https://doi.org/10.1038/nature08585, 2009.
Crawford, B. R., Faulkner, D. R., and Rutter, E. H.: Strength, porosity, and permeability development during hydrostatic and shear loading of synthetic quartz-clay fault gouge, J. Geophys. Res.-Sol. Ea., 113, B03207, https://doi.org/10.1029/2006JB004634, 2008.
Cuss, R. J., Milodowski, A., and Harrington, J. F.: Fracture transmissivity as a function of normal and shear stress: First results in Opalinus Clay, Phys. Chem. Earth, 36, 1960–1971, https://doi.org/10.1016/j.pce.2011.07.080, 2011.
de Haller, A., Mazurek, M., Spangenberg, J., and Möri, A.: Self-sealing of faults (SF) project?: Final report, Mont Terri Technical Report, Federal Office of Water and Geology, Bern-Ittigen, Switzerland, 2014.
Dehandschutter, B., Vandycke, S., Sintubin, M., Vandenberghe, N., and Wouters, L.: Brittle fractures and ductile shear bands in argillaceous sediments: Inferences from Oligocene Boom Clay (Belgium), J. Struct. Geol., 27, 1095–1112, https://doi.org/10.1016/j.jsg.2004.08.014, 2005.
Dellisanti, F., Pini, G. A., Tateo, F., and Baudin, F.: The role of tectonic shear strain on the illitization mechanism of mixed-layers illite-smectite. A case study from a fault zone in the Northern Apennines, Italy, Int. J. Earth Sci., 97, 601–616, https://doi.org/10.1007/s00531-007-0180-4, 2008.
Demurtas, M., Fondriest, M., Balsamo, F., Clemenzi, L., Storti, F., Bistacchi, A., and Di Toro, G.: Structure of a normal seismogenic fault zone in carbonates: The Vado di Corno Fault, Campo Imperatore, Central Apennines (Italy), J. Struct. Geol., 90, 185–206, https://doi.org/10.1016/j.jsg.2016.08.004, 2016.
Desbois, G., Urai, J. L., Hemes, S., Schröppel, B., Schwarz, J.-O., Mac, M., and Weiel, D.: Multi-scale analysis of porosity in diagenetically altered reservoir sandstone from the Permian Rotliegend (Germany), J. Petrol. Sci. Eng., 140, 128–148, https://doi.org/10.1016/j.petrol.2016.01.019, 2016.
Desbois, G., Höhne, N., Urai, J. L., Bésuelle, P., and Viggiani, G.: Deformation in cemented mudrock (Callovo–Oxfordian Clay) by microcracking, granular flow and phyllosilicate plasticity: insights from triaxial deformation, broad ion beam polishing and scanning electron microscopy, Solid Earth, 8, 291–305, https://doi.org/10.5194/se-8-291-2017, 2017.
Di Toro, G., Goldsby, D. L., and Tullis, T. E.: Friction falls towards zero in quartz rock as slip velocity approaches seismic rates, Nature, 427, 436–439, https://doi.org/10.1038/nature02249, 2004.
Eseme, E., Urai, J. L., Krooss, B. M., and Littke, R.: Review of mechanical properties of oil shales: Implications for exploitation and basin modelling, Oil Shale, 24, 159–174, 2007.
Fondriest, M., Smith, S. A. F., Di Toro, G., Zampieri, D., and Mittempergher, S.: Fault zone structure and seismic slip localization in dolostones, an example from the Southern Alps, Italy, J. Struct. Geol., 45, 52–67, https://doi.org/10.1016/j.jsg.2012.06.014, 2012.
Freivogel, M. and Huggenberger, P.: Modellierung bilanzierter Profile im Gebiet Mont Terri – La Croix (Kanton Jura), in: Mont Terri Project – Geology, Paleohydrology and Stress Field of the Mont Terri Region, edited by: Heitzmann, P. and Tripet, J.-P., Federal Office for Water and Geology, Bern-Ittigen, Switzerland, 7–44, 2003.
Fu, Y. and Bryan, N. K. A.: Investigation of physical properties of quartz after focused ion beam bombardment, Appl. Phys. B, 80, 581–585, https://doi.org/10.1007/s00340-005-1746-0, 2005.
Gaucher, E. C., Fern, A. M., and Waber, H. N.: Annex 9: Rock and Mineral Characterisation of the Opalinus Clay Formation, in: Mont Terri Project: Geochemistry of Water in the Opalinus Clay Formation at the Mont Terri Rock Laboratory, edited by: Pearson, F. J., Arcos, D., Bath, A., Boisson, J., Fernandez, A. M., Gäbler, H.-E., Gaucher, E., Gautschi, A., Griffault, L., Hernán, P., and Waber, H. N., 5th ed., Federal Office for Water and Geology, Bern-Ittigen, Switzerland, p. 23, 2003.
Giger, S. B., Cox, S. F., and Tenthorey, E.: Slip localization and fault weakening as a consequence of fault gouge strengthening – Insights from laboratory experiments, Earth Planet. Sc. Lett., 276, 73–84, https://doi.org/10.1016/j.epsl.2008.09.004, 2008.
Goodwin, L. B. and Wenk, H. R.: Intrcrystalline folding and cataclasis in biotite of the Santa-Rosa mylonite: observation, TEM and HVEM, Tectonophysics, 172, 201–215, 1990.
Gratier, J. P., Renard, F., and Vial, B.: Postseismic pressure solution creep: Evidence and time-dependent change from dynamic indenting experiments, J. Geophys. Res.-Sol. Ea., 119, 2764–2779, https://doi.org/10.1002/2013JB010768, 2014.
Guo, Y. and Morgan, J. K.: Fault gouge evolution and its dependence on normal stress and rock strength – Results of discrete element simulations: Gouge zone properties, J. Geophys. Res., 112, B10403, https://doi.org/10.1029/2006JB004524, 2007.
Hadizadeh, J., Mittempergher, S., Gratier, J. P., Renard, F., Di Toro, G., Richard, J., and Babaie, H. A.: A microstructural study of fault rocks from the SAFOD: Implications for the deformation mechanisms and strength of the creeping segment of the San Andreas Fault, J. Struct. Geol., 42, 246–260, https://doi.org/10.1016/j.jsg.2012.04.011, 2012.
Haines, S. H., Van Der Pluijm, B. A., Ikari, M. J., Saffer, D. M., and Marone, C.: Clay fabric intensity in natural and artificial fault gouges: Implications for brittle fault zone processes and sedimentary basin clay fabric evolution, J. Geophys. Res.-Sol. Ea., 114, B05406, https://doi.org/10.1029/2008JB005866, 2009.
Haines, S. H., Kaproth, B., Marone, C., Saffer, D., and Van der Pluijm, B.: Shear zones in clay-rich fault gouge: A laboratory study of fabric development and evolution, J. Struct. Geol., 51, 206–225, https://doi.org/10.1016/j.jsg.2013.01.002, 2013.
Haines, S. H., Marone, C., and Saffer, D.: Frictional properties of low-angle normal fault gouges and implications for low-angle normal fault slip, Earth Planet. Sc. Lett., 408, 57–65, https://doi.org/10.1016/j.epsl.2014.09.034, 2014.
Han, R., Hirose, T., Shimamoto, T., Lee, Y., and Ando, J.-I.: Granular nanoparticles lubricate faults during seismic slip, Geology, 39, 599–602, https://doi.org/10.1130/G31842.1, 2011.
Hemes, S.: Nm-scale pore space characteristics of the Boom Clay (Mol-1 borehole) and the Ypresian clays (Kallo-1 borehole), RWTH-Aachen University, Aachen, Germany, 2015.
Hemes, S., Desbois, G., Urai, J. L., De Craen, M., and Honty, M.: Variations in the morphology of porosity in the Boom Clay Formation: insights from 2D high resolution BIB-SEM imaging and Mercury injection Porosimetry, Netherlands J. Geosci./Geol. en Mijnb., 92, 275–300, 2013.
Holland, M., Urai, J. L., van der Zee, W., Stanjek, H., and Konstanty, J.: Fault gouge evolution in highly overconsolidated claystones, J. Struct. Geol., 28, 323–332, https://doi.org/10.1016/j.jsg.2005.10.005, 2006.
Houben, M. E.: In situ characterization of the microstructure and porosity of Opalinus Clay (Mont Terri Rock Laboratory, Switzerland), RWTH-Aachen, Aachen, Germany, 2013.
Houben, M. E., Desbois, G., and Urai, J. L.: Pore morphology and distribution in the Shaly facies of Opalinus Clay (Mont Terri, Switzerland): Insights from representative 2D BIB–SEM investigations on mm to nm scale, Appl. Clay Sci., 71, 82–97, https://doi.org/10.1016/j.clay.2012.11.006, 2013.
Houben, M. E., Desbois, G., and Urai, J. L.: A comparative study of representative 2D microstructures in Shaly and Sandy facies of Opalinus Clay (Mont Terri, Switzerland) inferred form BIB-SEM and MIP methods, Mar. Petrol. Geol., 49, 143–161, https://doi.org/10.1016/j.marpetgeo.2013.10.009, 2014.
Jaeggi, D., Laurich, B., Nussbaum, C., Schuster, K., and Connolly, P.: Tectonic structure of the “Main Fault” in the Opalinus Clay, Mont Terri rock laboratory (Switzerland), Swiss J. Geosci., 110, 67–84, https://doi.org/10.1007/s00015-016-0243-2, 2017.
Janssen, C., Wirth, R., Lin, A., and Dresen, G.: TEM microstructural analysis in a fault gouge sample of the Nojima Fault Zone, Japan, Tectonophysics, 583, 101–104, https://doi.org/10.1016/j.tecto.2012.10.020, 2013.
Jessell, M. W., Bons, P. D., Griera, A., Evans, L. A., and Wilson, C. J. L.: A tale of two viscosities, J. Struct. Geol., 31, 719–736, https://doi.org/10.1016/j.jsg.2009.04.010, 2009.
Kahle, M., Kleber, M., and Jahn, R.: Review of XRD-based quantitative analyses of clay minerals in soils: The suitability of mineral intensity factors, Geoderma, 109, 191–205, https://doi.org/10.1016/S0016-7061(02)00175-1, 2002.
Kameda, J., Okamoto, A., Sato, K., Fujimoto, K., Yamaguchi, A., and Kimura, G.: Opal-CT in chert beneath the toe of the Tohoku margin and its influence on the seismic aseismic transition in subduction zones, Geophys. Res. Lett., 44, 687–693, https://doi.org/10.1002/2016GL071784, 2017.
Kanitpanyacharoen, W., Vasin, R., Wenk, H., and Dewhurst, D. N.: Linking preferred orientations to elastic anisotropy in Muderong Shale, Australia, Geophysics, 80, C9–C19, https://doi.org/10.1190/GEO2014-0236.1, 2015.
Kendall, K.: The impossibility of comminuting small particles by compression, Nature, 272, 710–711, https://doi.org/10.1038/279169d0, 1978.
Keulen, N., Stünitz, H., and Heilbronner, R.: Healing microstructures of experimental and natural fault gouge, J. Geophys. Res., 113, B06205, https://doi.org/10.1029/2007JB005039, 2008.
Kirkpatrick, J. D., Rowe, C. D., White, J. C., and Brodsky, E. E.: Silica gel formation during fault slip: Evidence from the rock record, Geology, 41, 1015–1018, https://doi.org/10.1130/G34483.1, 2013.
Klaver, J. M.: Pore space characterization of organic-rich shales using BIB-SEM, RWTH-Aachen, Aachen, Germany, 2015.
Klaver, J. M., Desbois, G., Urai, J. L., and Littke, R.: BIB-SEM study of the pore space morphology in early mature Posidonia Shale from the Hils area, Germany, Int. J. Coal Geol., 103, 12–25, https://doi.org/10.1016/j.coal.2012.06.012, 2012.
Laurich, B.: Evolution of microstructure and porosity in faulted Opalinus Clay, RWTH-Aachen University, Aachen, Germany, 2015.
Laurich, B., Urai, J. L., Desbois, G., Vollmer, C., and Nussbaum, C.: Microstructural evolution of an incipient fault zone in Opalinus Clay: Insights from an optical and electron microscopic study of ion-beam polished samples from the Main Fault in the Mt-Terri underground research laboratory, J. Struct. Geol., 67, 107–128, https://doi.org/10.1016/j.jsg.2014.07.014, 2014.
Laurich, B., Urai, J. L., and Nussbaum, C.: Microstructures and deformation mechanisms in Opalinus Clay: insights from scaly clay from the Main Fault in the Mont Terri Rock Laboratory (CH), Solid Earth, 8, 27–44, https://doi.org/10.5194/se-8-27-2017, 2017.
Lerouge, C., Grangeon, S., Claret, F., Gaucher, E., Blanc, P., Guerrot, C., Flehoc, C., Wille, G., and Mazurek, M.: Mineralogical and Isotopic record of diagenesis from the Opalinus Clay formation at Benken, Switzerland: Implications for the modeling of pore-water chemistry in a clay formation, Clay. Clay Miner., 62, 286–312, https://doi.org/10.1346/CCMN.2014.0620404, 2014.
Lin, A.: S–C fabrics developed in cataclastic rocks from the Nojima fault zone, Japan and their implications for tectonic history, J. Struct. Geol., 23, 1167–1178, https://doi.org/10.1016/S0191-8141(00)00171-1, 2001.
Littke, R., Urai, J. L., Uffmann, A. K., and Risvanis, F.: Reflectance of dispersed vitrinite in Palaeozoic rocks with and without cleavage: Implications for burial and thermal history modeling in the Devonian of Rursee area, northern Rhenish Massif, Germany, Int. J. Coal Geol., 89, 41–50, https://doi.org/10.1016/j.coal.2011.07.006, 2012.
Logan, J. M., Friedman, M., Higgs, N., Dengo, C., and Shimamoto, T.: Experimental studies of simulated gouge and their application to studies of natural fault zones, in: Proceedings of Conference VIII on Analysis of Actual Fault Zones in Bedrock, 1–5 April 1979, US Geological Survey, Open File Report, Menlo Park, California, USA, 79–1239, 1979.
Logan, J. M., Dengo, C. A., Higgs, N. G., and Wang, Z. Z.: Chapter 2 Fabrics of Experimental Fault Zones: Their Development and Relationship to Mechanical Behavior, in: Fault Mechanics and Transport Properties of Rocks – A Festschrift in Honor of W. F. Brace, edited by: Evans, B. and Wong, T., Academic Press, 51, 33–67, https://doi.org/10.1016/S0074-6142(08)62814-4, 1992.
Mair, K. and Abe, S.: Breaking Up: Comminution Mechanisms in Sheared Simulated Fault Gouge, Pure Appl. Geophys., 168, 2277–2288, https://doi.org/10.1007/s00024-011-0266-6, 2011.
Mazurek, M. and De Haller, A.: Pore-water evolution and solute-transport mechanisms in Opalinus Clay at Mont Terri and Mont Russelin (Canton Jura, Switzerland), Swiss J. Geosci., 110, 129–149, https://doi.org/10.1007/s00015-016-0249-9, 2017.
Mazurek, M., Hurford, A. J., and Leu, W.: Unravelling the multi-stage burial history of the Swiss Molasse Basin: integration of apatite fission track, vitrinite reflectance and biomarker isomerisation analysis, Basin Res., 18, 27–50, https://doi.org/10.1111/j.1365-2117.2006.00286.x, 2006.
Mazurek, M., Alt-Epping, P., Bath, A., Gimmi, T., Niklaus Waber, H., Buschaert, S., De Cannière, P., De Craen, M., Gautschi, A., Savoye, S., Vinsot, A., Wemaere, I., and Wouters, L. : Natural tracer profiles across argillaceous formations, Appl. Geochem., 26, 1035–1064, https://doi.org/10.1016/j.apgeochem.2011.03.124, 2011.
Milliken, K. L. and Reed, R. M.: Multiple causes of diagenetic fabric anisotropy in weakly consolidated mud, Nankai accretionary prism, IODP Expedition 316, J. Struct. Geol., 32, 1887–1898, https://doi.org/10.1016/j.jsg.2010.03.008, 2010.
Mizoguchi, K., Hirose, T., Shimamoto, T., and Fukuyama, E.: High-velocity frictional behavior and microstructure evolution of fault gouge obtained from Nojima fault, southwest Japan, Tectonophysics, 471, 285–296, https://doi.org/10.1016/j.tecto.2009.02.033, 2009.
Morgenstern, N. R. and Tchalenko, J. S.: Microstructural observations on shear zones from slips in natural clays, in: Proceedings of the Geotechnical Conference 1967, Oslo , Norway, 147–152, 1967.
Nagra: Technischer Bericht 02-03, Projekt Opalinuston, Synthese der geowissenschaftlichen Untersuchungsergebnisse, Wettingen, Switzerland, 2002.
Nussbaum, C. and Bossart, P.: Geology, in: Mont Terri Rock Laboratory. Project, Programme 1996 to 2007 and Results, edited by: Thury, M. and Bossart, P., Swiss Geological Survey, Wabern, Switzerland, 29–39, 2008.
Nussbaum, C., Bossart, P., Amann, F., and Aubourg, C.: Analysis of tectonic structures and excavation induced fractures in the Opalinus Clay, Mont Terri underground rock laboratory (Switzerland), Swiss J. Geosci., 104, 187–210, https://doi.org/10.1007/s00015-011-0070-4, 2011.
Nussbaum, C., Kloppenburg, A., Caer, T., and Bossart, P.: Tectonic evolution around the Mont Terri rock laboratory, northwestern Swiss Jura: constraints from kinematic forward modelling, Swiss J. Geosci., 110, 39–66, https://doi.org/10.1007/s00015-016-0248-x, 2017.
Orellana, L. F., Violay, M., Gramajo, E., Henry, P., Amann, F., and Nusbaumm, C.: Petro-physical characterization of the Main Fault at the Mont Terri Laboratory, in: 14th Swiss Geoscience Meeting, 18–19 November 2016, Geneva, Switzerland, P 8.12, 2016.
Passchier, C. W. and Trouw, R. A. J.: Microtectonics, 2nd editio., Springer-Verlag, Berlin/Heidelberg, Germany, 2005.
Pearson, F. J., Arcos, D., Bath, A., Boisson, J., Fernandez, A. M., Gäbler, H., Gaucher, E., Gautschi, A., and Griffault, L.: Mont Terri Project: Geochemistry of Water in the Opalinus Clay Formation at the Mont Terri Rock Laboratory, 5th ed., edited by: Pearson, F. J., Arcos, D., Bath, A., Boisson, J., Fernandez, A. M., Gäbler, H.-E., Gaucher, E., Gautschi, A.., Griffault, L., Hernán, P., and Waber, H. N., Federal Office for Water and Geology, Bern-Ittigen, Switzerland, 2003.
Power, W. L. and Tullis, T. E.: The relationship between slickenside surfaces in fine-grained quartz and the seismic cycle, J. Struct. Geol., 11, 879–893, 1989.
Rowe, C. D., Fagereng, Å., Miller, J. A., and Mapani, B.: Signature of coseismic decarbonation in dolomitic fault rocks of the Naukluft Thrust, Namibia, Earth Planet. Sc. Lett., 333–334, 200–210, https://doi.org/10.1016/j.epsl.2012.04.030, 2012.
Rutter, E. H. and Elliott, D.: The Kinetics of Rock Deformation by Pressure Solution (and Discussion), Philos. T. Roy. Soc. A, 283, 203–219, https://doi.org/10.1098/rsta.1976.0079, 1976.
Sammis, C. G. and King, G. C. P.: Mechanical origin of power law scaling in fault zone rock, Geophys. Res. Lett., 34, 2–5, https://doi.org/10.1029/2006GL028548, 2007.
Sasseville, C., Tremblay, A., Clauer, N., and Liewig, N.: K–Ar age constraints on the evolution of polydeformed fold–thrust belts: the case of the Northern Appalachians (southern Quebec), J. Geodyn., 45, 99–119, https://doi.org/10.1016/j.jog.2007.07.004, 2008.
Schleicher, A. M., van der Pluijm, B. A., and Warr, L. N.: Nanocoatings of clay and creep of the San Andreas fault at Parkfield, California, Geology, 38, 667–670, https://doi.org/10.1130/G31091.1, 2010.
Sibson, R. H.: Fault rocks and fault mechanisms, J. Geol. Soc. London, 133, 191–213, 1977.
Sigal, R. F.: A methodology for blank and conformance corrections for high pressure mercury porosimetry, Meas. Sci. Technol., 20, 045108, https://doi.org/10.1088/0957-0233/20/4/045108, 2009.
Solum, J. G.: Influence of phyllosilicate mineral assemblages, fabrics, and fluids on the behavior of the Punchbowl fault, southern California, J. Geophys. Res., 108, 1–12, https://doi.org/10.1029/2002JB001858, 2003.
Takizawa, S. and Ogawa, Y.: Dilatant clayey microstructure in the Barbados décollement zone, J. Struct. Geol., 21, 117–122, 1999.
Ufer, K., Stanjek, H., Roth, G., Dohrmann, R., Kleeberg, R., and Kaufhold, S.: Quantitative phase analysis of bentonites by the rietveld method, Clay. Clay Miner., 56, 272–282, https://doi.org/10.1346/CCMN.2008.0560210, 2008.
Urai, J. L. and Wong, S. W.: Deformation mechanisms in experimentally deformed shales, Euro. Geophys. Soc. Annales Geophysicae , 12, C98, 1994.
Vannucchi, P., Maltman, A., Bettelli, G., and Clennell, B.: On the nature of scaly fabric and scaly clay, J. Struct. Geol., 25, 673–688, https://doi.org/10.1016/S0191-8141(02)00066-4, 2003.
Viti, C.: Exploring fault rocks at the nanoscale, J. Struct. Geol., 33, 1715–1727, https://doi.org/10.1016/j.jsg.2011.10.005, 2011.
Vrolijk, P. J. and van der Pluijm, B. A.: Clay gouge, J. Struct. Geol., 21, 1039–1048, https://doi.org/10.1016/S0191-8141(99)00103-0, 1999.
Vrolijk, P. J., Urai, J. L., and Kettermann, M.: Clay smear: Review of mechanisms and applications, J. Struct. Geol., 86, 95–152, https://doi.org/10.1016/j.jsg.2015.09.006, 2016.
Warr, L. N. and Cox, S.: Clay mineral transformations and weakening mechanisms along the Alpine Fault, New Zealand, Geol. Soc. London, Spec. Publ., 186, 85–101, https://doi.org/10.1144/GSL.SP.2001.186.01.06, 2001.
Warr, L. N., Wojatschke, J., Carpenter, B. M., Marone, C., Schleicher, A. M., and van der Pluijm, B. A.: A “slice-and-view” (FIB–SEM) study of clay gouge from the SAFOD creeping section of the San Andreas Fault at ∼ 2.7 km depth, J. Struct. Geol., 69, 234–244, https://doi.org/10.1016/j.jsg.2014.10.006, 2014.
Wenk, H.-R., Voltolini, M., Kern, H., Popp, T., and Mazurek, M.: Anisotropy in shale from Mont Terri, Lead. Edge, 27, 742–748, https://doi.org/10.1190/1.2944159, 2008.
Yan, Y.: Deformation microfabrics of clay gouge, Lewis Thrust, Canada: a case for fault weakening from clay transformation, Geol. Soc. London, Spec. Publ., 186, 103–112, https://doi.org/10.1144/GSL.SP.2001.186.01.07, 2001.
Zhang, G., Wei, Z., Ferrell, R. E., Guggenheim, S., Cygan, R. T., and Luo, J.: Evaluation of the elasticity normal to the basal plane of non-expandable 2 : 1 phyllosilicate minerals by nanoindentation, Am. Mineral., 95, 863–869, https://doi.org/10.2138/am.2010.3398, 2010.
Zhang, S., Tullis, T. E., and Scruggs, V. J.: Implications of permeability and its anisotropy in a mica gouge for pore pressures in fault zones, Tectonophysics, 335, 37–50, https://doi.org/10.1016/S0040-1951(01)00044-0, 2001.
Short summary
In Switzerland, the Opalinus Clay (OPA) formation is favored to host a repository for nuclear waste. Thus, we must know its deformation behavior. In this study, we focused on the microstructure of gouge, a thin (< 2 cm), drastically strained clay layer at the so-called Main Fault in the Mont Terri rock laboratory. We suggest that in situ gouge deforms in a more viscous manner than undeformed OPA in laboratory conditions. Moreover, we speculate about the origin and evolution of the gouge layer.
In Switzerland, the Opalinus Clay (OPA) formation is favored to host a repository for nuclear...