Articles | Volume 9, issue 5
https://doi.org/10.5194/se-9-1079-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-9-1079-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Shear wave reflection seismic yields subsurface dissolution and subrosion patterns: application to the Ghor Al-Haditha sinkhole site, Dead Sea, Jordan
Ulrich Polom
CORRESPONDING AUTHOR
Section 1, Leibniz Institute for Applied Geophysics (LIAG), Stilleweg 2, 30655
Hanover, Germany
Hussam Alrshdan
Geological Directorate, Ministry of Energy and Mineral Resources (MEMR), P.O. Box 7 code 11118,
Amman, Jordan
Djamil Al-Halbouni
Department 2, GFZ German Research Centre for Geosciences, Telegrafenberg, 14473
Potsdam, Germany
Eoghan P. Holohan
UCD School of Earth Sciences, University College Dublin, Dublin 4,
Ireland
Torsten Dahm
Department 2, GFZ German Research Centre for Geosciences, Telegrafenberg, 14473
Potsdam, Germany
University of Potsdam, Institute of Earth and Environmental Sciences,
14476 Potsdam, Germany
Ali Sawarieh
Geological Directorate, Ministry of Energy and Mineral Resources (MEMR), P.O. Box 7 code 11118,
Amman, Jordan
Mohamad Y. Atallah
Yarmouk University 21173, Department of Geological and Environmental
Science, Irbid, Jordan
Charlotte M. Krawczyk
Department 2, GFZ German Research Centre for Geosciences, Telegrafenberg, 14473
Potsdam, Germany
Technische Universität Berlin, Institute of Applied Geosciences,
Ernst-Reuter-Platz 1, 10587 Berlin, Germany
Related authors
Sonja H. Wadas, Hermann Buness, Raphael Rochlitz, Peter Skiba, Thomas Günther, Michael Grinat, David C. Tanner, Ulrich Polom, Gerald Gabriel, and Charlotte M. Krawczyk
Solid Earth, 13, 1673–1696, https://doi.org/10.5194/se-13-1673-2022, https://doi.org/10.5194/se-13-1673-2022, 2022
Short summary
Short summary
The dissolution of rocks poses a severe hazard because it can cause subsidence and sinkhole formation. Based on results from our study area in Thuringia, Germany, using P- and SH-wave reflection seismics, electrical resistivity and electromagnetic methods, and gravimetry, we develop a geophysical investigation workflow. This workflow enables identifying the initial triggers of subsurface dissolution and its control factors, such as structural constraints, fluid pathways, and mass movement.
Djamil Al-Halbouni, Robert A. Watson, Eoghan P. Holohan, Rena Meyer, Ulrich Polom, Fernando M. Dos Santos, Xavier Comas, Hussam Alrshdan, Charlotte M. Krawczyk, and Torsten Dahm
Hydrol. Earth Syst. Sci., 25, 3351–3395, https://doi.org/10.5194/hess-25-3351-2021, https://doi.org/10.5194/hess-25-3351-2021, 2021
Short summary
Short summary
The rapid decline of the Dead Sea level since the 1960s has provoked a dynamic reaction from the coastal groundwater system, with physical and chemical erosion creating subsurface voids and conduits. By combining remote sensing, geophysical methods, and numerical modelling at the Dead Sea’s eastern shore, we link groundwater flow patterns to the formation of surface stream channels, sinkholes and uvalas. Better understanding of this karst system will improve regional hazard assessment.
Djamil Al-Halbouni, Eoghan P. Holohan, Abbas Taheri, Robert A. Watson, Ulrich Polom, Martin P. J. Schöpfer, Sacha Emam, and Torsten Dahm
Solid Earth, 10, 1219–1241, https://doi.org/10.5194/se-10-1219-2019, https://doi.org/10.5194/se-10-1219-2019, 2019
Short summary
Short summary
A 2-D numerical modelling approach to simulate the mechanical formation of sinkhole cluster inside large-scale karstic depressions is presented. Different multiple cavity growth scenarios at depth are compared regarding the mechanical process and collapse style. The outcomes of the models are compared to results from remote sensing and geophysics for an active sinkhole area in the Dead Sea region.
Sonja H. Wadas, David C. Tanner, Ulrich Polom, and Charlotte M. Krawczyk
Nat. Hazards Earth Syst. Sci., 17, 2335–2350, https://doi.org/10.5194/nhess-17-2335-2017, https://doi.org/10.5194/nhess-17-2335-2017, 2017
Short summary
Short summary
In 2010 a sinkhole opened up in the urban area of Schmalkalden, Germany. Shear-wave reflection seismic profiles were carried out around the sinkhole to investigate the reasons for the collapse. A strike-slip fault and a fracture network were identified that serve as fluid pathways for water-leaching soluble rocks near the surface. The more complex the fault geometry and interaction between faults, the more prone an area is to sinkhole occurrence.
Sonja H. Wadas, Ulrich Polom, and Charlotte M. Krawczyk
Solid Earth, 7, 1491–1508, https://doi.org/10.5194/se-7-1491-2016, https://doi.org/10.5194/se-7-1491-2016, 2016
Short summary
Short summary
Subrosion is the subsurface leaching of soluble rocks. It is a global phenomenon and a geohazard in urban areas because it causes depressions and sinkholes. This is the case in the study area, the town of Bad Frankenhausen, in northern Thuringia, Germany. Using shear-wave seismic reflection we are able to image these structures at high resolution to a depth of ca. 100 m. We observe that the underground is strongly fractured and there are indications of cavities.
Rahmantara Trichandi, Klaus Bauer, Trond Ryberg, Benjamin Heit, Jaime Araya Vargas, Friedhelm von Blanckenburg, and Charlotte M. Krawczyk
Earth Surf. Dynam., 12, 747–763, https://doi.org/10.5194/esurf-12-747-2024, https://doi.org/10.5194/esurf-12-747-2024, 2024
Short summary
Short summary
This study investigates subsurface weathering zones, revealing their structure through shear wave velocity variations. The research focuses on the arid climate of Pan de Azúcar National Park, Chile, using seismic ambient noise recordings to construct pseudo-3D models. The resulting models show the subsurface structure, including granite gradients and mafic dike intrusions. Comparison with other sites emphasizes the intricate relationship between climate, geology, and weathering depth.
Sonja H. Wadas, Hermann Buness, Raphael Rochlitz, Peter Skiba, Thomas Günther, Michael Grinat, David C. Tanner, Ulrich Polom, Gerald Gabriel, and Charlotte M. Krawczyk
Solid Earth, 13, 1673–1696, https://doi.org/10.5194/se-13-1673-2022, https://doi.org/10.5194/se-13-1673-2022, 2022
Short summary
Short summary
The dissolution of rocks poses a severe hazard because it can cause subsidence and sinkhole formation. Based on results from our study area in Thuringia, Germany, using P- and SH-wave reflection seismics, electrical resistivity and electromagnetic methods, and gravimetry, we develop a geophysical investigation workflow. This workflow enables identifying the initial triggers of subsurface dissolution and its control factors, such as structural constraints, fluid pathways, and mass movement.
Tomáš Fischer, Pavla Hrubcová, Torsten Dahm, Heiko Woith, Tomáš Vylita, Matthias Ohrnberger, Josef Vlček, Josef Horálek, Petr Dědeček, Martin Zimmer, Martin P. Lipus, Simona Pierdominici, Jens Kallmeyer, Frank Krüger, Katrin Hannemann, Michael Korn, Horst Kämpf, Thomas Reinsch, Jakub Klicpera, Daniel Vollmer, and Kyriaki Daskalopoulou
Sci. Dril., 31, 31–49, https://doi.org/10.5194/sd-31-31-2022, https://doi.org/10.5194/sd-31-31-2022, 2022
Short summary
Short summary
The newly established geodynamic laboratory aims to develop modern, comprehensive, multiparameter observations at depth for studying earthquake swarms, crustal fluid flow, mantle-derived fluid degassing and processes of the deep biosphere. It is located in the West Bohemia–Vogtland (western Eger Rift) geodynamic region and comprises a set of five shallow boreholes with high-frequency 3-D seismic arrays as well as continuous real-time fluid monitoring at depth and the study of the deep biosphere.
Evgeniia Martuganova, Manfred Stiller, Ben Norden, Jan Henninges, and Charlotte M. Krawczyk
Solid Earth, 13, 1291–1307, https://doi.org/10.5194/se-13-1291-2022, https://doi.org/10.5194/se-13-1291-2022, 2022
Short summary
Short summary
We demonstrate the applicability of vertical seismic profiling (VSP) acquired using wireline distributed acoustic sensing (DAS) technology for deep geothermal reservoir imaging and characterization. Borehole DAS data provide critical input for seismic interpretation and help assess small-scale geological structures. This case study can be used as a basis for detailed structural exploration of geothermal reservoirs and provide insightful information for geothermal exploration projects.
Martin Peter Lipus, Felix Schölderle, Thomas Reinsch, Christopher Wollin, Charlotte Krawczyk, Daniela Pfrang, and Kai Zosseder
Solid Earth, 13, 161–176, https://doi.org/10.5194/se-13-161-2022, https://doi.org/10.5194/se-13-161-2022, 2022
Short summary
Short summary
A fiber-optic cable was installed along a freely suspended rod in a deep geothermal well in Munich, Germany. A cold-water injection test was monitored with fiber-optic distributed acoustic and temperature sensing. During injection, we observe vibrational events in the lower part of the well. On the basis of a mechanical model, we conclude that the vibrational events are caused by thermal contraction of the rod. The results illustrate potential artifacts when analyzing downhole acoustic data.
Djamil Al-Halbouni, Robert A. Watson, Eoghan P. Holohan, Rena Meyer, Ulrich Polom, Fernando M. Dos Santos, Xavier Comas, Hussam Alrshdan, Charlotte M. Krawczyk, and Torsten Dahm
Hydrol. Earth Syst. Sci., 25, 3351–3395, https://doi.org/10.5194/hess-25-3351-2021, https://doi.org/10.5194/hess-25-3351-2021, 2021
Short summary
Short summary
The rapid decline of the Dead Sea level since the 1960s has provoked a dynamic reaction from the coastal groundwater system, with physical and chemical erosion creating subsurface voids and conduits. By combining remote sensing, geophysical methods, and numerical modelling at the Dead Sea’s eastern shore, we link groundwater flow patterns to the formation of surface stream channels, sinkholes and uvalas. Better understanding of this karst system will improve regional hazard assessment.
Gesa Maria Petersen, Simone Cesca, Sebastian Heimann, Peter Niemz, Torsten Dahm, Daniela Kühn, Jörn Kummerow, Thomas Plenefisch, and the AlpArray and AlpArray-Swath-D working groups
Solid Earth, 12, 1233–1257, https://doi.org/10.5194/se-12-1233-2021, https://doi.org/10.5194/se-12-1233-2021, 2021
Short summary
Short summary
The Alpine mountains are known for a complex tectonic history. We shed light onto ongoing tectonic processes by studying rupture mechanisms of small to moderate earthquakes between 2016 and 2019 observed by the temporary AlpArray seismic network. The rupture processes of 75 earthquakes were analyzed, along with past earthquakes and deformation data. Our observations point at variations in the underlying tectonic processes and stress regimes across the Alps.
Gilda Currenti, Philippe Jousset, Rosalba Napoli, Charlotte Krawczyk, and Michael Weber
Solid Earth, 12, 993–1003, https://doi.org/10.5194/se-12-993-2021, https://doi.org/10.5194/se-12-993-2021, 2021
Short summary
Short summary
We investigate the capability of distributed acoustic sensing (DAS) to record dynamic strain changes related to Etna volcano activity in 2019. To validate the DAS measurements, we compute strain estimates from seismic signals recorded by a dense broadband array. A general good agreement is found between array-derived strain and DAS measurements along the fibre optic cable. Localised short wavelength discrepancies highlight small-scale structural heterogeneities in the investigated area.
Jan Henninges, Evgeniia Martuganova, Manfred Stiller, Ben Norden, and Charlotte M. Krawczyk
Solid Earth, 12, 521–537, https://doi.org/10.5194/se-12-521-2021, https://doi.org/10.5194/se-12-521-2021, 2021
Short summary
Short summary
We performed a seismic survey in two 4.3 km deep geothermal research wells using the novel method of distributed acoustic sensing and wireline cables. The characteristics of the acquired data, methods for data processing and quality improvement, and interpretations on the geometry and structure of the sedimentary and volcanic reservoir rocks are presented. The method enables measurements at high temperatures and reduced cost compared to conventional sensors.
Camilla Rossi, Francesco Grigoli, Simone Cesca, Sebastian Heimann, Paolo Gasperini, Vala Hjörleifsdóttir, Torsten Dahm, Christopher J. Bean, Stefan Wiemer, Luca Scarabello, Nima Nooshiri, John F. Clinton, Anne Obermann, Kristján Ágústsson, and Thorbjörg Ágústsdóttir
Adv. Geosci., 54, 129–136, https://doi.org/10.5194/adgeo-54-129-2020, https://doi.org/10.5194/adgeo-54-129-2020, 2020
Short summary
Short summary
We investigate the microseismicity occurred at Hengill area, a complex tectonic and geothermal site, where the origin of earthquakes may be either natural or anthropogenic. We use a very dense broadband seismic monitoring network and apply full-waveform based method for location. Our results and first characterization identified different types of microseismic clusters, which might be associated to either production/injection or the tectonic activity of the geothermal area.
Benjamin Schwarz and Charlotte M. Krawczyk
Solid Earth, 11, 1891–1907, https://doi.org/10.5194/se-11-1891-2020, https://doi.org/10.5194/se-11-1891-2020, 2020
Short summary
Short summary
Intricate fault and fracture networks cut through the upper crust, and their detailed delineation and characterization play an important role in the Earth sciences. While conventional geophysical sounding techniques only provide indirect means of detection, we present scale-spanning field data examples, in which coherent diffraction imaging – a framework inspired by optics and visual perception – enables the direct imaging of these crustal features at an unprecedented spatial resolution.
Marco Broccardo, Arnaud Mignan, Francesco Grigoli, Dimitrios Karvounis, Antonio Pio Rinaldi, Laurentiu Danciu, Hannes Hofmann, Claus Milkereit, Torsten Dahm, Günter Zimmermann, Vala Hjörleifsdóttir, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 20, 1573–1593, https://doi.org/10.5194/nhess-20-1573-2020, https://doi.org/10.5194/nhess-20-1573-2020, 2020
Short summary
Short summary
This study presents a first-of-its-kind pre-drilling probabilistic induced seismic risk analysis for the Geldinganes (Iceland) deep-hydraulic stimulation. The results of the assessment indicate that the individual risk within a radius of 2 km around the injection point is below the safety limits. However, the analysis is affected by a large variability due to the presence of pre-drilling deep uncertainties. This suggests the need for online risk updating during the stimulation.
Mohammadreza Jamalreyhani, Pınar Büyükakpınar, Simone Cesca, Torsten Dahm, Henriette Sudhaus, Mehdi Rezapour, Marius Paul Isken, Behnam Maleki Asayesh, and Sebastian Heimann
Solid Earth Discuss., https://doi.org/10.5194/se-2020-55, https://doi.org/10.5194/se-2020-55, 2020
Revised manuscript not accepted
Short summary
Short summary
We model the source of the 24 January 2020 Mw 6.77 Elazığ-Sivrice (Turkey) earthquake using a combination of different data and we analyzed its seismic sequences. This earthquake occurred in the east Anatolian fault and it has filled the large part of the former seismic gap zone. An unbroken part has left after this earthquake and has the potential to host a future earthquake. This work provides information about the fault system and helps to the mitigation of seismic hazard in Southern Turkey.
Sebastian Heimann, Hannes Vasyura-Bathke, Henriette Sudhaus, Marius Paul Isken, Marius Kriegerowski, Andreas Steinberg, and Torsten Dahm
Solid Earth, 10, 1921–1935, https://doi.org/10.5194/se-10-1921-2019, https://doi.org/10.5194/se-10-1921-2019, 2019
Short summary
Short summary
We present an open-source software framework for fast and flexible forward modelling of seismic and acoustic wave phenomena and elastic deformation. It supports a wide range of applications across volcanology, seismology, and geodesy to study earthquakes, volcanic processes, landslides, explosions, mine collapses, ground shaking, and aseismic faulting. The framework stimulates reproducible research and open science through the exchange of pre-calculated Green's functions on an open platform.
Robert A. Watson, Eoghan P. Holohan, Djamil Al-Halbouni, Leila Saberi, Ali Sawarieh, Damien Closson, Hussam Alrshdan, Najib Abou Karaki, Christian Siebert, Thomas R. Walter, and Torsten Dahm
Solid Earth, 10, 1451–1468, https://doi.org/10.5194/se-10-1451-2019, https://doi.org/10.5194/se-10-1451-2019, 2019
Short summary
Short summary
The fall of the Dead Sea level since the 1960s has provoked the formation of over 6000 sinkholes, a major hazard to local economy and infrastructure. In this context, we study the evolution of subsidence phenomena at three area scales at the Dead Sea’s eastern shore from 1967–2017. Our results yield the most detailed insights to date into the spatio-temporal development of sinkholes and larger depressions (uvalas) in an evaporite karst setting and emphasize a link to the falling Dead Sea level.
Djamil Al-Halbouni, Eoghan P. Holohan, Abbas Taheri, Robert A. Watson, Ulrich Polom, Martin P. J. Schöpfer, Sacha Emam, and Torsten Dahm
Solid Earth, 10, 1219–1241, https://doi.org/10.5194/se-10-1219-2019, https://doi.org/10.5194/se-10-1219-2019, 2019
Short summary
Short summary
A 2-D numerical modelling approach to simulate the mechanical formation of sinkhole cluster inside large-scale karstic depressions is presented. Different multiple cavity growth scenarios at depth are compared regarding the mechanical process and collapse style. The outcomes of the models are compared to results from remote sensing and geophysics for an active sinkhole area in the Dead Sea region.
Marius Kriegerowski, Simone Cesca, Matthias Ohrnberger, Torsten Dahm, and Frank Krüger
Solid Earth, 10, 317–328, https://doi.org/10.5194/se-10-317-2019, https://doi.org/10.5194/se-10-317-2019, 2019
Short summary
Short summary
We developed a method that allows to estimate the acoustic attenuation of seismic waves within regions with high earthquake source densities. Attenuation is of high interest as it allows to draw conclusions on the origin of seismic activity. We apply our method to north-west Bohemia, which is regularly affected by earthquake swarms during which thousands of earthquakes are registered within a few days. We find reduced attenuation within the active volume, which may indicate high fluid content.
Peter Gaebler, Lars Ceranna, Nima Nooshiri, Andreas Barth, Simone Cesca, Michaela Frei, Ilona Grünberg, Gernot Hartmann, Karl Koch, Christoph Pilger, J. Ole Ross, and Torsten Dahm
Solid Earth, 10, 59–78, https://doi.org/10.5194/se-10-59-2019, https://doi.org/10.5194/se-10-59-2019, 2019
Short summary
Short summary
On 3 September 2017 official channels of the Democratic People’s Republic of
Korea announced the successful test of a nuclear device. This study provides a
multi-technology analysis of the 2017 North Korean event and its aftermath using a wide array of geophysical methods (seismology, infrasound, remote sensing, radionuclide monitoring, and atmospheric transport modeling). Our results clearly indicate that the September 2017 North Korean event was in fact a nuclear test.
Djamil Al-Halbouni, Eoghan P. Holohan, Abbas Taheri, Martin P. J. Schöpfer, Sacha Emam, and Torsten Dahm
Solid Earth, 9, 1341–1373, https://doi.org/10.5194/se-9-1341-2018, https://doi.org/10.5194/se-9-1341-2018, 2018
Short summary
Short summary
Sinkholes are round depression features in the ground that can cause high economic and life loss. On the Dead Sea shoreline, hundreds of sinkholes form each year driven by the fall of the water level and subsequent out-washing and dissolution of loose sediments. This study investigates the mechanical formation of sinkholes by numerical modelling. It highlights the role of material strength in the formation of dangerous collapse sinkholes and compares it to findings from a field site in Jordan.
Sonja H. Wadas, David C. Tanner, Ulrich Polom, and Charlotte M. Krawczyk
Nat. Hazards Earth Syst. Sci., 17, 2335–2350, https://doi.org/10.5194/nhess-17-2335-2017, https://doi.org/10.5194/nhess-17-2335-2017, 2017
Short summary
Short summary
In 2010 a sinkhole opened up in the urban area of Schmalkalden, Germany. Shear-wave reflection seismic profiles were carried out around the sinkhole to investigate the reasons for the collapse. A strike-slip fault and a fracture network were identified that serve as fluid pathways for water-leaching soluble rocks near the surface. The more complex the fault geometry and interaction between faults, the more prone an area is to sinkhole occurrence.
Sonja H. Wadas, Ulrich Polom, and Charlotte M. Krawczyk
Solid Earth, 7, 1491–1508, https://doi.org/10.5194/se-7-1491-2016, https://doi.org/10.5194/se-7-1491-2016, 2016
Short summary
Short summary
Subrosion is the subsurface leaching of soluble rocks. It is a global phenomenon and a geohazard in urban areas because it causes depressions and sinkholes. This is the case in the study area, the town of Bad Frankenhausen, in northern Thuringia, Germany. Using shear-wave seismic reflection we are able to image these structures at high resolution to a depth of ca. 100 m. We observe that the underground is strongly fractured and there are indications of cavities.
Joaquina Alvarez-Marrón, Fernando Bastida, Ernest Rutter, Ramon Carbonell, and Charlotte M. Krawczyk
Solid Earth, 7, 1199–1205, https://doi.org/10.5194/se-7-1199-2016, https://doi.org/10.5194/se-7-1199-2016, 2016
Matthias Halisch, Holger Steeb, Steven Henkel, and Charlotte M. Krawczyk
Solid Earth, 7, 1141–1143, https://doi.org/10.5194/se-7-1141-2016, https://doi.org/10.5194/se-7-1141-2016, 2016
T. Burschil, T. Beilecke, and C. M. Krawczyk
Solid Earth, 6, 33–47, https://doi.org/10.5194/se-6-33-2015, https://doi.org/10.5194/se-6-33-2015, 2015
Short summary
Short summary
In this paper, we compared, measured and simulated reflection seismology data for different wave types. P wave and shear wave land data were acquired in the field while the synthetic data were generated by finite-difference modelling. Major features of the P waves were imaged, but simulations cannot clarify the signal-to-noise ratio of the shear wave field data. Future modelling approaches will consider additional features for a better understanding of near-surface seismic measurements.
K. Becker, D. Franke, R. Trumbull, M. Schnabel, I. Heyde, B. Schreckenberger, H. Koopmann, K. Bauer, W. Jokat, and C. M. Krawczyk
Solid Earth, 5, 1011–1026, https://doi.org/10.5194/se-5-1011-2014, https://doi.org/10.5194/se-5-1011-2014, 2014
T. Dahm, P. Hrubcová, T. Fischer, J. Horálek, M. Korn, S. Buske, and D. Wagner
Sci. Dril., 16, 93–99, https://doi.org/10.5194/sd-16-93-2013, https://doi.org/10.5194/sd-16-93-2013, 2013
D. Al-Halbouni
Solid Earth Discuss., https://doi.org/10.5194/sed-5-1031-2013, https://doi.org/10.5194/sed-5-1031-2013, 2013
Preprint withdrawn
C. M. Krawczyk, M.-L. Buddensiek, O. Oncken, and N. Kukowski
Solid Earth, 4, 93–104, https://doi.org/10.5194/se-4-93-2013, https://doi.org/10.5194/se-4-93-2013, 2013
Related subject area
Subject area: The evolving Earth surface | Editorial team: Seismics, seismology, paleoseismology, geoelectrics, and electromagnetics | Discipline: Geophysics
Seismic wave modeling of fluid-saturated fractured porous rock: including fluid pressure diffusion effects of discretely distributed large-scale fractures
Integration of automatic implicit geological modelling in deterministic geophysical inversion
Ground motion emissions due to wind turbines: observations, acoustic coupling, and attenuation relationships
Seismic amplitude response to internal heterogeneity of mass-transport deposits
Investigation of the effects of surrounding media on the distributed acoustic sensing of a helically wound fibre-optic cable with application to the New Afton deposit, British Columbia
Geophysical analysis of an area affected by subsurface dissolution – case study of an inland salt marsh in northern Thuringia, Germany
An efficient probabilistic workflow for estimating induced earthquake parameters in 3D heterogeneous media
Dynamic motion monitoring of a 3.6 km long steel rod in a borehole during cold-water injection with distributed fiber-optic sensing
On the comparison of strain measurements from fibre optics with a dense seismometer array at Etna volcano (Italy)
The impact of seismic interpretation methods on the analysis of faults: a case study from the Snøhvit field, Barents Sea
Integrated land and water-borne geophysical surveys shed light on the sudden drying of large karst lakes in southern Mexico
On the morphology and amplitude of 2D and 3D thermal anomalies induced by buoyancy-driven flow within and around fault zones
Characterizing a decametre-scale granitic reservoir using ground-penetrating radar and seismic methods
Upper Jurassic carbonate buildups in the Miechów Trough, southern Poland – insights from seismic data interpretations
New regional stratigraphic insights from a 3D geological model of the Nasia sub-basin, Ghana, developed for hydrogeological purposes and based on reprocessed B-field data originally collected for mineral exploration
Characterisation of subglacial water using a constrained transdimensional Bayesian transient electromagnetic inversion
Subsurface characterization of a quick-clay vulnerable area using near-surface geophysics and hydrological modelling
Electrical formation factor of clean sand from laboratory measurements and digital rock physics
Drill bit noise imaging without pilot trace, a near-surface interferometry example
Calibrating a new attenuation curve for the Dead Sea region using surface wave dispersion surveys in sites damaged by the 1927 Jericho earthquake
Yingkai Qi, Xuehua Chen, Qingwei Zhao, Xin Luo, and Chunqiang Feng
Solid Earth, 15, 535–554, https://doi.org/10.5194/se-15-535-2024, https://doi.org/10.5194/se-15-535-2024, 2024
Short summary
Short summary
Fractures tend to dominate the mechanical and hydraulic properties of porous rock and impact the scattering characteristics of passing waves. This study takes into account the poroelastic effects of fractures in numerical modeling. Our results demonstrate that scattered waves from complex fracture systems are strongly affected by the fractures.
Jérémie Giraud, Guillaume Caumon, Lachlan Grose, Vitaliy Ogarko, and Paul Cupillard
Solid Earth, 15, 63–89, https://doi.org/10.5194/se-15-63-2024, https://doi.org/10.5194/se-15-63-2024, 2024
Short summary
Short summary
We present and test an algorithm that integrates geological modelling into deterministic geophysical inversion. This is motivated by the need to model the Earth using all available data and to reconcile the different types of measurements. We introduce the methodology and test our algorithm using two idealised scenarios. Results suggest that the method we propose is effectively capable of improving the models recovered by geophysical inversion and may be applied in real-world scenarios.
Laura Gaßner and Joachim Ritter
Solid Earth, 14, 785–803, https://doi.org/10.5194/se-14-785-2023, https://doi.org/10.5194/se-14-785-2023, 2023
Short summary
Short summary
In this work we analyze signals emitted from wind turbines. They induce sound as well as ground motion waves which propagate through the subsurface and are registered by sensitive instruments. In our data we observe when these signals are present and how strong they are. Some signals are present in ground motion and sound data, providing the opportunity to study similarities and better characterize emissions. Furthermore, we study the amplitudes with distance to improve the signal prediction.
Jonathan Ford, Angelo Camerlenghi, Francesca Zolezzi, and Marilena Calarco
Solid Earth, 14, 137–151, https://doi.org/10.5194/se-14-137-2023, https://doi.org/10.5194/se-14-137-2023, 2023
Short summary
Short summary
Submarine landslides commonly appear as low-amplitude zones in seismic data. Previous studies have attributed this to a lack of preserved internal structure. We use seismic modelling to show that an amplitude reduction can be generated even when there is still metre-scale internal structure, by simply deforming the bedding. This has implications for interpreting failure type, for core-seismic correlation and for discriminating landslides from other "transparent" phenomena such as free gas.
Sepidehalsadat Hendi, Mostafa Gorjian, Gilles Bellefleur, Christopher D. Hawkes, and Don White
Solid Earth, 14, 89–99, https://doi.org/10.5194/se-14-89-2023, https://doi.org/10.5194/se-14-89-2023, 2023
Short summary
Short summary
In this study, the modelling results are used to help understand the performance of a helically wound fibre (HWC) from a field study at the New Afton mine, British Columbia. We introduce the numerical 3D model to model strain values in HWC to design more effective HWC system. The DAS dataset at New Afton, interpreted in the context of our modelling, serves as a practical demonstration of the extreme effects of surrounding media and coupling on HWC data quality.
Sonja H. Wadas, Hermann Buness, Raphael Rochlitz, Peter Skiba, Thomas Günther, Michael Grinat, David C. Tanner, Ulrich Polom, Gerald Gabriel, and Charlotte M. Krawczyk
Solid Earth, 13, 1673–1696, https://doi.org/10.5194/se-13-1673-2022, https://doi.org/10.5194/se-13-1673-2022, 2022
Short summary
Short summary
The dissolution of rocks poses a severe hazard because it can cause subsidence and sinkhole formation. Based on results from our study area in Thuringia, Germany, using P- and SH-wave reflection seismics, electrical resistivity and electromagnetic methods, and gravimetry, we develop a geophysical investigation workflow. This workflow enables identifying the initial triggers of subsurface dissolution and its control factors, such as structural constraints, fluid pathways, and mass movement.
La Ode Marzujriban Masfara, Thomas Cullison, and Cornelis Weemstra
Solid Earth, 13, 1309–1325, https://doi.org/10.5194/se-13-1309-2022, https://doi.org/10.5194/se-13-1309-2022, 2022
Short summary
Short summary
Induced earthquakes are natural phenomena in which the events are associated with human activities. Although the magnitudes of these events are mostly smaller than tectonic events, in some cases, the magnitudes can be high enough to damage buildings near the event's location. To study these (high-magnitude) induced events, we developed a workflow in which the recorded data from an earthquake are used to describe the source and monitor the area for other (potentially high-magnitude) earthquakes.
Martin Peter Lipus, Felix Schölderle, Thomas Reinsch, Christopher Wollin, Charlotte Krawczyk, Daniela Pfrang, and Kai Zosseder
Solid Earth, 13, 161–176, https://doi.org/10.5194/se-13-161-2022, https://doi.org/10.5194/se-13-161-2022, 2022
Short summary
Short summary
A fiber-optic cable was installed along a freely suspended rod in a deep geothermal well in Munich, Germany. A cold-water injection test was monitored with fiber-optic distributed acoustic and temperature sensing. During injection, we observe vibrational events in the lower part of the well. On the basis of a mechanical model, we conclude that the vibrational events are caused by thermal contraction of the rod. The results illustrate potential artifacts when analyzing downhole acoustic data.
Gilda Currenti, Philippe Jousset, Rosalba Napoli, Charlotte Krawczyk, and Michael Weber
Solid Earth, 12, 993–1003, https://doi.org/10.5194/se-12-993-2021, https://doi.org/10.5194/se-12-993-2021, 2021
Short summary
Short summary
We investigate the capability of distributed acoustic sensing (DAS) to record dynamic strain changes related to Etna volcano activity in 2019. To validate the DAS measurements, we compute strain estimates from seismic signals recorded by a dense broadband array. A general good agreement is found between array-derived strain and DAS measurements along the fibre optic cable. Localised short wavelength discrepancies highlight small-scale structural heterogeneities in the investigated area.
Jennifer E. Cunningham, Nestor Cardozo, Chris Townsend, and Richard H. T. Callow
Solid Earth, 12, 741–764, https://doi.org/10.5194/se-12-741-2021, https://doi.org/10.5194/se-12-741-2021, 2021
Short summary
Short summary
This work investigates the impact of commonly used seismic interpretation methods on the analysis of faults. Fault analysis refers to fault length, displacement, and the impact these factors have on geological modelling and hydrocarbon volume calculation workflows. This research was conducted to give geoscientists a better understanding of the importance of interpretation methods and the impact of unsuitable methology on geological analyses.
Matthias Bücker, Adrián Flores Orozco, Jakob Gallistl, Matthias Steiner, Lukas Aigner, Johannes Hoppenbrock, Ruth Glebe, Wendy Morales Barrera, Carlos Pita de la Paz, César Emilio García García, José Alberto Razo Pérez, Johannes Buckel, Andreas Hördt, Antje Schwalb, and Liseth Pérez
Solid Earth, 12, 439–461, https://doi.org/10.5194/se-12-439-2021, https://doi.org/10.5194/se-12-439-2021, 2021
Short summary
Short summary
We use seismic, electromagnetic, and geoelectrical methods to assess sediment thickness and lake-bottom geology of two karst lakes. An unexpected drainage event provided us with the unusual opportunity to compare water-borne measurements with measurements carried out on the dry lake floor. The resulting data set does not only provide insight into the specific lake-bottom geology of the studied lakes but also evidences the potential and limitations of the employed field methods.
Laurent Guillou-Frottier, Hugo Duwiquet, Gaëtan Launay, Audrey Taillefer, Vincent Roche, and Gaétan Link
Solid Earth, 11, 1571–1595, https://doi.org/10.5194/se-11-1571-2020, https://doi.org/10.5194/se-11-1571-2020, 2020
Short summary
Short summary
In the first kilometers of the subsurface, temperature anomalies due to heat conduction rarely exceed 20–30°C. However, when deep hot fluids in the shallow crust flow upwards, for example through permeable fault zones, hydrothermal convection can form high-temperature geothermal reservoirs. Numerical modeling of hydrothermal convection shows that vertical fault zones may host funnel-shaped, kilometer-sized geothermal reservoirs whose exploitation would not need drilling at depths below 2–3 km.
Joseph Doetsch, Hannes Krietsch, Cedric Schmelzbach, Mohammadreza Jalali, Valentin Gischig, Linus Villiger, Florian Amann, and Hansruedi Maurer
Solid Earth, 11, 1441–1455, https://doi.org/10.5194/se-11-1441-2020, https://doi.org/10.5194/se-11-1441-2020, 2020
Łukasz Słonka and Piotr Krzywiec
Solid Earth, 11, 1097–1119, https://doi.org/10.5194/se-11-1097-2020, https://doi.org/10.5194/se-11-1097-2020, 2020
Short summary
Short summary
This paper shows the results of seismic interpretations that document the presence of large Upper Jurassic carbonate buildups in the Miechów Trough (S Poland). Our work fills the gap in recognition of the Upper Jurassic carbonate depositional system of southern Poland. The results also provide an excellent generic reference point, showing how and to what extent seismic data can be used for studies of carbonate depositional systems, in particular for the identification of the carbonate buildups.
Elikplim Abla Dzikunoo, Giulio Vignoli, Flemming Jørgensen, Sandow Mark Yidana, and Bruce Banoeng-Yakubo
Solid Earth, 11, 349–361, https://doi.org/10.5194/se-11-349-2020, https://doi.org/10.5194/se-11-349-2020, 2020
Short summary
Short summary
Time-domain electromagnetic (TEM) geophysics data originally collected for mining purposes were reprocessed and inverted. The new inversions were used to construct a 3D model of the subsurface geology to facilitate hydrogeological investigations within a DANIDA-funded project. Improved resolutions from the TEM enabled the identification of possible paleovalleys of glacial origin, suggesting the need for a reevaluation of the current lithostratigraphy of the Voltaian sedimentary basin.
Siobhan F. Killingbeck, Adam D. Booth, Philip W. Livermore, C. Richard Bates, and Landis J. West
Solid Earth, 11, 75–94, https://doi.org/10.5194/se-11-75-2020, https://doi.org/10.5194/se-11-75-2020, 2020
Short summary
Short summary
This paper presents MuLTI-TEM, a Bayesian inversion tool for inverting TEM data with independent depth constraints to provide statistical properties and uncertainty analysis of the resistivity profile with depth. MuLTI-TEM is highly versatile, being compatible with most TEM survey designs, ground-based or airborne, along with the depth constraints being provided from any external source. Here, we present an application of MuLTI-TEM to characterise the subglacial water under a Norwegian glacier.
Silvia Salas-Romero, Alireza Malehmir, Ian Snowball, and Benoît Dessirier
Solid Earth, 10, 1685–1705, https://doi.org/10.5194/se-10-1685-2019, https://doi.org/10.5194/se-10-1685-2019, 2019
Short summary
Short summary
Land–river reflection seismic, hydrogeological modelling, and magnetic investigations in an area prone to quick-clay landslides in SW Sweden provide a detailed description of the subsurface structures, such as undulating fractured bedrock, a sedimentary sequence of intercalating leached and unleached clay, and coarse-grained deposits. Hydrological properties of the coarse-grained layer help us understand its role in the leaching process that leads to the formation of quick clays in the area.
Mohammed Ali Garba, Stephanie Vialle, Mahyar Madadi, Boris Gurevich, and Maxim Lebedev
Solid Earth, 10, 1505–1517, https://doi.org/10.5194/se-10-1505-2019, https://doi.org/10.5194/se-10-1505-2019, 2019
Mehdi Asgharzadeh, Ashley Grant, Andrej Bona, and Milovan Urosevic
Solid Earth, 10, 1015–1023, https://doi.org/10.5194/se-10-1015-2019, https://doi.org/10.5194/se-10-1015-2019, 2019
Short summary
Short summary
Data acquisition costs mainly borne by expensive vibrator machines (i.e., deployment, operations, and maintenance) can be regarded as the main impediment to wide application of seismic methods in the mining industry. Here, we show that drill bit noise can be used to image the shallow subsurface when it is optimally acquired and processed. Drill bit imaging methods have many applications in small scale near-surface projects, such as those in mining exploration and geotechnical investigation.
Yaniv Darvasi and Amotz Agnon
Solid Earth, 10, 379–390, https://doi.org/10.5194/se-10-379-2019, https://doi.org/10.5194/se-10-379-2019, 2019
Cited articles
Abelson, M., Yechieli, Y., Crouvi, O., Baer, G., Wachs, D., Bein, A., and Shtivelman, V.: Evolution of the Dead Sea sinkholes, in: New frontiers in Dead Sea paleoenvironmental research, edited by: Enzel, Y., Agnon, A., and Stein, M., Geological Society America Special paper, 401, 241–253, https://doi.org/10.1130/2006.2401(16), 2006.
Abelson, M., Gabay, R., Shalev, E., and Yechieli, Y.: Sinkhole hazard around the evaporation ponds Dead Sea southern basin, Geological Survey of Israel, Report GSI/27/2009, 2009.
Abelson, M., Yechieli, Y., Baer, G., Lapid, G., Behar, N., Calvo, R., and Rosensaft, M.: Natural versus human control on subsurface salt dissolution and development of thousands of sinkholes along the Dead Sea coast, J. Geophys. Res.-Earth, 122, https://doi.org/10.1002/2017JF004219, 2017.
Abou Karaki, N, Fiaschi, S, and Closson, D.: Sustainable development and anthropogenic induced geomorphic hazards in subsiding areas, Earth Surf. Proc. Land., 41, 2282–2295, https://doi.org/10.1002/esp.4047, 2016.
Abueladas, A. and Al-Zoubi, A.: The application of a combined geophysical survey (GPR and seismic refraction) for mapping sinkholes in Ghor Al-Haditha Area, Jordan, Fall Meeting Supplement, EOS Transactions, American Geophysical Union, 85, p. 47, Abstract GP11A-0825, 2004.
Al-Halbouni, D., Holohan, E. P., Saberia, L., Alrshdan, H., Sawarieh, A., Closson, D., Waltera, T. R., and Dahm, T.: Sinkholes, subsidence and subrosion on the eastern shore of the Dead Sea as revealed by a close-range photogrammetric survey, Geomorphology, 285, 305–324, https://doi.org/10.1016/j.geomorph.2017.02.006, 2017.
Alrshdan, H.: Geophysical Investigations of Ghor Haditha Sinkholes, Jordan, EAGE Workshop on Dead Sea Sinkholes – Causes, Effects and Solutions, Session 1: Geology, Hydrogeology & Hydrochemistry of Sinkholes, https://doi.org/10.3997/2214-4609.20143060, 2012.
Aki, K. and Richards, P. G.: Quantitative seismology, W.H. Freeman and Company, San Francisco, 1980.
Arkin, Y. and Gilat, A.: Dead Sea sinkholes – an ever-developing hazard, Environ. Geol., 39, 711–722, 2000.
Barjous, M., Sweidan, G., and AL-Atteyat, N.: Geophysical and geological investigation of sinkholes in Ghor Al-Haditha area, Sinkhole project of Ghor Al-Haditha area (phase 4), Natural Resources Authority, Internal Report, Amman, 2004.
Batayneh, A., Abueladas, A., and Moumani, K.: Use of ground-penetrating radar for assessment of potential sinkhole conditions: an example from Ghor Al-Haditha area, Jordan, Environ. Geol., 41, 977–983, 2002.
Bodet, L., Galibert, P. Y., Dhemaied, A., Camerlynck, C., and Al-Zoubi, A.: Surface-wave profiling for sinkhole hazard assessment along the eastern Dead Sea shoreline (Ghor Al-Haditha, Jordan), 72nd EAGE Conference & Exhibition incorporating SPE EUROPEC 2010, Barcelona, Spain, 14–17 June 2010 (M027), 2010.
Bookman (Ken-Tor), R., Enzel, Y., Agnon, A., and Stein, M.: Late Holocene lake levels of the Dead Sea, Geol. Soc. Am. B., 116, 555–571, 2004.
Camerlynck, C. M., Abueladas, A., Al-Ruzouq, R., Al-Zoubi, A., Boucher, M., Bodet, L., Dhemaied, A., and Galibert, P.Y .: Geophysical assessment of sinkhole hazard evaluation at Ghor Haditha (Dead sea, Jordan). Expanded Abstract DS07, EAGE Workshop on Dead Sea Sinkholes – Causes, Effects & Solutions, 23–26 September 2012, Amman, Jordan, 2012.
Closson, D.: Structural control of sinkholes and subsidence hazards along the Jordanian Dead Sea coast, Environ. Geol., 47, 290–301, 2005.
Closson, D. and Abu Karaki, N.: Salt karst and tectonics: sinkholes development along tension cracks between parallel strike-sleep faults, Dead Sea, Jordan, Earth Surf. Proc. Land., 34, 1408–1421, https://doi.org/10.1002/esp.1829, 2009.
Crawford, J. M., Doty, W., and Lee, M. R.: Continuous signal seismograph, Geophysics, 25, 95–105, 1960.
Dhemaied, A.: Tomographie seismique d'une zone de subsidence (Sinkhole zone, Ghor Al-Haditha, Jordanie), MSc Report (unpublished), Paris University, Paris, France, 2007.
Diabat, A. A.: Sinkholes related to Tectonic Factor at Ghor Al Haditha Area, Dead Sea, Jordan, Hydrogeologie und Umwelt, 33, 1–17, 2005.
Dix, C. H.: Seismic velocities from surface measurements, Geophysics, 20, 68–86, 1955.
El-Isa, Z. H., Rimawi, O., Jarrar, G., Abu-Karaki, N., Taqieddin, S. A., Atallah, M., Seif El-Din, N., and Al-Saed, A.: Assessment of the hazard of subsidence and sinkholes in Ghor Al-Haditha area. Report submitted to Jordan Valley Authority, University of Jordan, Amman, University of Jordan, Center For Consultation, Technical Services and Studies, Amman, 141 pp., 1995.
Ezersky, M.: The seismic velocities of Dead Sea salt applied to the sinkhole problem, J. Appl. Geophys., 58, 45–58, 2006.
Ezersky, M. and Frumkin, A.: Fault-Dissolution front relations and the Dead Sea sinkhole problem, Geomorphology, 201, 35–44, 2013.
Ezersky, M. and Livne, E.: Geotechnical and geophysical properties of soils in the Dead Sea sinkhole problem. Near Surface Geoscience, Bochum, Germany, Expanded Abstract Mo P, 13, 5 pp., 2013.
Ezersky, M., Legchenko, A., Camerlynck, C., Al-Zoubi, A., Eppelbaum, L., Keydar, S., Baucher, M., and Chalikakis, K.: The Dead Sea sinkhole hazard – new findings based on a multidisciplinary geophysical study, Z. Geomorphol., 54, 69–90, https://doi.org/10.1127/0372-8854/2010/0054S2-0005, 2010.
Ezersky, M. G., Eppelbaum, L. V., Al-Zoubi, A., Keydar, S., Abueladas, A.-R., Akkawi, E., and Medvedev, B.: Geophysical prediction and following development sinkholes in two Dead Sea areas, Israel and Jordan, J. Environ. Earth Sci., 70, 1463–1478, https://doi.org/10.1007/s12665-013-2233-2, 2013a.
Ezersky, M., Bodet, L., Akkawi, E., Al-Zoubi, A., Camerlynck, C., Dhemaied, A., and Galibert, P.-Y.: Seismic Surface-wave prospecting methods for sinkhole hazard assessment along the Dead Sea shoreline, J. Environ. Eng. Geophys., 18, 233–253, https://doi.org/10.2113/JEEG18.4.233, 2013b.
Ezersky, M., Keydar, S., Al-Zoubi, A., and Eppelbaum, E.: Sinkhole hazard assessment of the Dead Sea area in Israel and Jordan: A multidisciplinary study, Final Technical Report Project M27-050, US Agency for International Development, Bureau of Global programs, Field Support and research, Center of Economic Growth and Agricultural Development, Washington D.C., 142 pp., 2013c.
Ezersky, M. G., Legchenko, A., Eppelbaum, L., and Al-Zoubi, A.: Overview of the geophysical studies in the Dead Sea costal area related to evaporate karst and recent sinkhole development, Int. J. Speleol., 46, 227–302, 2017.
Fiaschi, S., Closson, D., Abou Karaki, N., Pasquali, P., Riccardi, P., and Floris, M.: The complex karst dynamics of the Lisan Peninsula revealed by 25 years of DInSAR observations, Dead Sea, Jordan, ISPRS J. Photogramm., 130, 358–369, https://doi.org/10.1016/j.isprsjprs.2017.06.008, 2017.
Forbriger, T.: Inversion of shallow-seismic wavefields Part II: Inferring subsurface properties from wavefield transforms, Geophys. J. Int., 153, 735–752, 2003.
Frumkin, A., Ezersky, M., Al-Zoubi, A., Akkawi, E., and Abueladas, A.-R.: The Dead Sea hazard: geophysical assessment of salt dissolution and collapse, Geomorphology, 134, 102–117, https://doi.org/10.1016/j.geomorph.2011.04.023, 2011.
Frydman, S., Charrash, J., and Goretsky, I.: Geotechnoical properties of evaporate soils of the Dead sea area, Eng. Geol., 101, 236–244, 2008.
Geertsema M.: Quick Clay, in: Encyclopedia of Natural Hazards, edited by: Bobrowsky, P. T., Encyclopedia of Earth Sciences Series, Springer, Dordrecht, 2013.
Gilbert, G. K.: The topographic features of lake shores, US Geol. Surv. Ann. Rep., 5, 69–123, 1885.
Gorstein, M. and Ezersky, M.: Combination of HVSR and MASW methods to obtain shear wave velocity model of subsurface in Israel, IJGE, 1, 20–41, https://doi.org/10.15273/ijge.2015.01.004, 2015.
Inazaki, T.: High resolution reflection surveying at paved areas using S-wave type land streamer, Explor. Geophys., 35, 1–6, 2004.
Keydar, S., Bodet, L., Camerlynck, C., Dhemaied, A., Galibert, P.-Y., Ezersky, M. G., Dror, O., Akkawi, E., and Al-Zoubi, A.: A new approach for shallow subsurface imaging and its application to the Dead Sea sinkhole problem, 73th EAGE Conference and Technical Exhibition, Vienna, Austria, Expanded Abstracts A401, 4 pp., 2011.
Khalil, B. M.: The geology of the Ar-Rabba area, map sheet No. 3152 IV. NRA, Mapping Project Bull., 22, 106 pp., 1992.
Khlaifat, A., Al-Khashman, O., and Qutob, H.: Physical and chemical characterization of Dead Sea mud, Mater. Charact., 61, 564–568, 2010.
Krawczyk, C. M., Polom, U., Trabs, S., and Dahm, T.: Sinkholes in the city of Hamburg – New urban shear wave reflection seismic system enables high-resolution imaging of subrosion structures, J. Appl. Geophys., 78, 133–143, https://doi.org/10.1016/j.jappgeo.2011.02.003, 2012.
Krawczyk, C. M., Polom, U., Alrshdan, H., Al-Halbouni, D., Sawarieh, A., and Dahm, T.: New process model for the Dead Sea sinkholes at Ghor Al Haditha, Jordan, derived from shear-wave reflection seismics, Geophysical Research Abstracts, 17, EGU2015-5761, 2015.
Legchenko, A., Ezersky, M., Boucher, M., Camerlynck, C., Al-Zoubi, A., and Chalikakis, K.: Estimating sinkhole hazard in the Dead Sea costal area using P-wave velocities and magnetic resonance soundings, Near Surface 2008, Krakow, Poland, Expanded Abstract P18, 5 pp., 2008.
Park, C., Miller, R., and Xia, J.: Multichannel analysis of surface waves, Geophysics, 64, 800–808, 1999.
Park, C. B. and Carnevale, M.: Optimum MASW survey – revisit after a decade of use: Geo-Institute Ann. Mtng (GeoFlorida 2010), 20–24 February 2010, West Palm Beach, FL, 2010.
Polom, U.: Elimination of source-generated noise from correlated vibroseis data (the “ghost-sweep” problem), Geophysical Prospecting, 45, 571–591, 1997.
Polom, U., Druivenga, G., Grossmann, E., Grüneberg, S., and Rode, W.: Transportabler Scherwellenvibrator, Patent application DE 103 27 757 A1, Deutsches Patent- und Markenamt, 2011 (in German).
Polom, U., Bagge, M., Wadas, S., Winsemann, J., Brandes, C., Binot, F., and Krawczyk, C. M.: Surveying near-surface depotcentres by means of shear wave seismic, First Break, 31, 67–79, 2013.
Polom, U., Mueller, C., Nicol, A., Villamor, P., Langridge, R. M., and Begg, J: Finding the concealed section of the Whakatane Fault in the Whakatane Township with a shear wave landstreamer system: A seismic surveying report. GNS Science Open File Report 2016/41, 41 pp., GNS Science, New Zealand, 2016.
Pugin, A. J. M., Larson, T. H., and Sargent, S. L.: Near-surface mapping using SH-wave and P-wave seismic land-streamer data acquisition in Illinois, U.S. The Leading Edge, 23, 677–682, 2004.
Pugin, A. J. M., Hunter, A. J., Motazedian, D., Brooks, G. R., and Kasgin, K. B.: An application of shear wave reflection landstreamer technology to soil response evaluation of earthquake shaking in an urban area, Ottawa, Ontario, Symposium on the Application of Geophysics to Engineering and Environmental Problems (SAGEEP), Environmental and Engineering Geophysics society Annual Meeting, Denver, Colorado, USA, 1–5 April 2007.
Pugin, A. J. M., Pullan, S. E., Hunter, J. A., and Oldenborger, G. A.: Hydrological prospecting using P- and S-wave landstreamer seismic reflection methods, Near Surface Geophysics, 7, 315–327, 2009.
Pugin, A. J. M., Pullan, S. E., and Hunter, A. J.: Shear-wave high-resolution reflection in Ottawa and Quebec City, Canada, The Leading Edge, 250–255, 2013.
Rix, G. J. and Leipski, E. A.: Accuracy and resolution of surface wave inversion, in: Recent Advances in Instrumentation, edited by: Bhatia, S. K. and Blaney, G. W., Data Acquisition and Testing in Soil Dynamics: Am. Soc. Civil Eng., 17–32, 1991.
Salameh, E. and El-Naser, H.: The interface configuration of the fresh-/Dead Sea water – Theory and measurements, Acta Hydroch. Hydrob., 28, 323–328, 2000.
Sawarieh, A. and Alrshdan, H.: The relation of sinkholes development in Ghor Al-Haditha area with the Dead Sea level fluctuations, Natural Resources Authority (Internal report), Amman, 2011.
Sawarieh, A., Abueladas, A. A., Al Bashish, M., and Al Seba'i, E.: Sinkholes Phenomena at Ghor Al-Haditha area: Sinkholes Project (Phase-2), Natural Resources Authority, Internal Report No. 12, Amman, 2000.
Shalev, E., Lyakhovsky, V., and Yechieli, Y.: Salt dissolution and sinkhole formation along the Dead Sea shore, J. Geophys. Res., 111, B03102, https://doi.org/10.1029/2005JB004038, 2006.
Taqieddin, S., Abderahman, N., and Atallah, M.: Sinkhole hazard along the eastern Dead Sea shoreline area, Jordan: a geological and geotechnical consideration, Environ. Geol., 39, 1237–1253, 2000.
Wachs, D., Yechieli, Y., Shtivelman, V.,Itamar, A., Bear, G., Goldman, M., Raz, E., Riebekov, M., and Shatner, U.: Formation of sinkholes along the shore of the Dead Sea – summary of finding from the first stage of research, Geological Survey Report GSI/41/2000 (in Hebrew), 49 pp., 2000.
Yechieli, Y., Wachs, D, Abelson, M., Crouvi, O., Shtivelman, V., Raz, E., and Baer, G.: Formation of Sinkholes along the Shore of the Dead S – Summary of the first Stage of Investigation Geological Survey of Israel, Curr. Res., 13, 1–6, 2002.
Yechieli, Y., Abelson, M., Bein, M., Crouvi, O., and Shtivelman, V.: Sinkhole “swarms” along the Dead Sea coast: reflection of disturbance of lake and adjacent groundwater systems, Geol. Soc. Am. B., 118, 1075–1087, https://doi.org/10.1130/B25880.1, 2006.
Yilmaz, Ö.: Seismic Data Analysis, Society of Exploration Geophysicists, Tulsa, 2001.
Yilmaz, Ö.: Engineering seismology with applications to geotechnical engineering, in: Investigation in Geophysics Series No. 17, edited by: Miller, R. D., Society of Exploration Geophysicists, Tulsa, 2015.
Short summary
The alluvial fan of Ghor Al-Haditha (Dead Sea) is affected by subsidence and sinkholes. Different models and hypothetical processes have been suggested in the past; high-resolution shear wave reflection surveys carried out in 2013 and 2014 showed the absence of evidence for a massive shallow salt layer as formerly suggested. Thus, a new process interpretation is proposed based on both the dissolution and physical erosion of Dead Sea mud layers.
The alluvial fan of Ghor Al-Haditha (Dead Sea) is affected by subsidence and sinkholes....