Articles | Volume 11, issue 6
https://doi.org/10.5194/se-11-2169-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/se-11-2169-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Structural control on fluid flow and shallow diagenesis: insights from calcite cementation along deformation bands in porous sandstones
Leonardo Del Sole
CORRESPONDING AUTHOR
BiGeA – Department of Biological, Geological and Environmental
Sciences, University of Bologna, Via Zamboni 67, 40126 Bologna, Italy
Marco Antonellini
BiGeA – Department of Biological, Geological and Environmental
Sciences, University of Bologna, Via Zamboni 67, 40126 Bologna, Italy
Roger Soliva
Laboratoire Géosciences Montpellier, Université de
Montpellier, CNRS, Université des Antilles, Montpellier, France
Gregory Ballas
Laboratoire Géosciences Montpellier, Université de
Montpellier, CNRS, Université des Antilles, Montpellier, France
Fabrizio Balsamo
Next, Natural and Experimental Tectonic Research Group, Department of
Chemistry, Life Sciences and Environmental Sustainability, University of
Parma, Parco Area delle Scienze 157A, 43124 Parma, Italy
Giulio Viola
BiGeA – Department of Biological, Geological and Environmental
Sciences, University of Bologna, Via Zamboni 67, 40126 Bologna, Italy
Related authors
No articles found.
Lorenna Sávilla Brito Oliveira, Luiza Cavalcante Vinhas Lucas, David Iacopini, Fabrizio Balsamo, Anita Torabi, Behzad Alaei, João Felipe de Sousa Neto, Pedro Edson Face Moura, David Lino Vasconcelos, Vincenzo La Bruna, and Francisco Hilário Rego Bezerra
EGUsphere, https://doi.org/10.5194/egusphere-2025-3487, https://doi.org/10.5194/egusphere-2025-3487, 2025
This preprint is open for discussion and under review for Solid Earth (SE).
Short summary
Short summary
This study examines hydrothermal vent complexes in Brazil's Potiguar Basin using 3D seismic data, demonstrating how regional faults control vent formation by channeling fluid flow. Results reveal that vent development processes and their geometry, with seismic attributes effectively mapping their distribution. The research advances understanding of tectono-hydrothermal relationships, providing insights for hydrocarbon exploration and reservoir characterization in sedimentary basins.
Selina Bonini, Riccardo Asti, Giulio Viola, Giulia Tartaglia, Stefano Rodani, Gianluca Benedetti, Massimo Comedini, and Gianluca Vignaroli
Nat. Hazards Earth Syst. Sci., 25, 2981–2998, https://doi.org/10.5194/nhess-25-2981-2025, https://doi.org/10.5194/nhess-25-2981-2025, 2025
Short summary
Short summary
Considering the structural complexity related to the internal architecture of active and capable faults, seismic hazard may be linked to different fault attributes depending on the fault domain crossed by a linear infrastructure. We propose a structural geology-based approach for the preliminary study of the area potentially affected by earthquake-induced surface ruptures during infrastructural design, based on the geometric relationships between the active fault and the infrastructure itself.
Riccardo Asti, Selina Bonini, Giulio Viola, and Gianluca Vignaroli
Solid Earth, 15, 1525–1551, https://doi.org/10.5194/se-15-1525-2024, https://doi.org/10.5194/se-15-1525-2024, 2024
Short summary
Short summary
This study addresses the tectonic evolution of the seismogenic Monti Martani Fault System (northern Apennines, Italy). By applying a field-based structural geology approach, we reconstruct the evolution of the stress field and we challenge the current interpretation of the fault system in terms of both geometry and state of activity. We stress that the peculiar behavior of this system during post-orogenic extension is still significantly influenced by the pre-orogenic structural template.
Maxime Jamet, Gregory Ballas, Roger Soliva, Olivier Gerbeaud, Thierry Lefebvre, Christine Leredde, and Didier Loggia
Solid Earth, 15, 895–920, https://doi.org/10.5194/se-15-895-2024, https://doi.org/10.5194/se-15-895-2024, 2024
Short summary
Short summary
This study characterizes the Tchirezrine II sandstone reservoir in northern Niger. Crucial for potential uranium in situ recovery (ISR), our multifaceted approach reveals (i) a network of homogeneously distributed orthogonal structures, (ii) the impact of clustered E–W fault structures on anisotropic fluid flow, and (iii) local changes in the matrix behaviour of the reservoir as a function of the density and nature of the deformation structure.
Matthew S. Hodge, Guri Venvik, Jochen Knies, Roelant van der Lelij, Jasmin Schönenberger, Øystein Nordgulen, Marco Brönner, Aziz Nasuti, and Giulio Viola
Solid Earth, 15, 589–615, https://doi.org/10.5194/se-15-589-2024, https://doi.org/10.5194/se-15-589-2024, 2024
Short summary
Short summary
Smøla island, in the mid-Norwegian margin, has complex fracture and fault patterns resulting from tectonic activity. This study uses a multiple-method approach to unravel Smøla's tectonic history. We found five different phases of deformation related to various fracture geometries and minerals dating back hundreds of millions of years. 3D models of these features visualise these structures in space. This approach may help us to understand offshore oil and gas reservoirs hosted in the basement.
Emilia Chiapponi, Sonia Silvestri, Denis Zannoni, Marco Antonellini, and Beatrice M. S. Giambastiani
Biogeosciences, 21, 73–91, https://doi.org/10.5194/bg-21-73-2024, https://doi.org/10.5194/bg-21-73-2024, 2024
Short summary
Short summary
Coastal wetlands are important for their ability to store carbon, but they also emit methane, a potent greenhouse gas. This study conducted in four wetlands in Ravenna, Italy, aims at understanding how environmental factors affect greenhouse gas emissions. Temperature and irradiance increased emissions from water and soil, while water column depth and salinity limited them. Understanding environmental factors is crucial for mitigating climate change in wetland ecosystems.
Mattia Pizzati, Luciana Mantovani, Antonio Lisotti, Fabrizio Storti, and Fabrizio Balsamo
EGUsphere, https://doi.org/10.5194/egusphere-2023-2636, https://doi.org/10.5194/egusphere-2023-2636, 2023
Preprint archived
Short summary
Short summary
This work proposes a new equation to calculate the 3D average particle diameter from 2D datasets acquired through image analysis technique applied on thin sectioned granular materials (loose sands with different textural and mineralogical features). The employed volume-weighted mean diameter equation provides matching results with data gained by laser granulometry and could be applied in many research areas spanning from Earth Sciences, Engineering and Material Sciences.
Gerardo Romano, Marco Antonellini, Domenico Patella, Agata Siniscalchi, Andrea Tallarico, Simona Tripaldi, and Antonello Piombo
Nat. Hazards Earth Syst. Sci., 23, 2719–2735, https://doi.org/10.5194/nhess-23-2719-2023, https://doi.org/10.5194/nhess-23-2719-2023, 2023
Short summary
Short summary
The Nirano Salse (northern Apennines, Italy) is characterized by several active mud vents and hosts thousands of visitors every year. New resistivity models describe the area down to 250 m, improving our geostructural knowledge of the area and giving useful indications for a better understanding of mud volcano dynamics and for the better planning of safer tourist access to the area.
Alberto Ceccato, Giulia Tartaglia, Marco Antonellini, and Giulio Viola
Solid Earth, 13, 1431–1453, https://doi.org/10.5194/se-13-1431-2022, https://doi.org/10.5194/se-13-1431-2022, 2022
Short summary
Short summary
The Earth's surface is commonly characterized by the occurrence of fractures, which can be mapped, and their can be geometry quantified on digital representations of the surface at different scales of observation. Here we present a series of analytical and statistical tools, which can aid the quantification of fracture spatial distribution at different scales. In doing so, we can improve our understanding of how fracture geometry and geology affect fluid flow within the fractured Earth crust.
Giulio Viola, Giovanni Musumeci, Francesco Mazzarini, Lorenzo Tavazzani, Manuel Curzi, Espen Torgersen, Roelant van der Lelij, and Luca Aldega
Solid Earth, 13, 1327–1351, https://doi.org/10.5194/se-13-1327-2022, https://doi.org/10.5194/se-13-1327-2022, 2022
Short summary
Short summary
A structural-geochronological approach helps to unravel the Zuccale Fault's architecture. By mapping its internal structure and dating some of its fault rocks, we constrained a deformation history lasting 20 Myr starting at ca. 22 Ma. Such long activity is recorded by now tightly juxtaposed brittle structural facies, i.e. different types of fault rocks. Our results also have implications on the regional evolution of the northern Apennines, of which the Zuccale Fault is an important structure.
Cited articles
Adams, A. and Diamond, L. W.: Early diagenesis driven by widespread meteoric
infiltration of a Central European carbonate ramp: A reinterpretation of the Upper Muschelkalk, Sediment.
Geol., 362, 37–52, https://doi.org/10.1016/j.sedgeo.2017.10.002, 2017.
Alonso-Zarza, A. M.: Palaeoenvironmental significance of palustrine
carbonates and calcretes in the geological record, Earth Sci. Rev., 60, 261–298, https://doi.org/10.1016/S0012-8252(02)00106-X,
2003.
Antonellini, M. and Aydin, A.: Effect of faulting on fluid flow in porous
sandstones: petrophysical properties, AAPG Bull.,
78, 355–377,
https://doi.org/10.1306/BDFF90AA-1718-11D7-8645000102C1865D, 1994.
Antonellini, M., Aydin, A., and Pollard, D. D.: Microstructure of deformation
bands in porous sandstones at Arches National Park, Utah, J. Struct. Geol., 16, 941–959,
https://doi.org/10.1016/0191-8141(94)90077-9, 1994.
Antonellini, M., Aydin, A., and Orr, L.: Outcrop-aided characterization of a
faulted hydrocarbon reservoir: Arroyo Grande oil field, California, USA, in: Faults and Subsurface Fluid Flow in the
Shallow Crust, edited by: Haneberg, W. C., Mozley, P. S., Moore, J. C., and
Goodwin, L. B., American Geophysical Union, Washington, DC, 113, 7–26,
https://doi.org/10.1029/GM113p0007, 1999.
Antonellini, M., Cilona, A., Tondi, E., Zambrano, M., and Agosta, F.: Fluid
flow numerical experiments of faulted porous carbonates, northwest Sicily (Italy), Mar. Pet. Geol., 55, 186–201,
https://doi.org/10.1016/j.marpetgeo.2013.12.003, 2014.
Antonellini, M., Mollema, P. N., and Del Sole, L.: Application of analytical
diffusion models to outcrop observations: implications for mass transport by fluid flow through fractures, Water
Resour. Res., 53, 5545–5566, https://doi.org/10.1002/2016WR019864, 2017.
Antonellini, M., Del Sole, L., and Mollema, P. N.: Chert nodules in pelagic
limestones as paleo-stress indicators: a 3D geomechanical analysis, J. Struct. Geol, 132, 103979, https://doi.org/10.1016/j.jsg.2020.103979, 2020.
Arthaud, F. and Seìguret, M.: Les structures pyreìneìennes du
Languedoc et du Golfe du Lion (Sud de la France), Bull. Soc. Geìol. Fr., 23, 51–63, 1981.
Aydin, A.: Small faults formed as deformation bands in sandstones, Pure
Appl. Geophys., 116, 913–930, 1978.
Aydin, A.: Fractures, faults, and hydrocarbon entrapment, migration and
flow, Mar. Pet. Geol., 17, 797–814, https://doi.org/10.1016/S0264-8172(00)00020-9, 2000.
Aydin, A., Borja, R. I., and Eichhubl, P.: Geological and mathematical
framework for failure modes in granular rock, J. Struct. Geol., 28, 83–98, https://doi.org/10.1016/j.jsg.2005.07.008, 2006.
Ballas, G., Soliva, R., Sizun, J. P., Benedicto, A., Cavailhes, T., and
Raynaud, S.: The importance of the degree of cataclasis in shear bands for fluid flow in porous sand- stone, Provence, France, AAPG
Bull., 96, 2167–2186, https://doi.org/10.1306/04051211097, 2012.
Ballas, G., Soliva, R., Sizun, J. P., Fossen, H., Benedicto, A., and
Skurtveit, E.: Shear-enhanced compaction bands formed at shallow burial conditions; implications for fluid flow (Provence,
France), J. Struct. Geol., 47, 3–15,
https://doi.org/10.1016/j.jsg.2012.11.008, 2013.
Ballas, G., Soliva, R., Benedicto, A., and Sizun, J. P.: Control of tectonic
setting and large-scale faults on the basin-scale distribution of deformation bands in porous sandstone (Provence, France),
Mar. Pet. Geol., 55, 142–159, https://doi.org/10.1016/j.marpetgeo.2013.12.020, 2014.
Ballas, G., Fossen, H., and Soliva, R.: Factors controlling permeability of
cataclastic deformation bands and faults in porous sandstone reservoirs, J. Struct. Geol., 76, 1–21, https://doi.org/10.1016/j.jsg.2015.03.013, 2015.
Balsamo F. and Storti F.: Grain size and permeability evolution of
soft-sediment extensional sub-seismic and seismic fault zones in high-porosity sediments from the Crotone basin, southern Apennines,
Italy, Mar. Pet. Geol., 27, 822–837, https://doi.org/10.1016/j.marpetgeo.2009.10.016, 2010.
Balsamo, F., Storti, F., and Gröcke, D. R.: Fault-related
fluid flow history in shallow marine sediments from carbonate concretions, Crotone basin, south Italy, J. Geol. Soc., 169, 613–626,
https://doi.org/10.1144/0016-76492011-109, 2012.
Barnaby, R. J. and Rimstidt, J. D.: Redox conditions of calcite cementation
interpreted from Mn and Fe contents of authigenic calcites, Geol. Soc. Am. Bull., 101, 795–804, https://doi.org/10.1130/0016-7606(1989)101<0795:RCOCCI>2.3.CO;2, 1989.
Bense, V. F., Gleeson, T., Loveless, S. E., Bour, O., and Scibek, J.: Fault
zone hydrogeology, Earth Sci. Rev., 127, 171–192, https://doi.org/10.1016/j.earscirev.2013.09.008, 2013.
Bernabé, Y., Fryer, D. T., and Hayes, J. A.: The effect of cement on the
strength of granular rocks, Geophys. Res. Lett., 19, 1511–1514, https://doi.org/10.1029/92GL01288, 1992.
Berner, R. A.: Early Diagenesis: a Theoretical Approach, Princeton University
Press, Princeton, NJ, 1980.
Bjørkum, P. A., and Walderhaug, O.: Geometrical arrangement of calcite
cementation within shallow marine sandstones, Earth Sci. Rev., 29, 145–161, https://doi.org/10.1016/0012-8252(90)90033-R, 1990.
Boutt, D. F., Plourde, K. E., Cook, J., and Goodwin, L. B.: Cementation and
the hydromechanical behavior of siliciclastic aquifers and reservoirs, Geofluids, 14, 189–199,
https://doi.org/10.1111/gfl.12062, 2014.
Busch, B., Hilgers, C., Gronen, L., and Adelmann, D.: Cementation and
structural diagenesis of fluvio-aeolian Rotliegend sandstones, northern England, J. Geol. Soc. London, 174, 855–868,
https://doi.org/10.1144/jgs2016-122, 2017.
Cavailhes, T., Soliva, R., Benedicto, A., Loggia, D., Schultz, R. A., and
Wibberley, C. A. J.: Are cataclastic shear bands fluid barriers or capillarity conduits? Insight from the analysis of redox fronts
in porous sandstones from Provence, France, in: 2nd EAGE International
Conference on Fault and Top Seals: From Pore to Basin Scale, Montpellier, France, 21–24 September 2009, 3 pp., https://doi.org/10.3997/2214-4609.20147185, 2009.
Cavazza, W., Braga, R., Reinhardt, E. G., and Zanotti, C.: Influence of
host-rock texture on the morphology of carbonate concretions in a meteoric diagenetic environment, J. Sediment. Res., 79,
377–388, https://doi.org/10.2110/jsr.2009.047, 2009.
Champion, C., Choukroune, P., and Clauzon, G.: La deìformation post-mioceÌne
en Provence occidentale, Geodinam. Act., 13, 67–85, https://doi.org/10.1080/09853111.2000.11105365, 2000.
Cibin, U., Cavazza, W., Fontana, D., Milliken, K. L., and McBride, E. F.:
Comparison of composition and texture of calcite-cemented concretions and host sandstones, Northern Apennines, Italy, J.
Sediment. Res., 63, 945–954,
https://doi.org/10.1306/D4267C4E-2B26-11D7-8648000102C1865D, 1993.
Cortecci, G., Dinelli, E., and Mussi, M.: Isotopic composition and secondary
evaporation effects on precipitation from the urban centre of Bologna, Italy, Period. Miner., 77, 55–63,
https://doi.org/10.2451/2008PM0004, 2008.
Davis, J. M., Roy, N. D., Mozley, P. S., and Hall, J. S.: The effect of
carbonate cementation on permeability heterogeneity in fluvial aquifers: An outcrop analog study, Sediment. Geol., 184,
267–280, https://doi.org/10.1016/j.sedgeo.2005.11.005, 2006.
Debrand-Passard, S., Courbouleix, S., and Lienhardt, M. J.: SyntheÌse
geìologique du Sud- Est de la France: stratigraphie et
paleìogeìographie, Bureau de Recherches Geìologiques et MinieÌres,
Meìmoire, vol. 215 (Orleìans), 1984.
Del Sole, L. and Antonellini, M.: Microstructural, petrophysical, and
mechanical properties of compactive shear bands associated to calcite cement concretions in arkose sandstone, J. Struct.
Geol., 126, 51–68, https://doi.org/10.1016/j.jsg.2019.05.007,
2019.
Del Sole, L., Antonellini, M., and Calafato, A.: Characterization of
sub-seismic resolution structural diagenetic heterogeneities in porous sandstones: Combining ground-penetrating radar
profiles with geomechanical and petrophysical in situ measurements (Northern
Apennines, Italy), Mar. Pet. Geol., 117, 104375, https://doi.org/10.1016/j.marpetgeo.2020.104375, 2020.
Dewhurst, D. N. and Jones, R. M.: Influence of physical and diagenetic
processes on fault geomechanics and reactivation, J. Geochem. Exp., 78, 153–157,
https://doi.org/10.1016/S0375-6742(03)00124-9, 2003.
Dvorkin, J., Mavko, G., and Nur, A.: The effect of cementation on the
elastic properties of granular material, Mech. Mater., 12, 207–217, https://doi.org/10.1016/0167-6636(91)90018-U,
1991.
Edwards, H. E., Becker, A. D., and Howell, J. A.: Compartmentalization of an
aeolian sandstone by structural heterogeneities: permo-Triassic Hopeman Sandstone, Moray Firth, Scotland,
Geol. Soc. Spec. Publ., 73, 339–365,
https://doi.org/10.1144/GSL.SP.1993.073.01.20, 1993.
Ehrenberg, S. N.: Relationship between diagenesis and reservoir quality in
sandstones of the Garn formation, Haltenbanken, mid-Norwegian Continental shelf, AAPG Bull., 74, 1538–1558, https://doi.org/10.1306/0C9B2515-1710-11D7-8645000102C1865D, 1990.
Eichhubl, P.: Paleo-Fluid Flow Indicators, Stanford Rock Fracture Project,
Vol. 12., 10 pp., available at: https://stacks.stanford.edu/file/druid:jp813ns8076/RFP_2001_Eichhubl.pdf (last access: 5 March 2020), 2001.
Eichhubl, P., Taylor, W. L., Pollard, D. D., and Aydin, A.: Paleo-fluid flow
and deformation in the Aztec Sandstone at the Valley of Fire, Nevada – evidence for the coupling of hydrogeologic,
diagenetic, and tectonic processes, Geol. Soc. Am., 116, 1120–1136, 2004.
Eichhubl, P., Davatzes, N. C., and Becker, S. P.: Structural and diagenetic
control of fluid migration and cementation along the Moab fault, Utah, AAPG Bull., 93, 653–681, https://doi.org/10.1130/0016-7606(1974)85<1515:CATGOF>2.0.CO;2, 2009.
Eichhubl, P., Hooker, J. N., and Laubach, S. E.: Pure and shear-enhanced
compaction bands in Aztec Sandstone, J. Struct. Geol., 32, 1873–1886, https://doi.org/10.1016/j.jsg.2010.02.004, 2010.
Fachri, M., Rotevatn, A., and Tveranger, J.: Fluid flow in relay zones
revisited: Towards an improved representation of small-scale structural heterogeneities in flow models, Mar. Pet. Geol., 46,
144–164, https://doi.org/10.1016/j.marpetgeo.2013.05.016, 2013.
Faulkner, D. R., Jackson, C. A. L., Lunn, R. J., Schlische, R. W., Shipton,
Z. K., Wibberley, C. A. J., and Withjack, M. O.: A review of recent developments concerning the structure, mechanics and fluid
flow properties of fault zones, J. Struct. Geol., 32, 1557–1575,
https://doi.org/10.1016/j.jsg.2010.06.009, 2010.
Ferry, S. (Ed.): Actes des Journeìes Scientifiques CNRS/ANDRA, Apport des
forages ANDRA de Marcoule aÌ la connaissance de la marge creìtaceìe rhodanienne, Etude du Gard Rhodanien/EDP
sciences, Bagnols-sur-CeÌze, 63–91, 1997.
Fisher, Q. J. and Knipe, R.: Fault sealing processes in siliciclastic
sediments, Geol. Soc. Spec. Publ., 147, 117–134, https://doi.org/10.1144/GSL.SP.1998.147.01.08, 1998.
Flodin, E., Prasad, M., and Aydin, A.: Petrophysical constraints on
deformation styles in Aztec Sandstone, southern Nevada, USA, Pure Appl. Geophys., 160, 1589–1610, https://doi.org/10.1007/s00024-003-2377-1, 2003.
Flügel, E.: Microfacies of carbonate rocks: analysis, interpretation and
application, Springer Science & Business Media, 2013.
Fossen, H. and Bale, A.: Deformation and their influence on fluid flow, AAPG
Bull., 91, 1685–1700, https://doi.org/10.1306/07300706146, 2007.
Fossen, H., Soliva, R., Ballas, G., Trzaskos, B., Cavalcante, C., and
Schultz, R. A.: A review of deformation bands in reservoir sandstones: geometries, mechanisms and distribution, in:
Subseismic-Scale Reservoir Deformation, edited by: Ashton, M., Dee, S. J.,
and Wennberg, O. P., Geol. Soc. Spec. Publ., 459, 9–33, https://doi.org/10.1144/SP459.4, 2017.
Fowles, J. and Burley, S.: Textural and permeability characteristics of
faulted, high porosity sandstones, Mar. Pet. Geol., 11, 608–623, https://doi.org/10.1016/0264-8172(94)90071-X, 1994.
Genty, D., Labuhn, I., Hoffmann, G., Danis, P. A., Mestre, O., Bourges, F.,
Wainer, K., Massault, M., Van Exter, S., Reìgnier, E., Orengo, P., Falourd, S., and Minster, B.: Rainfall and cave water
isotopic relationships in two South-France sites, Geochim. Cosmochim.
Act., 131, 323–343, https://doi.org/10.1016/j.gca.2014.01.043, 2014.
Gibson, R. G.: Physical character and fluid-flow properties of
sandstone-derived fault zones, Geol. Soc. Spec. Publ., 127, 83–97, https://doi.org/10.1144/GSL.SP.1998.127.01.07, 1998.
Giustini, F., Brilli, M., and Patera, A.: Mapping oxygen stable isotopes of
precipitation in Italy, J. Hydrol., 8, 162–181, https://doi.org/10.1016/j.ejrh.2016.04.001, 2016.
Hall, J. S., Mozley, P., Davis, J. M., and Roy, N. D.: Environments of
formation and controls on spatial distribution of calcite cementation in Plio-Pleistocene fluvial deposits, New Mexico,
USA, J. Sediment. Res., 74, 643–653, https://doi.org/10.1306/020904740643,
2004.
Harper, T. and Moftah, I.: Skin effect and completion options in the Ras
Budran Reservoir, in: Society of Petroleum Engineers Middle East Oil Technical Conference and Exhibition, 13708,
211–226, https://doi.org/10.2118/13708-MS, 1985.
Hiatt, E. E. and Pufahl, P. K.: Cathodoluminescence petrography of carbonate
rocks: a review of applications for understanding diagenesis, reservoir quality and pore system evolution, Short
Course, 45, 75–96, 2014.
Hudson, J. D.: Stable isotopes and limestone lithification, J. Geol. Soc.
London, 133, 637–660, https://doi.org/10.1144/gsjgs.133.6.0637, 1977.
Jasechko, S.: Global isotope hydrogeology – Review, Rev. Geophys., 57, 835–965,
https://doi.org/10.1029/2018RG000627, 2019.
Kantorowicz, J. D., Bryant, I. D., and Dawans, J. M.: Controls on the Geometry
and Distribution of Carbonate Cements in Jurassic Sandstones: Bridport Sands, Southern England and Viking Group,
Troll Field, Norway Geol. Soc. Spec. Publ., 36, 103–118, https://doi.org/10.1144/GSL.SP.1987.036.01.09, 1987.
Knipe, R. J., Fisher, Q. J., Jones, G., Clennell, M. R., Farmer, A. B.,
Harrison, A., Kidd, B., McAllister, E., Porter, J. R., and White, E. A.: Fault seal analysis: successful methodologies, application and
future directions, Norwegian Petroleum Soc. Spec. Publ., 7, 15–38, https://doi.org/10.1016/S0928-8937(97)80004-5, 1997.
La Bruna, V., Lamarche, J., Agosta, F., Rustichelli, A., Giuffrida, A.,
Salardon, R., and Marié, L.: Structural diagenesis of shallow platform carbonates: Role of early embrittlement on fracture setting
and distribution, case study of Monte Alpi (Southern Apennines, Italy), J.
Struct. Geol., 131, 103940, https://doi.org/10.1016/j.jsg.2019.103940, 2020.
Labaume, P. and Moretti, I.: Diagenesis-dependence of cataclastic thrust
fault zone sealing in sandstones. Example from the Bolivian Sub-Andean Zone, J. Struct. Geol., 23, 1659–1675, https://doi.org/10.1016/S0191-8141(01)00024-4, 2001.
Lander, R. H., Larese, R. E., and Bonnell, L. M.: Toward more accurate
quartz cement models: The importance of euhedral versus noneuhedral growth rates, AAPG Bull., 92, 1537–1563, https://doi.org/10.1306/07160808037, 2008.
Lander, R. H., Solano-Acosta, W., Thomas, A. R., Reed, R. M.,
Kacewicz, M., Bonnell, L. M., and Hooker, J. N.: Simulation of fault sealing from quartz cementation within cataclastic
deformation zones, in: AAPG Hedberg Conference Basinand Petroleum Systems Modeling: New Horizons in Research and
Applications, Napa, California, USA, 3–7 May 2009.
Laubach, S. E., Olson, J. E., and Gross, M. R.: Mechanical and fracture
stratigraphy, AAPG Bull., 93, 1413–1426, https://doi.org/10.1306/07270909094, 2009.
Laubach, S. E., Eichhubl, P., Hilgers, C., and Lander, R. H.: Structural
diagenesis, J. Struct. Geol., 32, 1866–1872, https://doi.org/10.1016/j.jsg.2010.10.001, 2010.
Leveille, G. P., Knipe, R., More, C., Ellis, D., Dudley, G., Jones, G.,
Fisher, Q. J., and Allinson, G.: Compartmentalization of Rotliegendes gas reservoirs by sealing faults, Jupiter Fields area, southern
North Sea, Geol. Soc. Spec. Publ., 123, 87–104, https://doi.org/10.1144/GSL.SP.1997.123.01.06, 1997.
Lewis, H. and Couples, G. D.: Production evidence for geological
heterogeneities in the Anschutz Ranch East field, western U.S.A., in: Characterization of fluvial and eolian reservoirs,
edited by: North, C. P. and Prosser, D. J., Geol. Soc. Spec. Publ., 73,
321–338, https://doi.org/10.1144/GSL.SP.1993.073.01.19, 1993.
Liu, Z. and Sun, Y.: Characteristics and formation process of contractional
deformation bands in oil-bearing sandstones
in the hinge of a fold: A case study of the Youshashan anticline, western
Qaidam Basin, China, J. Petrol. Sci. Eng., 189, 106994,
https://doi.org/10.1016/j.petrol.2020.106994, 2020.
Lommatzsch, M., Exner, U., Gier, S., and Grasemann, B.: Structural and
chemical controls of deformation bands on
fluid flow: interplay between cataclasis and diagenetic alteration:
structural and Chemical Controls of Deformation Bands on Fluid Flow, AAPG
Bull., 99, 689–710, https://doi.org/10.1306/10081413162, 2015.
Longman, M. W.: Carbonate diagenetic textures from nearsurface diagenetic
environments, AAPG Bull., 64, 461–487, https://doi.org/10.1306/2F918A63-16CE-11D7-8645000102C1865D,
1980.
Machel, H. G.: Application of cathodoluminescence to carbonate diagenesis,
in: Cathodoluminescence in geosciences, edited by: Pagel, M., Barbin, V., Blanc, P., and Ohnenstetter D., Springer, Berlin,
Heidelberg, 271–301, https://doi.org/10.1007/978-3-662-04086-7, 2000.
Main, I. G., Kwon, O., Ngwenya, B. T., and Elphick, S. C.: Fault sealing
during deformation-band growth in porous sandstone, Geology, 28, 1131–1134, https://doi.org/10.1130/0091-7613(2000)28<1131:FSDDGI>2.0.CO;2, 2000.
Manzocchi, T., Ringrose, P. S., and Underhill, J. R.: Flow through fault
systems in high-porosity sandstones, Geol. Soc. Spec. Publ., 127, 65–82, https://doi.org/10.1144/GSL.SP.1998.127.01.06, 1998.
Marroni, M., Meneghini, F., and Pandolfi, L.: A revised Subduction inception
model to explain the late cretaceous, double-vergent orogen in the precollisional Western Tethys: Evidence from
the Northern Apennines, Tectonics, 36, 2227–2249, https://doi.org/10.1002/2017TC004627, 2017.
Marshall, D. J.: Cathodoluminescence of geological Materials, Unwin Hyman,
Boston, 1988.
McBride, E. F., Milliken, K. L., Cavazza, W., Cibin, U., Fontana, D., Picard,
M. D., and Zuffa, G. G.: Heterogeneous distribution of calcite cement at the outcrop scale in tertiary sandstones,
northern Apennines, Italy, AAPG Bull., 79, 1044–1063, https://doi.org/10.1306/8D2B21C3-171E-11D7-8645000102C1865D, 1995.
Medici, G., West, L. J., Mountney, N. P., and Welch, M.: Permeability of
rock discontinuities and faults in the Triassic Sherwood Sandstone Group (UK): insights for management of fluvio-aeolian
aquifers worldwide, Hydrogeology J., 27, 2835–2855, https://doi.org/10.1007/s10040-019-02035-7, 2019.
Milliken, K. L., McBride, E. F., Cavazza, W., Cibin, U., Fontana, D., Picard,
M. D., and Zuffa, G. G.: Geochemical history of calcite precipitation in Tertiary sandstones, northern Apennines, Italy,
in: Carbonate cementation in sandstones, edited by: Morad, S., International
Association of Sedimentologists Special Publication 26, 213–239,
https://doi.org/10.1002/9781444304893.ch10, 1998.
Milliken, K. L., Reed, R. M., and Laubach, S. E.: Quantifying compaction and
cementation in deformation bands in porous sandstones, in: Faults, fluid flow, and petroleum traps, edited by:
Sorkhabi, R. and Tsuji, Y., AAPG Mem., 85, 237–249,
https://doi.org/10.1306/1033726M85252, 2005.
Moore, C. H.: Carbonate Diagenesis and Porosity, Elsevier, Amsterdam, 1989.
Morad, S., Al-Ramadan, K., Ketzer, J. M., and De Ros, L. F.: The impact of
diagenesis on the heterogeneity of sandstone reservoirs: A review of the role of depositional facies and sequence
stratigraphy, AAPG Bull., 94, 1267–1309, https://doi.org/10.1306/04211009178, 2010.
Mozley, P. S. and Davis, J. M.: Relationship between oriented calcite
concretions and permeability correlation structure in an alluvial aquifer, Sierra Ladrones Formation, New Mexico, J. Sediment.
Res., 66, 11–16, https://doi.org/10.1306/D4268293-2B26-11D7-8648000102C1865D, 1996.
Mozley, P. S. and Goodwin, L. B.: Patterns of cementation along a Cenozoic
normal fault: a record of paleoflow orientations, Geology, 23, 539–542, https://doi.org/10.1130/B25618.1, 1995.
Nelson, C. S. and Smith, A. M.: Stable oxygen and carbon isotope compositional
fields for skeletal and diagenetic components in New Zealand Cenozoic nontropical carbonate sediments and
limestones: a synthesis and review, New Zeal. J. Geol. Geop., 39, 93–107, https://doi.org/10.1080/00288306.1996.9514697, 1996.
Noiriel, C., Steefel, C. I., Yang, L., and Bernard, D.: Effects of
pore-scale precipitation on permeability and flow, Adv. Water Resour., 95, 125–137, https://doi.org/10.1016/j.advwatres.2015.11.013, 2016.
Ogilvie, S. R. and Glover, P. W.: The petrophysical properties of deformation
bands in relation to their microstructure, Earth Planet. Sc. Lett., 193, 129–142, https://doi.org/10.1016/S0012-821X(01)00492-7, 2001.
Papani, L.: Le arenarie di Loiano nel contesto dell'Appennino
settentrionale, PhD thesis, Universita di Bologna, Bologna, 40 pp., 1998.
Parnell, J., Watt, G. R., Middleton, D., Kelly, J., and Baron, M.:
Deformation band control on hydrocarbon migration, J. Sediment. Res., 74, 552–560, https://doi.org/10.1306/121703740552, 2004.
Parry, W. T., Chan, M. A., and Beitler, B.: Chemical bleaching indicates
episodes of fluid flow in deformation bands in sandstone, AAPG Bull., 88, 175–191, https://doi.org/10.1306/09090303034, 2004.
Pei, Y., Paton, D. A., Knipe, R. J., and Wu, K.: A review of fault sealing
behaviour and its evaluation in siliciclastic rocks, Earth Sci. Rev., 150, 121–138, https://doi.org/10.1016/j.earscirev.2015.07.011, 2015.
Petrie, E. S., Petrie, R. A., and Evans, J. P.: Identification of
reactivation and increased permeability associated with a fault damage zone using a multidisciplinary approach, J. Struct. Geol., 59, 37–49,
https://doi.org/10.1016/j.jsg.2013.11.008, 2014.
Philit, S., Soliva, R., Labaume, P., Gout, C., and Wibberley, C.: Relations
between shallow cataclastic faulting and cementation in porous sandstones: first insight from a groundwater
environmental context, J. Struct. Geol., 81, 89–105, https://doi.org/10.1016/j.jsg.2015.10.001, 2015.
Philit, S., Soliva, R., Castilla, R., Ballas, G., and Taillefer, A.:
Clusters of cataclastic deformation bands in porous sandstones, J. Struct. Geol., 114, 235–250, https://doi.org/10.1016/j.jsg.2018.04.013, 2018.
Philit, S., Soliva, R., Ballas, G., Chemenda, A., and Castilla, R.: Fault
surface development and fault rock juxtaposition along deformation band clusters in porous sandstones series, AAPG
Bull., 103, 2731–2756, https://doi.org/10.1306/01211917256, 2019.
Picotti, V. and Pazzaglia, F. J.: A new active tectonic model for the
construction of the Northern Apennines mountain front near Bologna (Italy), J. Geophys. Res.-Sol. Ea., 113, B08412,
https://doi.org/10.1029/2007JB005307, 2008.
Picotti, V., Ponza, A., and Pazzaglia, F. J.: Topographic expression of
active faults in the foothills of the Northern Apennines, Tectonophysics, 474, 285–294,
https://doi.org/10.1016/j.tecto.2009.01.009, 2009.
Pizzati, M., Balsamo, F., Storti, F., and Iacumin, P.: Physical and chemical
strain-hardening during faulting in poorly lithified sandstone: The role of kinematic stress field and selective
cementation, Geol. Soc. Am. Bull., 132, 1183–1200, https://doi.org/10.1130/b35296.1, 2019.
Qu, D. and Tveranger, J.: Incorporation of deformation band fault damage
zones in reservoir models, AAPG Bull., 100, 423–443, https://doi.org/10.1306/12111514166, 2016.
Romano, C. R., Zahasky, C., Garing, C., Minto, J. M., Benson, S. M.,
Shipton, Z. K., and Lunn, R. J.: Sub-core scale fluid flow behavior in a sandstone with cataclastic deformation bands, Water
Resour. Res., 56, e2019WR026715, https://doi.org/10.1029/2019WR026715, 2020.
Rotevatn, A. and Fossen, H.: Simulating the effect of subseismic fault tails
and process zones in a siliciclastic reservoir analogue: implications for aquifer support and trap definition, Mar. Pet.
Geol., 28, 1648–1662, https://doi.org/10.1016/j.marpetgeo.2011.07.005, 2011.
Rotevatn, A., Sandve, T. H., Keilegavlen, E., Kolyukhin, D., and Fossen, H.:
Deformation bands and their impact on fluid flow in sandstone reservoirs: the role of natural thickness
variations, Geofluids, 13, 359–371, https://doi.org/10.1111/gfl.12030, 2013.
Roure, F., Brun, J. P., Colletta, B., and Van den Driessche, J.: Geometry and
kinematics of extensional structures in the Alpine Foreland Basin of southeastern France, J. Struct. Geol., 14, 503–519,
https://doi.org/10.1016/0191-8141(92)90153-N, 1992.
Saillet, E. and Wibberley, C. A. J.: Evolution of cataclastic faulting in
high-porosity sandstone, Bassin du Sud-Est, Provence, France, J. Struct. Geol., 32, 1590–1608, https://doi.org/10.1016/j.jsg.2010.02.007, 2010.
Salvini, F.: Daisy 3: The Structural Data Integrated System Analyzer
Software, University of Roma Tre, Rome, available at:
http://host.uniroma3.it/progetti/fralab/Downloads/Programs/ (last access: 25 August 2020),
2004.
Sample, J. C., Woods, S., Bender, E., and Loveall, M.: Relationship between
deformation bands and petroleum migration in an exhumed reservoir rock, Los Angeles Basin, California,
USA, Geofluids, 6, 105–112, https://doi.org/10.1111/j.1468-8123.2005.00131.x, 2006.
Séranne, M., Benedicto, A., Labaume, P., Truffert, C., and Pascal, G.:
Structural style and evolution of the gulf of Lion Oligo-miocene rifting: role of the Pyrenean orogeny, Mar. Pet. Geol., 12,
809–820, https://doi.org/10.1016/0264-8172(95)98849-Z, 1995.
Shipton, Z. K., Evans, J. P., Robeson, K. R., Forster, C. B., and Snelgrove,
S.: Structural heterogeneity and permeability in faulted eolian sandstone: Implications for subsurface modeling of faults,
AAPG bulletin, 86, 863–883, https://doi.org/10.1306/61EEDBC0-173E-11D7-8645000102C1865D, 2002.
Shipton, Z. K., Evans, J. P., and Thompson, L. B.: The geometry and thickness
of deformation-band fault core and its influence on sealing characteristics of deformation-band fault zones, in:
Faults, fluid flow, and petroleum traps, edited by: Sorkhabi, R. and
Tsuji, Y., AAPG Mem., 85, 181–195, https://doi.org/10.1306/1033723M853135, 2005.
Sigda, J. M. and Wilson, J. L.: Are faults preferential flow paths through
semiarid and arid vadose zones?, Water Resour. Res., 39, 1225, https://doi.org/10.1029/2002WR001406, 2003.
Sigda, J. M., Goodwin, L. B., Mozley, P. S., and Wilson, J. L.: Permeability
alteration in small-displacement faults in poorly lithified sediments: Rio Grande Rift, Central New Mexico, in: Faults and
Subsurface Fluid Flow in the Shallow Crust, edited by: Haneberg, W. C.,
Mozley, P. S., Moore, J. C., and Goodwin, L. B., American Geophysical Union, Washington, DC, 51–68, https://doi.org/10.1029/GM113p0051, 1999.
Soliva, R., Schultz, R. A., Ballas, G., Taboada, A., Wibberley, C., Saillet,
E., and Benedicto, A.: A model of strain localization in porous sandstone as a function of tectonic setting, burial
and material properties; new insight from Provence (southern France), J.
Struct. Geol., 49, 50–63, https://doi.org/10.1016/j.jsg.2012.11.011, 2013.
Soliva, R., Ballas, G., Fossen, H., and Philit, S.: Tectonic regime controls
clustering of deformation bands in porous sandstone, Geology, 44, 423–426, https://doi.org/10.1130/G37585.1, 2016.
Sternlof, K. R., Chapin, J. R., Pollard, D. D., and Durlofsky, L. J.:
Permeability effects of deformation band arrays in sandstone, AAPG Bull., 88, 1315–1329, https://doi.org/10.1306/032804, 2004.
Stockmann, G. J., Wolff-Boenisch, D., Bovet, N., Gislason, S. R., and
Oelkers, E. H.: The role of silicate surfaces on calcite precipitation kinetics, Geochim. Cosmochim. Act., 135, 231–250, https://doi.org/10.1016/j.gca.2014.03.015, 2014.
Taylor, W. L. and Pollard, D. D.: Estimation of in situ permeability of
deformation bands in porous sandstone, Valley of Fire, Nevada, Water Resour. Res., 36, 2595–2606, https://doi.org/10.1029/2000WR900120, 2000.
Tenthorey, E., Scholz, C. H., Aharonov, E., and Leger, A.: Precipitation
sealing and diagenesis 1. Experimental results, J. Geophys. Res.-Sol. Ea., 103, 23951–23967, https://doi.org/10.1029/98JB02229, 1998.
Torabi, A. and Fossen, H.: Spatial variation of microstructure and
petrophysical properties along deformation bands in reservoir sandstones, AAPG Bull., 93, 919–938, https://doi.org/10.1306/03270908161, 2009.
Tueckmantel, C., Fisher, Q. J., Grattoni, C. A., and Aplin, A. C.:
Single-and two-phase fluid flow properties of cataclastic fault rocks in porous sandstone, Mar. Pet. Geol., 29, 129–142,
https://doi.org/10.1016/j.marpetgeo.2011.07.009, 2012.
Vai, G. B. and Martini, I. P. (Eds.): Anatomy of an orogen: The Apennines and
Adjacent Mediterranean Basins, Dordrecht, Netherlands, Kluwer Academic Publishers, p. 637, 2001.
Walderhaug, O.: Modeling quartz cementation and porosity in middle Jurassic
Brent Group sandstones of the Kvitebjørn field, Northern North Sea, AAPG Bull., 84, 1325–1339, 2000.
Whitworth, T. M., Haneberg, W. C., Mozley, P. S., and Goodwin, L. B.:
Solute-sieving-induced calcite precipitation on pulverized quartz sand: experimental results and implications for the
membrane behavior of fault gouge, in: Faults and Subsurface Fluid Flow in the Shallow Crust, edited by: Haneberg, W. C.,
Mozley, P. S., Moore, J. C., and Goodwin, L. B., American Geophysical Union,
Washington, DC, 149–158, https://doi.org/10.1029/GM113p0149, 1999.
Wibberley, C. A. J., Petit, J.-P., and Rives, T.: The mechanics of fault
distribution and localization in high-porosity sands, Provence, France, Geol. Soc. Spec. Publ., 289, 19–46, https://doi.org/10.1144/SP289.3,
2007.
Wilkins, S. J., Davies, R. K., and Naruk, S. J.: Subsurface observations of
deformation bands and their impact on hydrocarbon production within the Holstein Field, Gulf of Mexico, USA, Geol.
Soc. Spec. Publ., 496, 223–252, https://doi.org/10.1144/SP496-2018-139,
2019.
Williams, R. T., Farver, J. R., Onasch, C. M., and Winslow, D. F.: An
experimental investigation of the role of microfracture surfaces in controlling quartz precipitation rate: applications to fault
zone diagenesis, J. Struct. Geol., 74, 24–30, https://doi.org/10.1016/j.jsg.2015.02.011, 2015.
Williams, R. T., Goodwin, L. B., and Mozley, P. S.: Diagenetic controls on
the evolution of fault-zone architecture and permeability structure: Implications for episodicity of fault-zone fluid
transport in extensional basins, Geol. Soc. Am. Bull., 129, 464–478,
https://doi.org/10.1130/B31443.1, 2016.
Wilson, J. E., Goodwin, L. B., and Lewis, C. J.: Deformation bands in
nonwelded ignimbrites: Petrophysical controls on fault-zone deformation and evidence of preferential fluid flow, Geology,
31, 837–840, https://doi.org/10.1130/G19667R.1, 2003.
Wilson, J. E., Goodwin, L. B., and Lewis, C.: Diagenesis of deformation band
faults: record and mechanical consequences of vadose zone flow and transport in the Bandelier Tuff, Los Alamos, New
Mexico, J. Geophys. Res.-Sol. Ea., 111, B09201, https://doi.org/10.1029/2005JB003892, 2006.
Wollast, R.: Kinetic aspects of the nucleation and growth of calcite from
aqueous solutions, in: Carbonate Cements, edited by: Bricker, O. P. and Mackenzie, F. T., J. Hopkins Press, 79, 264–273, 1971.
Short summary
This study focuses on the impact of deformation bands on fluid flow and diagenesis in porous sandstones in two different case studies (northern Apennines, Italy; Provence, France) by combining a variety of multiscalar mapping techniques, detailed field and microstructural observations, and stable isotope analysis. We show that deformation bands buffer and compartmentalize fluid flow and foster and localize diagenesis, recorded by carbonate cement nodules spatially associated with the bands.
This study focuses on the impact of deformation bands on fluid flow and diagenesis in porous...
Special issue